As specified in A8.8.72/A8.8.73/A8.8.74 in the ARM ARM, all variants of the ARM LDRD instruction have the following two constraints:
LDRD<c> <Rt>, <Rt2>, ...
(a) Rt must be even-numbered and not r14
(b) Rt2 must be R(t+1)
If those two constraints are not met the result of executing the instruction will be unpredictable.
Constraint (b) was already enforced, this commit adds support for constraint (a).
Fixes rdar://14479793.
llvm-svn: 191520
LDRD<c> <Rt>, <Rt2>, <label>
LDRD<c> <Rt>, <Rt2>, [<Rn>{, #+/-<imm>}]
LDRD<c> <Rt>, <Rt2>, [<Rn>], #+/-<imm>
LDRD<c> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]!
As specified in A8.8.72/A8.8.73 in the ARM ARM, the T1 encoding has a constraint which enforces that Rt != Rt2.
If this constraint is not met the result of executing the instruction will be unpredictable.
Fixes rdar://14479780.
llvm-svn: 191504
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
llvm-svn: 190598
These were pretty straightforward instructions, with some assembly support
required for HLT.
The ARM assembler is keen to split the instruction mnemonic into a
(non-existent) 'H' instruction with the LT condition code. An exception for
HLT is needed.
HLT follows the same rules as BKPT when in IT blocks, so the special BKPT
hadling code has been adapted to handle HLT also.
Regression tests added including diagnostic tests for out of range immediates
and illegal condition codes, as well as negative tests for pre-ARMv8.
llvm-svn: 190053
According to the ARM specification, "mov" is a valid mnemonic for all Thumb2 MOV encodings.
To achieve this, the patch adds one instruction alias with a special range condition to avoid collision with the Thumb1 MOV.
llvm-svn: 188901
Thumb2 literal loads use an offset encoding which allows for
negative zero. This fixes parsing and encoding so that #-0
is correctly processed. The parser represents #-0 as INT32_MIN.
llvm-svn: 188549
There are many Thumb instructions which take 12-bit immediates encoded in a special
8-byte value + 4-byte rotator form. Not all numbers are represented, and it's legal
to transform an assembly instruction to be able to encode the immediate.
For example: AND and BIC are complementary instructions; one can switch the AND
to a BIC as long as the immediate is complemented.
The intent is to switch one instruction into its complementary one when the immediate
cannot be encoded in the form requested in the original assembly and when the
complementary immediate is encodable.
The patch addresses two issues:
1. definition of t2SOImmNot immediate - it has to check that the orignal value is
not encoded naturally
2. t2AND and t2BIC instruction aliases which should use the Thumb2 SOImm operand
rather than the ARM one.
llvm-svn: 188548
1. The offset range for Thumb1 PC relative loads is [0..1020] and not [-1024..1020]
2. Thumb2 PC relative loads may define the PC, so the restriction placed on target register is removed
3. Removes unneeded alias between "ldr.n" and t1LDRpci. ".n" is actually stripped by both tablegen
and the ASM parser, so this alias rule really does nothing
llvm-svn: 188466
The long encoding for Thumb2 unconditional branches is broken.
Additionally, there is no range checking for target operands; as such
for instructions originating in assembly code, only short Thumb encodings
are generated, regardless of the bitsize needed for the offset.
Adding range checking is non trivial due to the representation of Thumb
branch instructions. There is no true difference between conditional and
unconditional branches in terms of operands and syntax - even unconditional
branches have a predicate which is expected to match that of the IT block
they are in. Yet, the encodings and the permitted size of the offset differ.
Due to this, for any mnemonic there are really 4 encodings to choose for.
The problem cannot be handled in the parser alone or by manipulating td files.
Because the parser builds first a set of match candidates and then checks them
one by one, whatever tablegen-only solution might be found will ultimately be
dependent of the parser's evaluation order. What's worse is that due to the fact
that all branches have the same syntax and the same kinds of operands, that
order is governed by the lexicographical ordering of the names of operand
classes...
