Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate valid attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
Also, this is valid only for attributes which are a property of a
callsite and not those that are not dependent on the ABI, or a property
of the call itself.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
This reverts commit 28518d9ae3.
There is a failure in MsgPackReader.cpp when built with clang. It
complains about "signext and zeroext" are incompatible. Investigating
offline if it is infact a UB in the MsgPackReader code.
Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate those attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
See added test cases.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
For each natural loop with multiple exit blocks, this pass creates a
new block N such that all exiting blocks now branch to N, and then
control flow is redistributed to all the original exit blocks.
The bulk of the tranformation is a new function introduced in
BasicBlockUtils that an redirect control flow from a set of incoming
blocks to a set of outgoing blocks via a common "hub".
This is a useful workaround for a limitation in the structurizer which
incorrectly orders blocks when processing a nest of loops. This pass
bypasses that issue by ensuring that each natural loop is recognized
as a separate region. Since the structurizer is a region pass, it no
longer sees a nest of loops in a single region, and instead processes
each "level" in the nesting as a separate region.
The AMDGPU backend provides a new option to enable this pass before
the structurizer, which may eventually be enabled by default.
Reviewers: madhur13490, arsenm, nhaehnle
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D75865
Aligned_alloc is a standard lib function and has been in glibc since
2.16 and in the C11 standard. It has semantics similar to malloc/calloc
for several analyses/transforms. This patch introduces aligned_alloc
in target library info and memory builtins. Subsequent ones will
make other passes aware and fix https://bugs.llvm.org/show_bug.cgi?id=44062
This change will also be useful to LLVM generators that need to allocate
buffers of vector elements larger than 16 bytes (for eg. 256-bit ones),
element boundary alignment for which is not typically provided by glibc malloc.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76970
Since intrinsics can now specify when an argument is required to be
constant, it is now OK to replace arguments with variables if they
aren't. This means intrinsics must now be accurately marked with
immarg.
Summary: Prevent InstCombine from removing llvm.assume for which the arguement is true when they have operand bundles with usefull information.
Reviewers: jdoerfert, nikic, lebedev.ri
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76147
Summary:
during inling Create and insert an llvm.assume with attributes to preserve them.
to prevent any changes for now generation of llvm.assume is under a flag disabled by default.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75825
Summary:
This patch replaces incorrectt assert with a check. Previously it asserts that
if SCEV cannot prove `isKnownPredicate(A != B)`, then it should be able to prove
`isKnownPredicate(A == B)`.
Both these fact may be not provable. It is shown in the provided test:
Could not prove: `{-294,+,-2}<%bb1> != 0`
Asserting: `{-294,+,-2}<%bb1> == 0`
Obviously, this SCEV is not equal to zero, but 0 is in its range so we cannot
also prove that it is not zero.
Instead of assert, we should be checking the required conditions explicitly.
Reviewers: lebedev.ri, fhahn, sanjoy, fedor.sergeev
Reviewed By: lebedev.ri
Subscribers: hiraditya, zzheng, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76050
This essentially reverts some of the SimplifyLibcalls part changes of D45736 [SimplifyLibcalls] Replace locked IO with unlocked IO.
C11 7.21.5.2 The fflush function
> If stream is a null pointer, the fflush function performs this flushing action on all streams for which the behavior is defined above.
i.e. fopen'ed FILE* is inherently captured.
POSIX.1-2017 getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - stdio with explicit client locking
> These functions can safely be used in a multi-threaded program if and only if they are called while the invoking thread owns the ( FILE *) object, as is the case after a successful call to the flockfile() or ftrylockfile() functions.
After a thread fopen'ed a FILE*, when it is calling foobar() which is now replaced by foobar_unlocked(),
if another thread is concurrently calling fflush(0), the behavior is undefined.
C11 7.22.4.4 The exit function
> Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all files created by the tmpfile function are removed.
The replacement is only feasible if the program is single threaded, or exit or fflush(0) is never called.
See also http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180528/556615.html
for how the replacement makes libc interceptors difficult to implement.
dalias: in a worst case, it's unbounded data corruption because of concurrent access to pointers
without synchronization. f->wpos or rpos could get outside of the buffer, thread A could do
f->wpos += j after knowing j is in bounds, while thread B also changes it concurrently.
This can produce exploitable conditions depending on libc internals.
Revert the SimplifyLibcalls part change because the cons obviously
overweigh the pros. Even when the replacement is feasible, the benefit
is indemonstrable, more so in an application instead of an artificial
glibc benchmark. Theoretically the replacement could be beneficial when
calling getc_unlocked/putc_unlocked in a loop, but then it is better
using a blocked IO operation and the user is likely aware of that.
The function attribute inference is still useful and thus kept.
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D75933
Summary:
Assume bundles need to be usable by Analysis and Transforms/Utils isn't.
so this commit moves utilities to deal with asusme bundles to IR.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75618
Summary: Finding what information is know about a value from a use is generally useful and can be done quickly.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75616
Summary:
This performs better for sample PGO.
NFC as PGSOColdCodeOnlyForSamplePGO is still true.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75550
As the test case shows if there is an ExtractValueInst in the Ret block, function dupRetToEnableTailCallOpts can't duplicate it into the block containing call. So later no tail call is generated in CodeGen.
This patch adds the ExtractValueInst handling code in function dupRetToEnableTailCallOpts and FoldReturnIntoUncondBranch, and later tail call can be generated for this case.
Differential Revision: https://reviews.llvm.org/D74242
Spin-off from D75407. As described there, ConstantFoldConstant()
currently returns null for non-ConstantExpr/ConstantVector inputs,
but otherwise always returns non-null, independently of whether
any folding has happened or not.
This is confusing and makes consumer code more complicated.
I would expect either that ConstantFoldConstant() returns only if
it actually folded something, or that it always returns non-null.
I'm going to the latter possibility here, which appears to be more
useful considering existing usage.
Differential Revision: https://reviews.llvm.org/D75543
Summary:
https://gist.github.com/modocache/ed7c62f6e570766c0f39b35dad675c2f
is an example of a small C++ program that uses C++20 coroutines that
is difficult to debug, due to the loss of debug info for variables that
"spill" across coroutine suspension boundaries. This patch addresses
that issue by inserting 'llvm.dbg.declare' intrinsics that point the
debugger to the variables' location at an offset to the coroutine frame.
With this patch, I confirmed that running the 'frame variable' commands in
https://gist.github.com/modocache/ed7c62f6e570766c0f39b35dad675c2f at
the specified breakpoints results in the correct values being printed
for coroutine frame variables 'i' and 'j' when using an lldb built from
trunk, as well as with gdb 8.3 (lldb 9.0.1, however, could not print the
values). The added test case also verifies this improved behavior.
The existing coro-debug.ll test case is also modified to reflect the
locations at which Clang actually places calls to 'dbg.declare', and
additional checks are added to ensure this patch works as intended in that
example as well.
Reviewers: vsk, jmorse, GorNishanov, lewissbaker, wenlei
Subscribers: EricWF, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75338
Summary: This patch adds a new way to query operand bundles of an llvm.assume that is much better suited to some users like the Attributor that need to do many queries on the operand bundles of llvm.assume. Some modifications of the IR like replaceAllUsesWith can cause information in the map to be outdated, so this API is more suited to analysis passes and passes that don't make modification that could invalidate the map.
Reviewers: jdoerfert, sstefan1, uenoku
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75020
Also adds a force-reduction-intrinsics option for testing, for forcing
the generation of reduction intrinsics even when the backend is not
requesting them.
Summary:
This is to avoid generating duplicate llvm.dbg.value instrinsic if it already exists after the Instruction.
Before inserting llvm.dbg.value instruction, LLVM checks if the same instruction is already present before the instruction to avoid duplicates.
Currently it misses to check if it already exists after the instruction.
flang generates IR like this.
%4 = load i32, i32* %i1_311, align 4, !dbg !42
call void @llvm.dbg.value(metadata i32 %4, metadata !35, metadata !DIExpression()), !dbg !33
When this IR is processed in llvm, it ends up inserting duplicates.
%4 = load i32, i32* %i1_311, align 4, !dbg !42
call void @llvm.dbg.value(metadata i32 %4, metadata !35, metadata !DIExpression()), !dbg !33
call void @llvm.dbg.value(metadata i32 %4, metadata !35, metadata !DIExpression()), !dbg !33
We have now updated LdStHasDebugValue to include the cases when instruction is already
followed by same dbg.value instruction we intend to insert.
Now,
Definition and usage of function LdStHasDebugValue are deleted.
RemoveRedundantDbgInstrs is called for the cleanup of duplicate dbg.value's
Testing:
Added unit test for validation
check-llvm
check-debuginfo (the debug info integration tests)
Reviewers: aprantl, probinson, dblaikie, jmorse, jini.susan.george
SouraVX, awpandey, dstenb, vsk
Reviewed By: aprantl, jmorse, dstenb, vsk
Differential Revision: https://reviews.llvm.org/D74030
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: RKSimon, xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
Summary: This fixes the crash that led to the revert of D69591.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75307
Summary:
Replacing uses of IV outside of the loop is likely generally useful,
but `rewriteLoopExitValues()` is cautious, and if it isn't told to always
perform the replacement, and there are hard uses of IV in loop,
it doesn't replace.
In [[ https://bugs.llvm.org/show_bug.cgi?id=44668 | PR44668 ]],
that prevents `-indvars` from replacing uses of induction variable
after the loop, which might be one of the optimization failures
preventing that code from being vectorized.
Instead, now that the cost model is fixed, i believe we should be
a little bit more optimistic, and also perform replacement
if we believe it is within our budget.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=44668 | PR44668 ]].