To circumvent all this, any necessary disambiguation is added to the instruction
validation pass.
llvm-svn: 188067
While the .td entry is nice and all, it takes a pretty gross hack in
ARMAsmParser::ParseInstruction() because of handling of other "subs"
instructions to get it to match. Ran it by Jim Grosbach and he said it was
about what he expected to make this work given the existing code.
rdar://14214063
llvm-svn: 187530
instructions. With this patch:
1. ldr.n is recognized as mnemonic for the short encoding
2. ldr.w is recognized as menmonic for the long encoding
3. ldr will map to either short or long encodings depending on the size of the offset
llvm-svn: 186831
After Ulrich's r180677 (thanks!) TableGen is intelligent enough to
handle tied constraints involving complex operands properly, so
virtually all of the ARM custom converters are now unnecessary.
llvm-svn: 186810
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
llvm-svn: 185642
Before the fix Thumb2 instructions of type "add rD, rN, #imm" (T3 encoding, see ARM ARM A8.8.4) with rD and rN both being low registers (r0-r7) were classified as having the T4 encoding.
The T4 encoding doesn't have a cc_out operand so for above instructions the operand gets erroneously removed, corrupting the token stream and leading to parse errors later in the process.
This bug prevented "add r1, r7, #0xcbcbcbcb" from being assembled correctly.
Fixes <rdar://problem/14224440>.
llvm-svn: 185575
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
llvm-svn: 185528
Unfortunately this addresses two issues (by the time I'd disentangled the logic
it wasn't worth putting it back to half-broken):
+ Coprocessor instructions should all be predicable in Thumb mode.
+ BKPT should never be predicable.
llvm-svn: 184965
"When assembling to the ARM instruction set, the .N qualifier produces
an assembler error and the .W qualifier has no effect."
In the pre-matcher handler in the asm parser the ".w" (wide) qualifier
when in ARM mode is now discarded. And an error message is now
produced when the ".n" (narrow) qualifier is used in ARM mode.
Test cases for these were added.
rdar://14064574
llvm-svn: 184224
When using a positive offset, literal loads where encoded
as if it was negative, because:
- The sign bit was not assigned to an operand
- The addrmode_imm12 operand was not encoding the sign bit correctly
This patch also makes the assembler look at the .w/.n specifier for
loads.
llvm-svn: 184182
Negative zero is returned by the primary expression parser as INT32_MIN, so all that the method needs to do is to accept this value.
Behavior already present for Thumb2.
llvm-svn: 183734
Some ARM CPUs only support ARM mode (ancient v4 ones, for example) and some
only support Thumb mode (M-class ones currently). This makes sure such CPUs
default to the correct mode and makes the AsmParser diagnose an attempt to
switch modes incorrectly.
rdar://14024354
llvm-svn: 183710
This commit implements the AsmParser for fnstart, fnend,
cantunwind, personality, handlerdata, pad, setfp, save, and
vsave directives.
This commit fixes some minor issue in the ARMELFStreamer:
* The switch back to corresponding section after the .fnend
directive.
* Emit the unwind opcode while processing .fnend directive
if there is no .handlerdata directive.
* Emit the unwind opcode to .ARM.extab while processing
.handlerdata even if .personality directive does not exist.
llvm-svn: 181603
"hint" space for Thumb actually overlaps the encoding space of the CPS
instruction. In actuality, hints can be defined as CPS instructions where imod
and M bits are all nil.
Handle decoding of permitted nop-compatible hints (i.e. nop, yield, wfi, wfe,
sev) in DecodeT2CPSInstruction.
This commit adds a proper diagnostic message for Imm0_4 and updates all tests.
Patch by Mihail Popa <Mihail.Popa@arm.com>.
llvm-svn: 180617
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
llvm-svn: 179804
The reference manual defines only 5 permitted values for the immediate field of the "hint" instruction:
1. nop (imm == 0)
2. yield (imm == 1)
3. wfe (imm == 2)
4. wfi (imm == 3)
5. sev (imm == 4)
Therefore, restrict the permitted values for the "hint" instruction to 0 through 4.
Patch by Mihail Popa <Mihail.Popa@arm.com>
llvm-svn: 179707
The parser will now accept instructions with alignment specifiers written like
vld1.8 {d16}, [r0:64]
, while also still accepting the incorrect syntax
vld1.8 {d16}, [r0, :64]
llvm-svn: 175164
Use the validateTargetOperandClass() hook to match literal '#0' operands in
InstAlias definitions. Previously this required per-instruction C++ munging of the
operand list, but not is handled as a natural part of the matcher. Much better.
No additional tests are required, as the pre-existing tests for these instructions
exercise the new behaviour as being functionally equivalent to the old.
llvm-svn: 174488
infrastructure on MCStreamer to test for whether there is an
MCELFStreamer object available.
This is just a cleanup on the AsmPrinter side of things, moving ad-hoc
tests of random APIs to a direct type query. But the AsmParser
completely broken. There were no tests, it just blindly cast its
streamer to an MCELFStreamer and started manipulating it.
I don't have a test case -- this actually failed on LLVM's own
regression test suite. Unfortunately the failure only appears when the
stars, compilers, and runtime align to misbehave when we read a pointer
to a formatted_raw_ostream as-if it were an MCAssembler. =/
UBSan would catch this immediately.
Many thanks to Matt for doing about 80% of the debugging work here in
GDB, Jim for helping to explain how exactly to fix this, and others for
putting up with the hair pulling that ensued during debugging it.
llvm-svn: 174118
This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
llvm-svn: 171765
immediate generates the narrow version. Needed when doing round-trip
assemble/disassemble testing using the alternate syntax that specifies
'pc' directly.
llvm-svn: 170255
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
This patch replaces the hard coded GPR pair [R0, R1] of
Intrinsic:arm_ldrexd and [R2, R3] of Intrinsic:arm_strexd with
even/odd GPRPair reg class.
Similar to the lowering of atomic_64 operation.
llvm-svn: 168207
the interface between the front-end and the MC layer when parsing inline
assembly. Unfortunately, this is too deep into the parsing stack. Specifically,
we're unable to handle target-independent assembly (i.e., assembly directives,
labels, etc.). Note the MatchAndEmitInstruction() isn't the correct
abstraction either. I'll be exposing target-independent hooks shortly, so this
is really just a cleanup.
llvm-svn: 165858
map constraints and MCInst operands to inline asm operands. This replaces the
getMCInstOperandNum() function.
The logic to determine the constraints are not in place, so we still default to
a register constraint (i.e., "r"). Also, we no longer build the MCInst but
rather return just the opcode to get the MCInstrDesc.
llvm-svn: 164979
This patch fixes load/store instructions to handle less common cases
like "asr #32", "rrx" properly throughout the MC layer.
Patch by Chris Lidbury.
llvm-svn: 164455
MatchInstructionImpl() function.
These values are used by the ConvertToMCInst() function to index into the
ConversionTable. The values are also needed to call the GetMCInstOperandNum()
function.
llvm-svn: 163101
the register info for getEncodingValue. This builds on the
small patch of yesterday to set HWEncoding in the register
file.
One (deprecated) use was turned into a hard number to avoid
needing register info in the old JIT.
llvm-svn: 161628
As an example of how the custom DiagnosticType can be used to provide
better operand-mismatch diagnostics, add a custom diagnostic for
the imm0_15 operand class used for several system instructions.