Reviewers: reames, mkazantsev, asbirlea, fhahn, skatkov
Reviewed By: mkazantsev
Subscribers: nikic, hiraditya, zzheng, javed.absar, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73501
Summary:
In future patches`SCEVExpander::isHighCostExpansionHelper()` will respect the budget allocated by performing TTI cost modelling.
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73705
Summary:
Future patches will make use of TTI to perform cost-model-driven `SCEVExpander::isHighCostExpansionHelper()`
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73704
Summary:
Blocks in a loop can be in any order as long as the loop header is the
first block in Blocks.
With some order of Blocks, cloneLoopWithPreheader would trigger the
assertion in addBasicBlockToLoop.
Example:
define void @test(i64 %N) {
preheader.i:
br label %header.i
header.i:
%i = phi i64 [ 0, %preheader.i ], [ %inc.i, %latch.i ]
br label %header.j
header.j:
%j = phi i64 [ 0, %header.i ], [ %inc.j, %latch.j ]
br label %header.k
header.k:
%k = phi i64 [ 0, %header.j ], [ %inc.k, %latch.k ]
call void @baz(i64 %i, i64 %j, i64 %k)
br label %latch.k
latch.k:
%inc.k = add nsw i64 %k, 1
%cmp.k = icmp slt i64 %inc.k, %N
br i1 %cmp.k, label %header.k, label %latch.j
latch.j:
%inc.j = add nsw i64 %j, 1
%cmp.j = icmp slt i64 %inc.j, %N
br i1 %cmp.j, label %header.j, label %latch.i
latch.i:
%inc.i = add nsw i64 %i, 1
%cmp.i = icmp slt i64 %inc.i, %N
br i1 %cmp.i, label %header.i, label %exit.i
exit.i:
ret void
}
declare void @baz(i64, i64, i64)
If the blocks of loop-i is in the order: header.i, latch.k, header.k,
header.j, latch.j, latch.i,
then cloneLoopWithPreheader would trigger the assertion in
addBasicBlockToLoop
assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
"Incorrect LI specified for this loop!");
As latch.k is in both loop-j and loop-k, it would be set as the header
of both loops after adding latch.k.
If we update loop headers during cloning blocks, then after adding
header.k,
the header of loop-k would be updated with header.k,
while the header of loop-j stays as latch.k.
When adding header.j, SameHeader is loop-k, SameHeader->getHeader() is
header.k, but getHeader() is latch.k, which trigger the assertion.
Reviewer: jdoerfert, Meinersbur, fhahn, kbarton, hfinkel, bmahjour,
etiotto
Reviewed By: Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D74382
ToVectorTy is defined and used in multiple places. Hoist it to
VectorUtils.h to avoid duplication and improve re-usability.
Reviewers: rengolin, hsaito, Ayal, gilr, fpetrogalli
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D74959
This changes the SimplifyLibCalls utility to accept an IRBuilderBase,
which allows us to pass through the IRBuilder used by InstCombine.
This will ensure that new instructions get added to the worklist.
The annotated test-case drops from 4 to 2 InstCombine iterations thanks
to this.
To achieve this, I'm adding an IRBuilderBase::OperandBundlesGuard,
which is basically the same as the existing InsertPointGuard and
FastMathFlagsGuard, but for operand bundles. Also add a
setDefaultOperandBundles() method so these can be set outside the
constructor.
Differential Revision: https://reviews.llvm.org/D74792
In addition to memory behavior attributes (readonly/writeonly) we now
derive memory location attributes (argmemonly/inaccessiblememonly/...).
The former is part of AAMemoryBehavior and the latter part of
AAMemoryLocation. While they are similar in nature it got messy when
they were put in a single AA. Location attributes for arguments and
floating values will follow later.
Note that both memory attributes kinds can derive readnone. If there are
no accesses AAMemoryBehavior will derive readnone. If there are accesses
but only to stack (=local) locations AAMemoryLocation will derive
readnone.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D73426
replaceDbgDeclare is used to update the descriptions of stack variables
when they are moved (e.g. by ASan or SafeStack). A side effect of
replaceDbgDeclare is that it moves dbg.declares around in the
instruction stream (typically by hoisting them into the entry block).
This behavior was introduced in llvm/r227544 to fix an assertion failure
(llvm.org/PR22386), but no longer appears to be necessary.
Hoisting a dbg.declare generally does not create problems. Usually,
dbg.declare either describes an argument or an alloca in the entry
block, and backends have special handling to emit locations for these.
In optimized builds, LowerDbgDeclare places dbg.values in the right
spots regardless of where the dbg.declare is. And no one uses
replaceDbgDeclare to handle things like VLAs.
However, there doesn't seem to be a positive case for moving
dbg.declares around anymore, and this reordering can get in the way of
understanding other bugs. I propose getting rid of it.
Testing: stage2 RelWithDebInfo sanitized build, check-llvm
rdar://59397340
Differential Revision: https://reviews.llvm.org/D74517
This reverts commit 61b35e4111.
This commit causes a timeout in chromium builds; likely to have a
similar cause to the previous timeout issue caused by this commit (see
6ded69f294 for more details). It is possible that there is no way to
fix this bug that will not cause this issue; further investigations as
to the efficiency of handling large amounts of debug info will be
necessary.
Reapply 8a56d64d76 with minor fixes.
The problem was that cancellation can cause new edges to the parallel
region exit block which is not outlined. The CodeExtractor will encode
the information which "exit" was taken as a return value. The fix is to
ensure we do not return any value from the outlined function, to prevent
control to value conversion we ensure a single exit block for the
outlined region.
This reverts commit 3aac953afa.
In order to fix PR44560 and to prepare for loop transformations we now
finalize a function late, which will also do the outlining late. The
logic is as before but the actual outlining step happens now after the
function was fully constructed. Once we have loop transformations we
can apply them in the finalize step before the outlining.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D74372
This reverts commit 636c93ed11.
The original patch caused build failures on TSan buildbots. Commit 6ded69f294
fixes this issue by reducing the rate at which empty debug intrinsics
propagate, reducing the memory footprint and preventing a fatal spike.
Summary: It attempts to devirtualize a call on alloca through vtable loads.
Reviewers: davidxl
Subscribers: mgorny, Prazek, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71308
The CallGraphUpdater is a helper that simplifies the process of updating
the call graph, both old and new style, while running an CGSCC pass.
The uses are contained in different commits, e.g. D70767.
More functionality is added as we need it.
Reviewed By: modocache, hfinkel
Differential Revision: https://reviews.llvm.org/D70927
Bionic has had `__strlen_chk` for a while. Optimizing that into a
constant is quite profitable, when possible.
Differential Revision: https://reviews.llvm.org/D74079
Summary:
This enables it for large working set size cases only.
This does not enable it under sample PGO.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74073
Summary:
Tune the profile threshold flag value for instrumentation PGO based on internal
benchmarks.
Also, add flags to allow profile guided size optimizations for non-cold code
to be enabled separately for instrumentation and sample PGSO.
Neither changes the default behavior (yet) as it's disabled for non-cold code.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72937
Summary:
Method appendLoopsToWorklist is duplicate in LoopUnroll and in the
LoopPassManager as an internal method. Make it an utility.
Reviewers: dmgreen, chandlerc, fedor.sergeev, yamauchi
Subscribers: mehdi_amini, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73569
If we had `noalias` on an argument the inliner created alias scope
metadata already. However, the call site `noalias` annotation was not
considered. Since the Attributor can derive such call site `noalias`
annotation we should treat them the same as argument annotations.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D73528
Fix attempt
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Some code gen passes use MBFIWrapper to keep track of the frequency of new
blocks. This was not taken into account and could lead to incorrect frequencies
as MBFI silently returns zero frequency for unknown/new blocks.
Add a variant for MBFIWrapper in the PGSO query interface.
Depends on D73494.
We may calculate reassociable math ops in arbitrary order when creating a shuffle reduction,
so there's no guarantee that things like 'nsw' hold on those intermediate values. Drop all
poison-generating flags for safety.
This change is limited to shuffle reductions because I don't think we have a problem in the
general case (where we intersect flags of each scalar op that goes into a vector op), but if
there's evidence of other cases being wrong, we can extend this fix to cover those cases.
https://bugs.llvm.org/show_bug.cgi?id=44536
Differential Revision: https://reviews.llvm.org/D73727
Summary:
This patch makes sure that the field VFShape.VF is greater than zero
when demangling the vector function name of scalable vector functions
encoded in the "vector-function-abi-variant" attribute.
This change is required to be able to provide instances of VFShape
that can be used to query the VFDatabase for the vectorization passes,
as such passes always require a positive value for the Vectorization Factor (VF)
needed by the vectorization process.
It is not possible to extract the value of VFShape.VF from the mangled
name of scalable vector functions, because it is encoded as
`x`. Therefore, the VFABI demangling function has been modified to
extract such information from the IR declaration of the vector
function, under the assumption that _all_ vectors in the signature of
the vector function have the same number of lanes. Such assumption is
valid because it is also assumed by the Vector Function ABI
specifications supported by the demangling function (x86, AArch64, and
LLVM internal one).
The unit tests that demangle scalable names have been modified by
adding the IR module that carries the declaration of the vector
function name being demangled.
In particular, the demangling function fails in the following cases:
1. When the declaration of the scalable vector function is not
present in the module.
2. When the value of VFSHape.VF is not greater than 0.
Reviewers: jdoerfert, sdesmalen, andwar
Reviewed By: jdoerfert
Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73286
proven safe.
Summary:
Currently LoopFusion give up when the second loop nest preheader is
not empty. For example:
for (int i = 0; i < 100; ++i) {}
x+=1;
for (int i = 0; i < 100; ++i) {}
The above example should be safe to fuse.