Update the tests to expect the improved diagnostic.
rdar://8987109
llvm-svn: 159051
the 0b10 mask encoding bits. Make MSR APSR writes without a _<bits> qualifier
an alias for MSR APSR_nzcvq even though ARM as deprecated it use. Also add
support for suffixes (_nzcvq, _g, _nzcvqg) for APSR versions. Some FIXMEs in
the code for better error checking when versions shouldn't be used.
rdar://11457025
llvm-svn: 157019
Make sure when parsing the Thumb1 sp+register ADD instruction that
the source and destination operands match. In thumb2, just use the
wide encoding if they don't. In Thumb1, issue a diagnostic.
rdar://11219154
llvm-svn: 155748
When an instruction match is found, but the subtarget features it
requires are not available (missing floating point unit, or thumb vs arm
mode, for example), issue a diagnostic that identifies what the feature
mismatch is.
rdar://11257547
llvm-svn: 155499
As an example, attach range info to the "invalid instruction" message:
$ clang -arch arm -c asm.c
asm.c:2:11: error: invalid instruction
__asm__("foo r0");
^
<inline asm>:1:2: note: instantiated into assembly here
foo r0
^~~
llvm-svn: 154765
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
We were incorrectly conflating some add variants which don't have a
cc_out operand with the mirroring sub encodings, which do. Part of the
awesome non-orthogonality legacy of thumb1. Similarly, handling of
add/sub of an immediate was sometimes incorrectly removing the cc_out
operand for add/sub register variants.
rdar://11216577
llvm-svn: 154411
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
llvm-svn: 154123
When an immediate is both a value [t2_]so_imm and a [t2_]so_imm_neg,
we want to use the non-negated form to make sure we prefer the normal
encoding, not the aliased encoding via the negation of, e.g., 'cmp.w'.
llvm-svn: 153770
For 'adds r2, r2, #56' outside of an IT block, the 16-bit encoding T2
can be used for this syntax. Prefer the narrow encoding when possible.
rdar://11156277
llvm-svn: 153759
It's not a good style idea, as the registers will be laid down in memory in
numerical order, not the order they're in the list, but it's legal. vldm/vstm
are stricter.
rdar://11064740
llvm-svn: 152943
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
llvm-svn: 152045
Adjust an example MachObjectWriter diagnostic to use the information
to issue a better message.
Before:
LLVM ERROR: unknown ARM fixup kind!
After:
x.s:6:5: error: unsupported relocation on symbol
beq bar
^
rdar://9800182
llvm-svn: 149093
"Although a Thumb2 instruction, the IT mnemonic shall be permitted in
ARM mode, and the condition verified to match the condition code(s)
on the following instruction(s)."
PR11853
llvm-svn: 148969
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
llvm-svn: 148556
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
llvm-svn: 148262
If anybody has strong feelings about 'default: assert(0 && "blah")' vs
'default: llvm_unreachable("blah")', feel free to regularize the instances of
each in this file.
llvm-svn: 147459
Rather than require the symbol to be explicitly an argument of the directive,
allow it to look ahead and grab the symbol from the next non-whitespace
line.
rdar://10611140
llvm-svn: 147100
"mov r1, r2, lsl #0" should assemble as "mov r1, r2" even though it's
not strictly legal UAL syntax. It's a common extension and the friendly
thing to do.
rdar://10604663
llvm-svn: 146937
Backwards compatibility with 'gas'. #imm is the preferered and documented
syntax, but lots of existing code uses the '$' prefix, so we should
support it if we can.
llvm-svn: 146285
For example,
vld1.f64 {d2-d5}, [r2,:128]!
Should be equivalent to:
vld1.f64 {d2,d3,d4,d5}, [r2,:128]!
It's not documented syntax in the ARM ARM, but it is consistent with what's
accepted for VLDM/VSTM and is unambiguous in meaning, so it's a good thing to
support.
rdar://10451128
llvm-svn: 144727
When the 3rd operand is not a low-register, and the first two operands are
the same low register, the parser was incorrectly trying to use the 16-bit
instruction encoding.
rdar://10449281
llvm-svn: 144679
It's ignored by the assembler when present, but is legal syntax. Other
instructions have something similar, but for some mnemonics it's
only sometimes not significant, so this quick check in the parser will
need refactored into something more robust soon-ish. This gets some
basics working in the meantime.
Partial for rdar://10435264
llvm-svn: 144422
Get the source register that isn't tied to the destination register correct,
even when the assembly source operand order is backwards.
rdar://10428630
llvm-svn: 144322
Use the getIdentifier() method of the token, not getString(), otherwise
we keep the quotes as part of the symbol name, which we don't want.
rdar://10428015
llvm-svn: 144315
We were parsing label references to the i12 encoding, which isn't right.
They need to go to the pci variant instead.
More of rdar://10348687
llvm-svn: 143068
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
llvm-svn: 142670
NEON immediates are "interesting". Start of the work to handle parsing them
in an 'as' compatible manner. Getting the matcher to play nicely with
these and the floating point immediates from VFP is an extra fun wrinkle.
llvm-svn: 142293
Fill out the rest of the encoding information, update to properly mark
the LDC/STC instructions as predicable while the LDC2/STC2 instructions are
not, and adjust the parser accordingly.
llvm-svn: 141721
Consider:
mov r8, r11 fred
Previously, we issued the not very informative:
x.s:6:1: error: unexpected token in argument list
^
Now we generate:
x.s:5:14: error: unexpected token in argument list
mov r8, r11 fred
^
llvm-svn: 141380
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
llvm-svn: 140696
Clean up register list handling in general a bit to explicitly check things
like all the registers being from the same register class.
rdar://8883573
llvm-svn: 139707
The immediate offset of the non-writeback i8 form (encoding T4) allows
negative offsets only. The positive offset form of the encoding is the
LDRT instruction. Immediate offsets in the range [0,255] use encoding T3
instead.
llvm-svn: 139254
Choose 32-bit vs. 16-bit encoding when there's no .w suffix in post-processing
as match classes are insufficient to handle the context-sensitiveness of
the writeback operand's legality for the 16-bit encodings.
llvm-svn: 139242
Even if there's no mode switch performed, the .code directive should still
be sent to the output streamer. Otherwise, for example, an output asm stream
is not equivalent to the input stream which generated it (a dependency on
the input target triple arm vs. thumb is introduced which was not originally
there).
llvm-svn: 139155
When we want encoding T3 (the wide encoding), we can explicitly check for
that and twiddle the CanAcceptCarrySet accordingly. For now, just correctly
handle encodings T1 and T2 when in Thumb2 mode.
llvm-svn: 138879
When the destination register of an add immediate instruction is
explicitly specified, encoding T1 is preferred, else encoding T2 is
preferred.
llvm-svn: 138862
This handles only the handling of the IT instruction itself, not the
processing and validation of the instructions in the IT block. That's next,
and will include encoding tests for IT itself.
llvm-svn: 138665
Fix base register type and canonicallize to the "ldm" spelling rather than
"ldmia." Add diagnostics for incorrect writeback token and out-of-range
registers.
llvm-svn: 137986
Represent the operand value as it will be encoded in the instruction. This
allows removing the specialized encoder and decoder methods entirely. Add
an assembler match class while we're at it to lay groundwork for parsing the
thumb shift instructions.
llvm-svn: 137879
Thumb one requires that many arithmetic instruction forms have an 'S'
suffix. For Thumb2, the whether the suffix is required or precluded depends
on whether the instruction is in an IT block. Use target parser predicates
to check for these sorts of context-sensitive constraints.
llvm-svn: 137746
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
llvm-svn: 137675
More parsing support for indexed loads. Fix pre-indexed with writeback
parsing for register offsets and handle basic post-indexed offsets.
llvm-svn: 136982
Memory operand parsing is a bit haphazzard at the moment, in no small part
due to the even more haphazzard representations of memory operands in the .td
files. Start cleaning that all up, at least a bit.
The addressing modes in the .td files will be being simplified to not be
so monolithic, especially with regards to immediate vs. register offsets
and post-indexed addressing. addrmode3 is on its way with this patch, for
example.
This patch is foundational to enable going back to smaller incremental patches
for the individual memory referencing instructions themselves. It does just
enough to get the basics in place and handle the "make check" regression tests
we already have.
Follow-up work will be fleshing out the details and adding more robust test
cases for the individual instructions, starting with ARM mode and moving from
there into Thumb and Thumb2.
llvm-svn: 136845
Fix the instruction encoding for operands. Refactor mode to use explicit
instruction definitions per FIXME to be more consistent with loads/stores.