This PR moves instructions in FC1 preheader (e.g. x+=1; ) to
FC0 preheader, which then LoopFusion is able to fuse them.
Reviewer: kbarton, Meinersbur, jdoerfert, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71821
During extraction, stale llvm.assume handles may be retained in the
original function. The setup is:
1) CodeExtractor unregisters assumptions in the blocks that are to be
extracted.
2) Extraction happens. There are now two functions: f1 and f1.extracted.
3) Leftover assumptions in f1 (/not/ removed as they were not in the set of
blocks to be extracted) now have affected-value llvm.assume handles in
f1.extracted.
When assumptions for a value used in f1 are looked up, ValueTracking can assert
as some of the handles are in the wrong function. To fix this, simply erase the
llvm.assume calls in the extracted function.
Alternatives include flushing the assumption cache in the original function, or
walking all values used in the original function to prune stale affected-value
handles. Both seem more expensive.
Testing: check-llvm, LNT run with -mllvm -hot-cold-split enabled
rdar://58460728
Previously, the enums didn't account for all the possible cases, which
could cause misleading results (particularly for a "switch" on
FunctionModRefBehavior).
Fixes regression in polly from recent patch to add writeonly to memset.
While I'm here, also fix a few dubious uses of the FMRB_* enum values.
Differential Revision: https://reviews.llvm.org/D73154
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
Currently IsControlFlowEquivalent determine if two blocks are control
flow equivalent by checking if A dominates B and B post dominates A.
There exists blocks that are control flow equivalent even if they don't
satisfy the A dominates B and B post dominates A condition.
For example,
if (cond)
A
if (cond)
B
In the PR, we determine if two blocks are control flow equivalent by
also checking if the two sets of conditions A and B depends on are
equivalent.
Reviewer: jdoerfert, Meinersbur, dmgreen, etiotto, bmahjour, fhahn,
hfinkel, kbarton
Reviewed By: fhahn
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71578
Summary:
LoopUnroll can reuse the RemapInstruction() in ValueMapper, or
remapInstructionsInBlocks() in CloneFunction, depending on the needs.
There is no need to have its own version in LoopUnroll.
By calling RemapInstruction() without TypeMapper or Materializer and
with Flags (RF_NoModuleLevelChanges | RF_IgnoreMissingLocals), it does
the same as remapInstruction(). remapInstructionsInBlocks() calls
RemapInstruction() exactly as described.
Looking at the history, I cannot find any obvious reason to have its own
version.
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto,
foad, aprantl
Reviewed By: jdoerfert
Subscribers: hiraditya, zzheng, llvm-commits, prithayan, anhtuyen
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D73277
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
This fixes a bug where a PHI node that is only referenced by a lifetime.end intrinsic in an otherwise empty cleanuppad can cause SimplyCFG to create an SSA violation while removing the empty cleanuppad. Theoretically the same problem can occur with debug intrinsics.
Differential Revision: https://reviews.llvm.org/D72540
Create a utility wrapper for the RecursivelyDeleteTriviallyDeadInstructions utility
method, which sets to nullptr the instructions that are not trivially
dead. Use the new method in LoopStrengthReduce.
Alternative: add a bool to the same method; this option adds a marginal
amount of overhead to the other callers, and the method needs to be
updated to return a bool status when it removes/doesn't remove
instructions.
The utility method RecursivelyDeleteTriviallyDeadInstructions receives
as input a vector of Instructions, where all inputs are valid
instructions. This same vector is used as a scratch storage (per the
header comment) to recursively delete instructions. If an instruction is
added as an operand of multiple other instructions, it may be added twice,
then deleted once, then the second reference in the vector is invalid.
Switch to using a Vector<WeakTrackingVH>.
This change facilitates a clean-up in LoopStrengthReduction.
Calling `operator*` on a WeakVH with a null value yields a null
reference, which is UB. Avoid this by implicitly converting the WeakVH
to a `Value *` rather than dereferencing and then taking the address
for the type conversion.
Differential Revision: https://reviews.llvm.org/D73280
In case of loops with multiple exit where all-but-one exit are deoptimizing
it might happen that the first rotation will end up with latch having a deoptimizing
exit. This makes the loop unsuitable for trip-count analysis (say, getLoopEstimatedTripCount)
as well as for loop transformations that know how to handle multple deoptimizing exits.
It pretty much means that canonical form in multple-deoptimizing-exits case should be
with non-deoptimizing exit at latch.
Teach loop-rotation to reach this canonical form by repeating rotation.
-loop-rotate-multi option introduced to control this behavior, currently disabled by default.
Reviewers: skatkov, asbirlea, reames, fhahn
Reviewed By: skatkov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73058
It is incorrect to call ValueHandleBase::ValueIsRAUWd when only one use
is replaced since it simply violates semantics of the callback and leads
to bugs like PR44320.
Previously this call was used specifically to keep LICM's cache of
AliasSetTrackers up to date across passes (as PR36801 showed, even for
that purpose it didn't work properly), but since LICM doesn't have that
cache anymore, we can safely remove this incorrect call with no
repercussions.
This patch fixes https://bugs.llvm.org/show_bug.cgi?id=44320
Reviewers: asbirlea, fhahn, efriedma, reames
Reviewed-By: asbirlea
Differential Revision: https://reviews.llvm.org/D73089
Summary: Vectorized loop processes VFxUF number of elements in one iteration thus total number of iterations decreases proportionally. In addition epilog loop may not have more than VFxUF - 1 iterations. This patch updates profile information accordingly.
Reviewers: hsaito, Ayal, fhahn, reames, silvas, dcaballe, SjoerdMeijer, mkuper, DaniilSuchkov
Reviewed By: Ayal, DaniilSuchkov
Subscribers: fedor.sergeev, hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67905
Summary: Current implementation of getLoopEstimatedTripCount returns 1 iteration less than it should. The reason is that in bottom tested loop first iteration is executed before first back branch is taken. For example for loop with !{!"branch_weights", i32 1 // taken, i32 1 // exit} metadata getLoopEstimatedTripCount gives 1 while actual number of iterations is 2.
Reviewers: Ayal, fhahn
Reviewed By: Ayal
Subscribers: mgorny, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71990
This moves `rewriteLoopExitValues()` from IndVarSimplify to LoopUtils thus
making it a generic loop utility function. This allows to rewrite loop exit
values by just calling this function without running the whole IndVarSimplify
pass.
We use this in D72714 to rematerialise the iteration count in exit blocks, so
that we can clean-up loop update expressions inside the hardware-loops later.
Differential Revision: https://reviews.llvm.org/D72602
Static method MemoryDependenceResults::getLoadLoadClobberFullWidthSize
does not have or use any info specific to MemoryDependenceResults.
Move it to its only user: VNCoercion.
This reverts commit 3f3017e because there's a failure on peel-loop-nests.ll
with LLVM_ENABLE_EXPENSIVE_CHECKS on.
Differential Revision: https://reviews.llvm.org/D70304
Summary:
This commits is a rework of the patch in
https://reviews.llvm.org/D67572.
The rework was requested to prevent out-of-tree performance regression
when vectorizing out-of-tree IR intrinsics. The vectorization of such
intrinsics is enquired via the static function `isTLIScalarize`. For
detail see the discussion in https://reviews.llvm.org/D67572.
Reviewers: uabelho, fhahn, sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72734
Summary:
This change implements the expansion in two parts:
- Add a utility function emitAMDGPUPrintfCall() in LLVM.
- Invoke the above function from Clang CodeGen, when processing a HIP
program for the AMDGPU target.
The printf expansion has undefined behaviour if the format string is
not a compile-time constant. As a sufficient condition, the HIP
ToolChain now emits -Werror=format-nonliteral.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D71365
After extracting, fix up debug info in both the old and new functions by
1) Pointing line locations and debug intrinsics to the new subprogram
scope, and
2) Deleting intrinsics which point to values outside of the new
function.
Depends on https://reviews.llvm.org/D72795.
Testing: check-llvm, check-clang, a build of LNT in the `-Os -g` config
with "-mllvm -hot-cold-split=1" set, and end-to-end debugging of a toy
program which undergoes splitting to verify that lldb can find
variables, single step, etc. in extracted code.
rdar://45507940
Differential Revision: https://reviews.llvm.org/D72801
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
Factor out the logic needed to update debug locations contained within
MD_loop metadata.
This refactor is preparation for a future change that also needs to
rewrite MD_loop metadata.
rdar://45507940
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
As discussed in PR44330:
https://bugs.llvm.org/show_bug.cgi?id=44330
...the transform from pow(X, -0.5) libcall/intrinsic to
reciprocal square root can result in small deviations from
the expected result due to differences in the pow()
implementation and/or the extra rounding step from the division.
This patch proposes to allow that difference with either the
'approximate functions' or 'reassociate' FMF:
http://llvm.org/docs/LangRef.html#fast-math-flags
In practice, this likely means that the code is compiled with
all of 'fast' (-ffast-math), but I have preserved the existing
specializations for -0.0/-INF that enable generating safe code
if those special values are allowed simultaneously with
allowing approximation/reassociation.
The question about whether a similar restriction is needed for
the non-reciprocal case -- pow(X, 0.5) -- is deferred. That
transform is allowed without FMF currently, and this patch does
not change that behavior.
Differential Revision: https://reviews.llvm.org/D71706
This reverts commit 1f3dd83cc1, reapplying
commit bb1b0bc4e5.
The original commit failed on some builds seemingly due to the use of a
bracketed constructor with an std::array, i.e. `std::array<> arr({...})`.
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. This patch enables the salvaging of casts by using the
DW_OP_LLVM_convert operator for SExt and Trunc instructions.
There is another issue which is exposed by this fix, in which fragment
DIExpressions (which are preserved more readily by this patch) for
values that must be split across registers in ISel trigger an assertion,
as the 'split' fragments extend beyond the bounds of the fragment
DIExpression causing an error. This patch also fixes this issue by
checking the fragment status of DIExpressions which are to be split, and
dropping fragments that are invalid.
Summary:This PR move instructions from FC0.Latch bottom up to the
beginning of FC1.Latch as long as they are proven safe.
To illustrate why this is beneficial, let's consider the following
example:
Before Fusion:
header1:
br header2
header2:
br header2, latch1
latch1:
br header1, preheader3
preheader3:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header3, exit3
After Fusion (before this PR):
header1:
br header2
header2:
br header2, latch1
latch1:
br header3
header3:
br header4
header4:
br header4, latch3
latch3:
br header1, exit3
Note that preheader3 is removed during fusion before this PR.
Notice that we cannot fuse loop2 with loop4 as there exists block latch1
in between.
This PR move instructions from latch1 to beginning of latch3, and remove
block latch1. LoopFusion is now able to fuse loop nest recursively.
After Fusion (after this PR):
header1:
br header2
header2:
br header3
header3:
br header4
header4:
br header2, latch3
latch3:
br header1, exit3
Reviewer: kbarton, jdoerfert, Meinersbur, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: kbarton, Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71165
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
Summary:
In commit d60f34c20a (llvm-svn 317128,
PR35113) MergeBlockIntoPredecessor was changed into
discarding some dbg.value intrinsics referring to
PHI values, post-splice due to loop rotation.
That elimination of dbg.value intrinsics did not
consider which dbg.value to keep depending on the
context (e.g. if the variable is changing its value
several times inside the basic block).
In the past that hasn't been such a big problem since
CodeGenPrepare::placeDbgValues has moved the dbg.value
to be next to the PHI node anyway. But after commit
00e238896c CodeGenPrepare isn't doing that
any longer, so we need to be more careful when avoiding
duplicate dbg.value intrinsics in MergeBlockIntoPredecessor.
This patch replaces the code that tried to avoid duplicate
dbg.values by using the RemoveRedundantDbgInstrs helper.
Reviewers: aprantl, jmorse, vsk
Reviewed By: aprantl, vsk
Subscribers: jholewinski, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71480
Summary:
Add a RemoveRedundantDbgInstrs to BasicBlockUtils with the
goal to remove redundant dbg intrinsics from a basic block.
This can be useful after various transforms, as it might
be simpler to do a filtering of dbg intrinsics after the
transform than during the transform.
One primary use case would be to replace a too aggressive
removal done by MergeBlockIntoPredecessor, seen at loop
rotate (not done in this patch).
The elimination algorithm currently focuses on dbg.value
intrinsics and is doing two iterations over the BB.
First we iterate backward starting at the last instruction
in the BB. Whenever a consecutive sequence of dbg.value
instructions are found we keep the last dbg.value for
each variable found (variable fragments are identified
using the {DILocalVariable, FragmentInfo, inlinedAt}
triple as given by the DebugVariable helper class).
Next we iterate forward starting at the first instruction
in the BB. Whenever we find a dbg.value describing a
DebugVariable (identified by {DILocalVariable, inlinedAt})
we save the {DIValue, DIExpression} that describes that
variables value. But if the variable already was mapped
to the same {DIValue, DIExpression} pair we instead drop
the second dbg.value.
To ease the process of making lit tests for this utility a
new pass is introduced called RedundantDbgInstElimination.
It can be executed by opt using -redundant-dbg-inst-elim.
Reviewers: aprantl, jmorse, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71478
This reverts commit 0be81968a2.
The VFDatabase needs some rework to be able to handle vectorization
and subsequent scalarization of intrinsics in out-of-tree versions of
the compiler. For more details, see the discussion in
https://reviews.llvm.org/D67572.
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This patch introduced the VFDatabase, the framework proposed in
http://lists.llvm.org/pipermail/llvm-dev/2019-June/133484.html. [*]
In this patch the VFDatabase is used to bridge the TargetLibraryInfo
(TLI) calls that were previously used to query for the availability of
vector counterparts of scalar functions.
The VFISAKind field `ISA` of VFShape have been moved into into VFInfo,
under the assumption that different vector ISAs may provide the same
vector signature. At the moment, the vectorizer accepts any of the
available ISAs as long as the signature provided by the VFDatabase
matches the one expected in the vectorization process. For example,
when targeting AVX or AVX2, which both have 256-bit registers, the IR
signature of the two vector functions associated to the two ISAs is
the same. The `getVectorizedFunction` method at the moment returns the
first available match. We will need to add more heuristics to the
search system to decide which of the available version (TLI, AVX,
AVX2, ...) the system should prefer, when multiple versions with the
same VFShape are present.
Some of the code in this patch is based on the work done by Sumedh
Arani in https://reviews.llvm.org/D66025.
[*] Notice that in the proposal the VFDatabase was called SVFS. The
name VFDatabase is more in line with LLVM recommendations for
naming classes and variables.
Differential Revision: https://reviews.llvm.org/D67572
basic blocks
Originally applied in 72ce759928.
Fixed a build failure caused by incorrect use of cast instead of
dyn_cast.
This reverts commit 8b0780f795.
AssumptionCache can be null in SimplifyCFGOptions. However, FoldCondBranchOnPHI() was not properly handling that when passing a null AssumptionCache to simplifyCFG.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: fhahn, lebedev.ri, spatel
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D69963
In general ValueHandleBase::ValueIsRAUWd shouldn't be called when not
all uses of the value were actually replaced, though, currently
formLCSSAForInstructions calls it when it inserts LCSSA-phis.
Calls of ValueHandleBase::ValueIsRAUWd were added to LCSSA specifically
to update/invalidate SCEV. In the best case these calls duplicate some
of the work already done by SE->forgetValue, though in case when SCEV of
the value is SCEVUnknown, SCEV replaces the underlying value of
SCEVUnknown with the new value (i.e. acts like LCSSA-phi actually fully
replaces the value it is created for), which leads to SCEV being
corrupted because LCSSA-phi rarely dominates all uses of its inputs.
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=44058.
Reviewers: fhahn, efriedma, reames, sanjoy.google
Reviewed By: fhahn
Subscribers: hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70593
Summary:
Emit a value debug intrinsic (with OP_deref) when an alloca address is
passed to a function call after going through a bitcast.
This generates an FP or SP-relative location for the local variable in
the following case:
int x;
use((void *)&x;
Reviewers: aprantl, vsk, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70752
Summary:
D69561/dde5893 enabled importing of readonly variables with references,
however, it introduced a bug relating to importing/internalization of
writeonly variables with references.
A fix for this was added in D70006/7f92d66. But this didn't work in
distributed ThinLTO mode. The reason is that the fix (importing the
writeonly var with a zeroinitializer) was only applied when there were
references on the writeonly var summary. In distributed ThinLTO mode,
where we only have a small slice of the index, we will not have the
references on the importing side if we are not importing those
referenced values. Rather than changing this handshaking (which will
require a lot of other changes, since that's how we know what to import
in the distributed backend clang invocation), we can simply always give
the writeonly variable a zero initializer.
Reviewers: evgeny777, steven_wu
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70977
Summary:
This is one more prep step necessary before the code gen pass instrumentation
code could go in.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70988
When basic blocks are killed, either due to being empty or to being an if.then
or if.else block whose complement contains identical instructions, some of the
debug intrinsics in that block are lost. This patch sinks those intrinsics
into the single successor block, setting them Undef if necessary to
prevent debug info from falling out-of-date.
Differential Revision: https://reviews.llvm.org/D70318
Constructor invocations such as `APFloat(APFloat::IEEEdouble(), 0.0)`
may seem like they accept a FP (floating point) value, but the overload
they reach is actually the `integerPart` one, not a `float` or `double`
overload (which only exists when `fltSemantics` isn't passed).
This may lead to possible loss of data, by the conversion from `float`
or `double` to `integerPart`.
To prevent future mistakes, a new constructor overload, which accepts
any FP value and marked with `delete`, to prevent its usage.
Fixes PR34095.
Differential Revision: https://reviews.llvm.org/D70425
Summary:
In case of a need to distinguish different query sites for gradual commit or
debugging of PGSO. NFC.
Reviewers: davidxl
Subscribers: hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70510
Summary:
Related bug: https://bugs.llvm.org/show_bug.cgi?id=40648
Static helper function rewriteDebugUsers in Local.cpp deletes dbg.value
intrinsics when it cannot move or rewrite them, or salvage the deleted
instruction's value. It should instead undef them in this case.
This patch fixes that and I've added a test which covers the failing test
case in bz40648. I've updated the unit test Local.ReplaceAllDbgUsesWith
to check for this behaviour (and fixed a typo in the test which would
cause the old test to always pass).
Reviewers: aprantl, vsk, djtodoro, probinson
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D70604
moved before another instruction.
Summary:Added an API to check if an instruction can be safely moved
before another instruction. In future PRs, we will like to add support
of moving instructions between blocks that are not control flow
equivalent, and add other APIs to enhance usability, e.g. moving basic
blocks, moving list of instructions...
Loop Fusion will be its first user. When there is intervening code in
between two loops, fusion is currently unable to fuse them. Loop Fusion
can use this utility to check if the intervening code can be safely
moved before or after the two loops, and move them, then it can
successfully fuse them.
Reviewer:kbarton,jdoerfert,Meinersbur,bmahjour,etiotto
Reviewed By:bmahjour
Subscribers:mgorny,hiraditya,llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D70049
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
As a reminder, a "widenable branch" is the pattern "br i1 (and i1 X, WC()), label %taken, label %untaken" where "WC" is the widenable condition intrinsics. The semantics of such a branch (derived from the semantics of WC) is that a new condition can be added into the condition arbitrarily without violating legality.