Fix disassembler accordingly. Add tests.
llvm-svn: 136509
Fill in the missing fixed bits and the register operand bits of the instruction
encoding. Refactor the definition to make the mode explicit, which is
consistent with how loads and stores are normally represented and makes
parsing much easier. Add parsing aliases for pseudo-instruction variants.
Update the disassembler for the new representations. Add tests for parsing and
encoding.
llvm-svn: 136479
Add parsing support for BLX (immediate). Since the register operand version is
predicated and the label operand version is not, we have to use some special
handling to get the operand list right for matching.
llvm-svn: 136406
Add parsing support that handles converting the lsb+width source into the
odd way we represent the instruction (an inverted bitfield mask).
llvm-svn: 136399
This can happen in cases where TableGen generated asm matcher cannot check
whether a register operand is in the right register class. e.g. mem operands.
rdar://8204588
llvm-svn: 136292
Encode the width operand as it encodes in the instruction, which simplifies
the disassembler and the encoder, by using the imm1_32 operand def. Add a
diagnostic for the context-sensitive constraint that the width must be in
the range [1,32-lsb].
llvm-svn: 136264
Fix the Rn register encoding for both SSAT and USAT. Update the parsing of the
shift operand to correctly handle the allowed shift types and immediate ranges
and issue meaningful diagnostics when an illegal value or shift type is
specified. Add aliases to parse an ommitted shift operand (default value of
'lsl #0').
Add tests for diagnostics and proper encoding.
llvm-svn: 135990
The immediate is in the range 1-32, but is encoded as 0-31 in a 5-bit bitfield.
Update the representation such that we store the operand as 0-31, allowing us
to remove the encoder method and the special case handling in the disassembler.
Update the assembly parser and the instruction printer accordingly.
llvm-svn: 135823
The system register spec should be case insensitive. The preferred form for
output with mask values of 4, 8, and 12 references APSR rather than CPSR.
Update and tidy up tests accordingly.
llvm-svn: 135532
Correct the handling of the 's' suffix when parsing ARM mode. It's only a
truly separate opcode in Thumb. Add test cases to make sure we handle
the s and condition suffices correctly, including diagnostics.
llvm-svn: 135513
Add range checking for the immediate operand and handle the "mov" mnemonic
choosing between encodings based on the value of the immediate. Add tests
for fixups, encoding choice and values, and diagnostic for out of range values.
llvm-svn: 135500
Flesh out the options supported for the instruction. Shuffle tests a bit and
add entries for the rest of the options. Add an alias to handle the default
operand of "sy".
llvm-svn: 135109
Catch potential cascading errors on a malformed so_reg operand and bail after
the first error.
Add some tests for the diagnostics we do want.
llvm-svn: 135055
Now works for parsing register shifted register and register shifted
immediate arithmetic instructions, including the 'rrx' rotate with extend.
llvm-svn: 135049
Update the debug output interface for MCParsedAsmOperand to have a print()
method which takes an output stream argument, an << operator which invokes
the print method using the given stream, and a dump() method which prints
the operand to the dbgs() stream. This makes the interface more consistent
with the rest of LLVM, and more convenient to use at the debugger command
line.
llvm-svn: 135043
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
Fix a FIXME and allow predication (in Thumb2) for the T1 register to
register MOV instructions. This allows some better codegen with
if-conversion (as seen in the test updates), plus it lays the groundwork
for pseudo-izing the tMOVCC instructions.
llvm-svn: 134197
Correctly parse the forms of the Thumb mov-immediate instruction:
1. 8-bit immediate 0-255.
2. 12-bit shifted-immediate.
The 16-bit immediate "movw" form is also legal with just a "mov" mnemonic,
but is not yet supported. More parser logic necessary there due to fixups.
llvm-svn: 133966
Thumb2 MOV mnemonic can accept both cc_out and predication. We don't (yet)
encode the instruction properly, but this gets the parsing part.
llvm-svn: 133945