Broaden the definition in two ways:
Allow swapped operands to the br (and X, WC()) form
Allow widenable branch w/trivial condition (i.e. true) which takes form of br i1 WC()
The former is just general robustness (e.g. for X = non-instruction this is what instcombine produces). The later is specifically important as partial unswitching of a widenable range check produces exactly this form above the loop.
Differential Revision: https://reviews.llvm.org/D70502
Summary:
Also, replace the SmallVector with a normal C array.
Reviewers: vsk
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70498
This is mostly NFC, but I removed the setting of the guard's calling convention onto the WC call. Why? Because it was untested, and was producing an ill defined output as the declaration's convention wasn't been changed leaving a mismatch which is UB.
With the widenable condition construct, we have the ability to reason about branches which can be 'widened' (i.e. made to fail more often). We've got a couple o transforms which leverage this. This patch just cleans up the API a bit.
This is prep work for generalizing our definition of a widenable branch slightly. At the moment "br i1 (and A, wc()), ..." is considered widenable, but oddly, neither "br i1 (and wc(), B), ..." or "br i1 wc(), ..." is. That clearly needs addressed, so first, let's centralize the code in one place.
Summary:
Pass down the already accessed ValueInfo to shouldPromoteLocalToGlobal,
to avoid an unnecessary extra index lookup.
Add some assertion checking to confirm we have a non-empty VI when
expected.
Also some misc cleanup, merging the two versions of
doImportAsDefinition, since one was only called by the other, and
unnecessarily passed in a member variable.
Reviewers: steven_wu, pcc, evgeny777
Reviewed By: evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70337
Summary:
Clean up the code that does GV promotion in the ThinLTO backends.
Specifically, we don't need to check whether we are importing since that
is already checked and handled correctly in shouldPromoteLocalToGlobal.
Simply call shouldPromoteLocalToGlobal, and if it returns true we are
guaranteed that we are promoting, whether or not we are importing (or in
the exporting module). This also makes the handling in getName()
consistent with that in getLinkage(), which checks the DoPromote parameter
regardless of whether we are importing or exporting.
Reviewers: steven_wu, pcc, evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70327
Similar to/extension of D70208 (rGee0882bdf866), but this one
may finally allow closing motivating bugs.
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
Differential Revision: https://reviews.llvm.org/D70208
This patch introduces a function pass to inject the scalar-to-vector
mappings stored in the TargetLIbraryInfo (TLI) into the Vector
Function ABI (VFABI) variants attribute.
The test is testing the injection for three vector libraries supported
by the TLI (Accelerate, SVML, MASSV).
The pass does not change any of the analysis associated to the
function.
Differential Revision: https://reviews.llvm.org/D70107
ValueInfo has user-defined 'operator bool' which allows incorrect implicit conversion
to GlobalValue::GUID (which is unsigned long). This causes bugs which are hard to
track and should be removed in future.
This patch adds an assertion check for exported read/write-only
variables to be also in import list for module. If they aren't
we may face linker errors, because read/write-only variables are
internalized in their source modules. The patch also changes
export lists to store ValueInfo instead of GUID for performance
considerations.
Differential revision: https://reviews.llvm.org/D70128
Summary:
This fixes PR43081, where the transformation of `strchr(p, 0) -> p +
strlen(p)` can cause a segfault, if `-fno-builtin-strlen` is used. In
that case, `emitStrLen` returns nullptr, which CreateGEP is not designed
to handle. Also add the minimized code from the PR as a test case.
Reviewers: xbolva00, spatel, jdoerfert, efriedma
Reviewed By: efriedma
Subscribers: lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D70143
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
This temporarily disables the large working set size behavior in profile guided
size optimization due to internal benchmark regressions.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70207
The attribute is stored at the `FunctionIndex` attribute set, with the
name "vector-function-abi-variant".
The get/set methods of the attribute have assertion to verify that:
1. Each name in the attribute is a valid VFABI mangled name.
2. Each name in the attribute correspond to a function declared in the
module.
Differential Revision: https://reviews.llvm.org/D69976
Patch enables import of write-only variables with non-trivial initializers
to fix linker errors. Initializers of imported variables are converted to
'zeroinitializer' to avoid promotion of referenced objects.
Differential revision: https://reviews.llvm.org/D70006
Summary:
I need to make use of this pass from a driver program that isn't opt.
Therefore this patch moves this pass into the LLVM library so that it is
available for use elsewhere.
There was one function I kept in tools/opt which is exportDebugifyStats()
this is because it's serializing the statistics into a human readable
format and this seemed more in keeping with opt than a library function
Reviewers: vsk, aprantl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69926
Instcombiner pass was erasing trivially dead instruction without updating dependent llvm.dbg.value.
which was not showing programmer current state of variables while debugging.
As a part of this fix I did following,
Iterate throught all the users (llvm.dbg) of a instruction which is trivially dead and set each if them undef, Before deleting the instruction.
Now user will see optimized out, when try to print those variables.
This fixes
https://bugs.llvm.org/show_bug.cgi?id=43893
This is my first fix to llvm.
Patch by kamlesh kumar!
Differential Revision: https://reviews.llvm.org/D69809
Patch allows importing declarations of functions and variables, referenced
by the initializer of some other readonly variable.
Differential revision: https://reviews.llvm.org/D69561
Summary:
When adjusting function entry counts after inlining, Funciton::setEntryCount is called without providing an import function list. The side effect of that is the previously set import function list will be dropped. The import function list is used by ThinLTO to help import hot cross module callee for LTO inlining, so dropping that during ThinLTO pre-link may adversely affect LTO inlining. The fix is to keep the list while updating entry counts for inlining.
Reviewers: wmi, davidxl, tejohnson
Subscribers: mehdi_amini, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69736
Summary:
I believe this bisects to https://reviews.llvm.org/D44983
(`[LoopUnroll] Only peel if a predicate becomes known in the loop body.`)
While that revision did contain tests that showed arguably-subpar peeling
for [in]equality predicates that [not] happen in the middle of the loop,
it also disabled peeling for the *first* loop iteration,
because latch would be canonicalized to [in]equality comparison..
That was intentional as per https://reviews.llvm.org/D44983#1059583.
I'm not 100% sure that i'm using correct checks here,
but this fix appears to be going in the right direction..
Let me know if i'm missing some checks here..
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=43840 | PR43840 ]].
Reviewers: fhahn, mkazantsev, efriedma
Reviewed By: fhahn
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits, fhahn
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69617
This transformation is a variation on the GuardWidening transformation we have checked in as it's own pass. Instead of focusing on merge (i.e. hoisting and simplifying) two widenable branches, this transform makes the observation that simply removing a second slowpath block (by reusing an existing one) is often a very useful canonicalization. This may lead to later merging, or may not. This is a useful generalization when the intermediate block has loads whose dereferenceability is hard to establish.
As noted in the patch, this can be generalized further, and will be.
Differential Revision: https://reviews.llvm.org/D69689
This reverts commit 004ed2b0d1.
Original commit hash 6d03890384
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
https://reviews.llvm.org/D67723
This recommits cc0b9647b7 which was
reverted in d39d1a2f87.
I added a fix for an issue found when testing via distributed ThinLTO,
and added a test case for that failure.
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
See https://bugs.llvm.org/show_bug.cgi?id=42344
Reviewers: rnk
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67723
Summary:
Currently we only forget the loop we added LCSSA phis for. But SCEV
expressions in other loops could also depend on the instruction we added
a PHI for and currently we do not invalidate those expressions. This can
happen when we use ScalarEvolution before converting a function to LCSSA
form. The SCEV expressions will refer to the non-LCSSA value. If this
SCEV expression is then used with the expander, we do not preserve LCSSA
form.
This patch properly forgets the values we created PHIs for. Those need
to be recomputed again. This patch fixes PR43458.
Currently SCEV::verify does not catch this mismatch and any test would
need to run multiple passes to trigger the error (e.g. -loop-reduce
-loop-unroll). I will also look into catching this kind of mismatch in
the verifier. Also, we currently forget the whole loop in LCSSA and I'll
check if we can be more surgical.
Reviewers: efriedma, sanjoy.google, reames
Reviewed By: efriedma
Subscribers: zzheng, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68194
Summary:
(Split of off D67120)
SizeOpts/MachineSizeOpts changes for profile guided size optimization.
(A second try after previously committed as r375254 and reverted as r375375.)
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69409
Summary:
Debug info affects output from "opt -inline", InlineFunction could
not handle the llvm.dbg.value when it exist between alloca
instructions.
Problem was that the first alloca in a sequence of allocas was
handled differently from the subsequence alloca instructions. Now
all static alloca instructions are treated the same (being removed
if the have no uses). So it does not matter if there are dbg
instructions (or any other instructions) in between.
Fix the issue: https://bugs.llvm.org/show_bug.cgi?id=43291k
Patch by: yechunliang (Chris Ye)
Reviewers: bjope, jmorse, vsk, probinson, jdoerfert, mtrofin, aprantl, fhahn
Reviewed By: bjope
Subscribers: uabelho, ormris, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68633
Summary:
If there are a GUID collision between two globals checking the
summarylist from the import index to make assumption can be dangerous.
Do not assume that a GlobalValue that has a GlobalVarSummary
actually is a GlobalVariable as it can be another GlobalValue with
the same GUID that the summary is connected to.
Patch by Joel Klinghed (the_jk@opera.com)
Reviewers: evgeny777, tejohnson
Reviewed By: tejohnson
Subscribers: tejohnson, dblaikie, MaskRay, mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67322
Summary:
Reduce include dependencies by no longer including Pass.h from
DataLayout.h. That include seemed irrelevant to DataLayout, as
well as being irrelevant to several users of DataLayout.
Reviewers: rnk
Reviewed By: rnk
Subscribers: mehdi_amini, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69261
llvm-svn: 375436
Summary:
There are two cases where a block is merged into its predecessor and the
MergeBlockIntoPredecessor API is not used. Update the API so it can be
reused in the other cases, in order to avoid code duplication.
Cleanup motivated by D68659.
Reviewers: chandlerc, sanjoy.google, george.burgess.iv
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68670
llvm-svn: 375050
Add own version of the mathematical constants from the upcoming C++20 `std::numbers`.
Differential revision: https://reviews.llvm.org/D68257
llvm-svn: 374207
Summary:
The rule for the moveAllAfterMergeBlocks API si for all instructions
from `From` to have been moved to `To`, while keeping the CFG edges (and
block terminators) unchanged.
Update all the callsites for moveAllAfterMergeBlocks to follow this.
Pending follow-up: since the same behavior is needed everytime, merge
all callsites into one. The common denominator may be the call to
`MergeBlockIntoPredecessor`.
Resolves PR43569.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68659
llvm-svn: 374177
Factor out CodeExtractor's analysis of allocas (for shrinkwrapping
purposes), and allow the analysis to be reused.
This resolves a quadratic compile-time bug observed when compiling
AMDGPUDisassembler.cpp.o.
Pre-patch (Release + LTO clang):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
176.5278 ( 57.8%) 0.4915 ( 18.5%) 177.0192 ( 57.4%) 177.4112 ( 57.3%) Hot Cold Splitting
```
Post-patch (ReleaseAsserts clang):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
1.4051 ( 3.3%) 0.0079 ( 0.3%) 1.4129 ( 3.2%) 1.4129 ( 3.2%) Hot Cold Splitting
```
Testing: check-llvm, and comparing the AMDGPUDisassembler.cpp.o binary
pre- vs. post-patch.
An alternate approach is to hide CodeExtractorAnalysisCache from clients
of CodeExtractor, and to recompute the analysis from scratch inside of
CodeExtractor::extractCodeRegion(). This eliminates some redundant work
in the shrinkwrapping legality check. However, some clients continue to
exhibit O(n^2) compile time behavior as computing the analysis is O(n).
rdar://55912966
Differential Revision: https://reviews.llvm.org/D68616
llvm-svn: 374089
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935
bcopy is still widely used mainly for network apps. Sadly, LLVM has no optimizations for bcopy, but there are some for memmove.
Since bcopy == memmove, it is profitable to transform bcopy to memmove and use current optimizations for memmove for free here.
llvm-svn: 373537
Terminators like invoke can have users outside the current basic block.
We have to replace those users with undef, before replacing the
terminator.
This fixes a crash exposed by rL373430.
Reviewers: brzycki, asbirlea, davide, spatel
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D68327
llvm-svn: 373513
There are no users that pass in LazyValueInfo, so we can simplify the
function a bit.
Reviewers: brzycki, asbirlea, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D68297
llvm-svn: 373488
Two small changes in llvm::removeUnreachableBlocks() to avoid unnecessary (re-)computation.
First, replace the use of count() with find(), which has better time complexity.
Second, because we have already computed the set of dead blocks, replace the second loop over all basic blocks to a loop only over the already computed dead blocks. This simplifies the loop and avoids recomputation.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: efriedma, spatel, fhahn, xbolva00
Reviewed By: fhahn, xbolva00
Differential Revision: https://reviews.llvm.org/D68191
llvm-svn: 373429
Expand the simplification of special cases of `log()` to include `log2()`
and `log10()` as well as intrinsics and more types.
Differential revision: https://reviews.llvm.org/D67199
llvm-svn: 373261
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 373099
The static analyzer is warning about a potential null dereference, but we should be able to use cast<FunctionSummary> directly and if not assert will fire for us.
llvm-svn: 373097
Summary:
FlattenCFG merges two 'if' basicblocks by inserting one basicblock
to another basicblock. The inserted basicblock can have a successor
that contains a PHI node whoes incoming basicblock is the inserted
basicblock. Since the existing code does not handle it, it becomes
a badref.
if (cond1)
statement
if (cond2)
statement
successor - contains PHI node whose predecessor is cond2
-->
if (cond1 || cond2)
statement
(BB for cond2 was deleted)
successor - contains PHI node whose predecessor is cond2 --> bad ref!
Author: Jaebaek Seo
Reviewers: asbirlea, kuhar, tstellar, chandlerc, davide, dexonsmith
Reviewed By: kuhar
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68032
llvm-svn: 372989
The static analyzer is warning about a potential null dereferences, but we should be able to use cast<BranchInst> directly and if not assert will fire for us.
llvm-svn: 372977
The static analyzer is warning about a potential null dereference, but we should be able to use cast<LandingPadInst> directly and if not assert will fire for us.
llvm-svn: 372727
The static analyzer is warning about a potential null dereference, but we should be able to use cast<Instruction> directly and if not assert will fire for us.
llvm-svn: 372726
Summary:
Motivation:
- If we can fold it to strdup, we should (strndup does more things than strdup).
- Annotation mechanism. (Works for strdup well).
strdup and strndup are part of C 20 (currently posix fns), so we should optimize them.
Reviewers: efriedma, jdoerfert
Reviewed By: jdoerfert
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67679
llvm-svn: 372636
MSAN bot complains that there is use-of-uninitialized-value
of this FreeStores later in IsWorthwhile().
Perhaps FreeStores needs to be stored in a vector?
llvm-svn: 372262
Summary:
As it can be see in the changed test, while `div` is really costly,
we were speculating it. This does not seem correct.
Also, the old code would run for every single insturuction in BB,
instead of eagerly bailing out as soon as there are too many instructions.
This function still has a problem that `PHINodeFoldingThreshold` is
per-basic-block, while it should be for all the basic blocks.
Reviewers: efriedma, craig.topper, dmgreen, jmolloy
Reviewed By: jmolloy
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67315
llvm-svn: 372255
Summary:
Previously, if the threshold was 2, we were willing to speculatively
execute 2 cheap instructions in both basic blocks (thus we were willing
to speculatively execute cost = 4), but weren't willing to speculate
when one BB had 3 instructions and other one had no instructions,
even thought that would have total cost of 3.
This looks inconsistent to me.
I don't think `cmov`-like instructions will start executing
until both of it's inputs are available: https://godbolt.org/z/zgHePf
So i don't see why the existing behavior is the correct one.
Also, let's add it's own `cl::opt` for this threshold,
with default=4, so it is not stricter than the previous threshold:
will allow to fold when there are 2 BB's each with cost=2.
And since the logic has changed, it will also allow to fold when
one BB has cost=3 and other cost=1, or there is only one BB with cost=4.
This is an alternative solution to D65148:
This fix is mainly motivated by `signbit-like-value-extension.ll` test.
That pattern comes up in JPEG decoding, see e.g.
`Figure F.12 – Extending the sign bit of a decoded value in V`
of `ITU T.81` (JPEG specification).
That branch is not predictable, and it is within the innermost loop,
so the fact that that pattern ends up being stuck with a branch
instead of `select` (i.e. `CMOV` for x86) is unlikely to be beneficial.
This has great results on the final assembly (vanilla test-suite + RawSpeed): (metric pass - D67240)
| metric | old | new | delta | % |
| x86-mi-counting.NumMachineFunctions | 37720 | 37721 | 1 | 0.00% |
| x86-mi-counting.NumMachineBasicBlocks | 773545 | 771181 | -2364 | -0.31% |
| x86-mi-counting.NumMachineInstructions | 7488843 | 7486442 | -2401 | -0.03% |
| x86-mi-counting.NumUncondBR | 135770 | 135543 | -227 | -0.17% |
| x86-mi-counting.NumCondBR | 423753 | 422187 | -1566 | -0.37% |
| x86-mi-counting.NumCMOV | 24815 | 25731 | 916 | 3.69% |
| x86-mi-counting.NumVecBlend | 17 | 17 | 0 | 0.00% |
We significantly decrease basic block count, notably decrease instruction count,
significantly decrease branch count and very significantly increase `cmov` count.
Performance-wise, unsurprisingly, this has great effect on
target RawSpeed benchmark. I'm seeing 5 **major** improvements:
```
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_mean -0.3064 -0.3064 226.9913 157.4452 226.9800 157.4384
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_median -0.3057 -0.3057 226.8407 157.4926 226.8282 157.4828
Samsung/NX3000/_3184416.SRW/threads:8/process_time/real_time_stddev -0.4985 -0.4954 0.3051 0.1530 0.3040 0.1534
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_mean -0.1747 -0.1747 80.4787 66.4227 80.4771 66.4146
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_median -0.1742 -0.1743 80.4686 66.4542 80.4690 66.4436
Kodak/DCS760C/86L57188.DCR/threads:8/process_time/real_time_stddev +0.6089 +0.5797 0.0670 0.1078 0.0673 0.1062
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_mean -0.1598 -0.1598 171.6996 144.2575 171.6915 144.2538
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_median -0.1598 -0.1597 171.7109 144.2755 171.7018 144.2766
Sony/DSLR-A230/DSC08026.ARW/threads:8/process_time/real_time_stddev +0.4024 +0.3850 0.0847 0.1187 0.0848 0.1175
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_mean -0.0550 -0.0551 280.3046 264.8800 280.3017 264.8559
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_median -0.0554 -0.0554 280.2628 264.7360 280.2574 264.7297
Canon/EOS 77D/IMG_4049.CR2/threads:8/process_time/real_time_stddev +0.7005 +0.7041 0.2779 0.4725 0.2775 0.4729
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 49 vs 49
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_mean -0.0354 -0.0355 316.7396 305.5208 316.7342 305.4890
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_median -0.0354 -0.0356 316.6969 305.4798 316.6917 305.4324
Canon/EOS 5DS/2K4A9929.CR2/threads:8/process_time/real_time_stddev +0.0493 +0.0330 0.3562 0.3737 0.3563 0.3681
```
That being said, it's always best-effort, so there will likely
be cases where this worsens things.
Reviewers: efriedma, craig.topper, dmgreen, jmolloy, fhahn, Carrot, hfinkel, chandlerc
Reviewed By: jmolloy
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67318
llvm-svn: 372009
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
Reverts the change in r371084, but keeps the test.
After r371565, debuginfo cannot be modelled in MemorySSA, even with a
non-standard AA pipeline.
llvm-svn: 371573
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Add the new method `LibCallSimplifier::substituteInParent()` that calls
`LibCallSimplifier::replaceAllUsesWith()' and
`LibCallSimplifier::eraseFromParent()` back to back, simplifying the
resulting code.
llvm-svn: 371264
Summary:
Here we try to avoid issues with "explicit branch" with SimplifyBranchOnICmpChain
which can check on undef. Msan by design reports branches on uninitialized
memory and undefs, so we have false report here.
In general msan does not like when we convert
```
// If at least one of them is true we can MSAN is ok if another is undefs
if (a || b)
return;
```
into
```
// If 'a' is undef MSAN will complain even if 'b' is true
if (a)
return;
if (b)
return;
```
Example
Before optimization we had something like this:
```
while (true) {
bool maybe_undef = doStuff();
while (true) {
char c = getChar();
if (c != 10 && c != 13)
continue
break;
}
// we know that c == 10 || c == 13 if we get here,
// so msan know that branch is not affected by maybe_undef
if (maybe_undef || c == 10 || c == 13)
continue;
return;
}
```
SimplifyBranchOnICmpChain will convert that into
```
while (true) {
bool maybe_undef = doStuff();
while (true) {
char c = getChar();
if (c != 10 && c != 13)
continue;
break;
}
// however msan will complain here:
if (maybe_undef)
continue;
// we know that c == 10 || c == 13, so either way we will get continue
switch(c) {
case 10: continue;
case 13: continue;
}
return;
}
```
Reviewers: eugenis, efriedma
Reviewed By: eugenis, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67205
llvm-svn: 371138
SROA pass processes debug info incorrecly if applied twice.
Specifically, after SROA works first time, instcombine converts dbg.declare
intrinsics into dbg.value. Inlining creates new opportunities for SROA,
so it is called again. This time it does not handle correctly previously
inserted dbg.value intrinsics.
Differential Revision: https://reviews.llvm.org/D64595
llvm-svn: 370906
Summary:
Back-end currently expands mempcpy, but middle-end should work with memcpy instead of mempcpy to enable more memcpy-optimization.
GCC backend emits mempcpy, so LLVM backend could form it too, if we know mempcpy libcall is better than memcpy + n.
https://godbolt.org/z/dOCG96
Reviewers: efriedma, spatel, craig.topper, RKSimon, jdoerfert
Reviewed By: efriedma
Subscribers: hjl.tools, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65737
llvm-svn: 370593
We can also apply the earlier updates to the lazy DTU, instead of
applying them directly.
Reviewers: kuhar, brzycki, asbirlea, SjoerdMeijer
Reviewed By: brzycki, asbirlea, SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D66918
llvm-svn: 370391
Summary:
I'm not planning to check this in at the moment, but feedback is very welcome, in particular how this affects performance.
The feedback obtains here will guide the next steps towards enabling this.
This patch enables the use of MemorySSA in the loop pass manager.
Passes that currently use MemorySSA:
- EarlyCSE
Passes that use MemorySSA after this patch:
- EarlyCSE
- LICM
- SimpleLoopUnswitch
Loop passes that update MemorySSA (and do not use it yet, but could use it after this patch):
- LoopInstSimplify
- LoopSimplifyCFG
- LoopUnswitch
- LoopRotate
- LoopSimplify
- LCSSA
Loop passes that do *not* update MemorySSA:
- IndVarSimplify
- LoopDelete
- LoopIdiom
- LoopSink
- LoopUnroll
- LoopInterchange
- LoopUnrollAndJam
- LoopVectorize
- LoopReroll
- IRCE
Reviewers: chandlerc, george.burgess.iv, davide, sanjoy, gberry
Subscribers: jlebar, Prazek, dmgreen, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58311
llvm-svn: 370384
Summary:
- Similar to the workaround in fix of PR30188, skip sinking common
lifetime markers of `alloca`. They are mostly left there after
inlining functions in branches.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66950
llvm-svn: 370376
Summary:
As it can be seen in the tests in D65143/D65144, even though we have formed an '@llvm.umul.with.overflow'
and got rid of potential for division-by-zero, the control flow remains, we still have that branch.
We have this condition:
```
// Don't fold i1 branches on PHIs which contain binary operators
// These can often be turned into switches and other things.
if (PN->getType()->isIntegerTy(1) &&
(isa<BinaryOperator>(PN->getIncomingValue(0)) ||
isa<BinaryOperator>(PN->getIncomingValue(1)) ||
isa<BinaryOperator>(IfCond)))
return false;
```
which was added back in rL121764 to help with `select` formation i think?
That check prevents us to flatten the CFG here, even though we know
we no longer need that guard and will be able to drop everything
but the '@llvm.umul.with.overflow' + `not`.
As it can be seen from tests, we end here because the `not` is being
sinked into the PHI's incoming values by InstCombine,
so we can't workaround this by hoisting it to after PHI.
Thus i suggest that we relax that check to not bailout if we'd get to hoist the `not`.
Reviewers: craig.topper, spatel, fhahn, nikic
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65147
llvm-svn: 370349
We do not access the DT in the loop, so we do not have to apply updates
eagerly. We can apply them lazyly and flush them after we are done
merging blocks.
As follow-up work, we might be able to use the DTU above as well,
instead of manually updating the DT.
This brings the example from PR43134 from ~100s to ~4s for a relase +
assertions build on my machine.
Reviewers: efriedma, kuhar, asbirlea, brzycki
Reviewed By: kuhar, brzycki
Differential Revision: https://reviews.llvm.org/D66911
llvm-svn: 370292
...cloning a function from a different module
Currently when a function with debug info is cloned from a different module, the
cloned function may have hanging DICompileUnits, so that the module with the
cloned function fails debug info verification.
The proposed fix inserts all DICompileUnits reachable from the cloned function
to "llvm.dbg.cu" metadata operands of the cloned function module.
Reviewed By: aprantl, efriedma
Differential Revision: https://reviews.llvm.org/D66510
Patch by Oleg Pliss (Oleg.Pliss@azul.com)
llvm-svn: 370265
Summary:
This functionality was added when Mapper::mapMetadata was recursive. It
is no longer needed after r265456, which switched it to be iterative.
Reviewers: dexonsmith, srhines
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66860
llvm-svn: 370236
Summary:
When reconstructing the CFG of the loop after unrolling,
LoopUnroll could in some cases remove the phi operands of
loop-carried values instead of preserving them, resulting
in undef phi values after loop unrolling.
When doing this reconstruction, avoid removing incoming
phi values for phis in the successor blocks if the successor
is the block we are jumping to anyway.
Patch-by: ebevhan
Reviewers: fhahn, efriedma
Reviewed By: fhahn
Subscribers: bjope, lebedev.ri, zzheng, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66334
llvm-svn: 369886
Push LR register before calling __gnu_mcount_nc as it expects the value of LR register to be the top value of
the stack on ARM32.
Differential Revision: https://reviews.llvm.org/D65019
llvm-svn: 369147
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Refactor `LibCallSimplifier::optimizeExp2()` to use the new
`emitBinaryFloatFnCall()` version that fetches the function name from TLI.
llvm-svn: 368457
GlobalAlias and GlobalIFunc ought to be treated the same by the IR
linker, so we can generalize the code to be in terms of their common
base class GlobalIndirectSymbol.
Differential Revision: https://reviews.llvm.org/D55046
llvm-svn: 368357
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.
Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.
Differential Revision: https://reviews.llvm.org/D64557
llvm-svn: 368296
When we remove instructions cached references could still be live. This
patch avoids removing invoke instructions that are replaced by calls and
instead keeps them around but in a dead block.
llvm-svn: 367933
Currently, when a GVN or CSE optimization happens,
the llvm.preserve.access.index metadata is dropped.
This caused a problem for BPF AbstructMemberOffset phase
as it relies on the metadata (debuginfo types).
This patch added proper hooks in lib/Transforms to
preserve !preserve.access.index metadata. A test
case is added to ensure metadata is preserved under CSE.
Differential Revision: https://reviews.llvm.org/D65700
llvm-svn: 367769
Summary:
Since the for loop iterates over BB's predecessors, the branch conditions found must have BB as one of the successors.
For an unconditional branch the successor must be BB, added `assert`.
For a conditional branch, one of the two successors must be BB, simplify `else if` to `else` and `assert`.
Sink common instructions outside the if/else block.
Reviewers: sanjoy.google
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65596
llvm-svn: 367699
Current peeling cost model can decide to peel off not all iterations
but only some of them to eliminate conditions on phi. At the same time
if any peeling happens the door for further unroll/peel optimizations on that
loop closes because the part of the code thinks that if peeling happened
it is profile based peeling and all iterations are peeled off.
To resolve this inconsistency the patch provides the flag which states whether
the full peeling basing on profile is enabled or not and peeling cost model
is able to modify this field like it does not PeelCount.
In a separate patch I will introduce an option to allow/disallow peeling basing
on profile.
To avoid infinite loop peeling the patch tracks the total number of peeled iteration
through llvm.loop.peeled.count loop metadata.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64972
llvm-svn: 367647
Summary:
DominatorTree is invalid after SimplifyCFG because of a missed `Changed = true` when simplifying a branch condition and removing an edge.
Resolves PR42272.
Reviewers: zhizhouy, manojgupta
Subscribers: jlebar, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65490
llvm-svn: 367596
Summary:
LoopSimplify is preserved in the legacy pass manager, but not in the new pass manager.
Update LoopSimplify to preserve MemorySSA conditionally when the analysis is available (same behavior as the legacy pass manager).
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65418
llvm-svn: 367594
To avoid duplicates in loop metadata, if the string to add is
already there, just update the value.
Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D65265
llvm-svn: 367087
Just move the utility function to LoopUtils.cpp to re-use it in loop peeling.
Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, asbirlea, llvm-commits
Differential Revision: https://reviews.llvm.org/D65264
llvm-svn: 367085
Currently there are a few pointer comparisons in ValueDFS_Compare, which
can cause non-deterministic ordering when materializing values. There
are 2 cases this patch fixes:
1. Order defs before uses used to compare pointers, which guarantees
defs before uses, but causes non-deterministic ordering between 2
uses or 2 defs, depending on the allocation order. By converting the
pointers to booleans, we can circumvent that problem.
2. comparePHIRelated was comparing the basic block pointers of edges,
which also results in a non-deterministic order and is also not
really meaningful for ordering. By ordering by their destination DFS
numbers we guarantee a deterministic order.
For the example below, we can end up with 2 different uselist orderings,
when running `opt -mem2reg -ipsccp` hundreds of times. Because the
non-determinism is caused by allocation ordering, we cannot reproduce it
with ipsccp alone.
declare i32 @hoge() local_unnamed_addr #0
define dso_local i32 @ham(i8* %arg, i8* %arg1) #0 {
bb:
%tmp = alloca i32
%tmp2 = alloca i32, align 4
br label %bb19
bb4: ; preds = %bb20
br label %bb6
bb6: ; preds = %bb4
%tmp7 = call i32 @hoge()
store i32 %tmp7, i32* %tmp
%tmp8 = load i32, i32* %tmp
%tmp9 = icmp eq i32 %tmp8, 912730082
%tmp10 = load i32, i32* %tmp
br i1 %tmp9, label %bb11, label %bb16
bb11: ; preds = %bb6
unreachable
bb13: ; preds = %bb20
br label %bb14
bb14: ; preds = %bb13
%tmp15 = load i32, i32* %tmp
br label %bb16
bb16: ; preds = %bb14, %bb6
%tmp17 = phi i32 [ %tmp10, %bb6 ], [ 0, %bb14 ]
br label %bb19
bb18: ; preds = %bb20
unreachable
bb19: ; preds = %bb16, %bb
br label %bb20
bb20: ; preds = %bb19
indirectbr i8* null, [label %bb4, label %bb13, label %bb18]
}
Reviewers: davide, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64866
llvm-svn: 367049
We'd like to determine the idom of exit block after peeling one iteration.
Let Exit is exit block.
Let ExitingSet - is a set of predecessors of Exit block. They are exiting blocks.
Let Latch' and ExitingSet' are copies after a peeling.
We'd like to find an idom'(Exit) - idom of Exit after peeling.
It is an evident that idom'(Exit) will be the nearest common dominator of ExitingSet and ExitingSet'.
idom(Exit) is a nearest common dominator of ExitingSet.
idom(Exit)' is a nearest common dominator of ExitingSet'.
Taking into account that we have a single Latch, Latch' will dominate Header and idom(Exit).
So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
All these basic blocks are in the same loop, so what we find is
(nearest common dominator of idom(Exit) and Latch)'.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D65292
llvm-svn: 367044
Later code in TryToSimplifyUncondBranchFromEmptyBlock() assumes that
we have cleaned up unreachable blocks, but that was not happening
with this switch transform.
llvm-svn: 367037
We do not need the SmallPtrSet to avoid adding duplicates to
OpsToRename, because we already keep a ValueInfo mapping. If we see an
op for the first time, Infos will be empty and we can also add it to
OpsToRename.
We process operands by visiting BBs depth-first and then iterate over
all instructions & users, so the order should be deterministic.
Therefore we can skip one round of sorting, which we purely needed for
guaranteeing a deterministic order when iterating over the SmallPtrSet.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64816
llvm-svn: 367028
This is a follow up to D64971. While we need to insert the deref after
the offset, it needs to come before the remaining elements in the
original expression since the deref needs to happen before the LLVM
fragment if present.
Differential Revision: https://reviews.llvm.org/D65172
llvm-svn: 366865
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64162
llvm-svn: 366769
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366753
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366736
While debugging code that uses SafeStack, we've noticed that LLVM
produces an invalid DWARF. Concretely, in the following example:
int main(int argc, char* argv[]) {
std::string value = "";
printf("%s\n", value.c_str());
return 0;
}
DWARF would describe the value variable as being located at:
DW_OP_breg14 R14+0, DW_OP_deref, DW_OP_constu 0x20, DW_OP_minus
The assembly to get this variable is:
leaq -32(%r14), %rbx
The order of operations in the DWARF symbols is incorrect in this case.
Specifically, the deref is incorrect; this appears to be incorrectly
re-inserted in repalceOneDbgValueForAlloca.
With this change which inserts the deref after the offset instead of
before it, LLVM produces correct DWARF:
DW_OP_breg14 R14-32
Differential Revision: https://reviews.llvm.org/D64971
llvm-svn: 366726
Current algorithm to update branch weights of latch block and its copies is
based on the assumption that number of peeling iterations is approximately equal
to trip count.
However it is not correct. According to profitability check in one case we can decide to peel
in case it helps to reduce the number of phi nodes. In this case the number of peeled iteration
can be less then estimated trip count.
This patch introduces another way to set the branch weights to peeled of branches.
Let F is a weight of the edge from latch to header.
Let E is a weight of the edge from latch to exit.
F/(F+E) is a probability to go to loop and E/(F+E) is a probability to go to exit.
Then, Estimated TripCount = F / E.
For I-th (counting from 0) peeled off iteration we set the the weights for
the peeled latch as (TC - I, 1). It gives us reasonable distribution,
The probability to go to exit 1/(TC-I) increases. At the same time
the estimated trip count of remaining loop reduces by I.
As a result after peeling off N iteration the weights will be
(F - N * E, E) and trip count of loop becomes
F / E - N or TC - N.
The idea is taken from the review of the patch D63918 proposed by Philip.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64235
llvm-svn: 366665
If the blockaddress is not destoryed, the destination block will still
be marked as having its address taken, limiting further transformations.
I think there are other places where the dead blockaddress constants are kept
around, I'll look into that as follow up.
Reviewers: craig.topper, brzycki, davide
Reviewed By: brzycki, davide
Differential Revision: https://reviews.llvm.org/D64936
llvm-svn: 366633
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
It is possible that loop exit has two predecessors in a loop body.
In this case after the peeling the iDom of the exit should be a clone of
iDom of original exit but no a clone of a block coming to this exit.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64618
llvm-svn: 366050
This CL enables peeling of the loop with multiple exits where
one exit should be from latch and others are basic blocks with
call to deopt.
The peeling is enabled under the flag which is false by default.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63923
llvm-svn: 366048
With this patch the getLoopEstimatedTripCount function will
accept also the loops where there are more than one exit but
all exits except latch block should ends up with a call to deopt.
This side exits should not impact the estimated trip count.
Reviewers: reames, mkuper, danielcdh
Reviewed By: reames
Subscribers: fhahn, lebedev.ri, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64553
llvm-svn: 366042
Extract the code from LoopUnrollRuntime into utility function to
re-use it in D63923.
Reviewers: reames, mkuper
Reviewed By: reames
Subscribers: fhahn, hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64548
llvm-svn: 366040
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
Summary:
The map kept in loop rotate is used for instruction remapping, in order
to simplify the clones of instructions. Thus, if an instruction can be
simplified, its simplified value is placed in the map, even when the
clone is added to the IR. MemorySSA in contrast needs to know about that
clone, so it can add an access for it.
To resolve this: keep a different map for MemorySSA.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63680
llvm-svn: 365672
An alloca which can be sunk into the extraction region may have more
than one bitcast use. Move these uses along with the alloca to prevent
use-before-def.
Testing: check-llvm, stage2 build of clang
Fixes llvm.org/PR42451.
Differential Revision: https://reviews.llvm.org/D64463
llvm-svn: 365660
Summary:
Transform
pow(C,x)
To
exp2(log2(C)*x)
if C > 0, C != inf, C != NaN (and C is not power of 2, since we have some fold for such case already).
log(C) is folded by the compiler and exp2 is much faster to compute than pow.
Reviewers: spatel, efriedma, evandro
Reviewed By: evandro
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64099
llvm-svn: 365637
This patch modifies the loop peeling transformation so that
it does not expect that there is only one loop exit from latch.
It modifies only transformation. Update of branch weights remains
only for exit from latch.
The motivation is that in follow-up patch I plan to enable loop peeling for
loops with multiple exits but only if other exits then from latch one goes to
block with call to deopt.
For now this patch is NFC.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames, fhahn
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63921
llvm-svn: 365441
loop
Summary:
Do the cloning in two steps, first allocate all the new loops, then
clone the basic blocks in the same order as the original loop.
Reviewer: Meinersbur, fhahn, kbarton, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, hiraditya, llvm-commits
Tag: https://reviews.llvm.org/D64224
Differential Revision:
llvm-svn: 365366
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
It's possible that some function can load and store the same
variable using the same constant expression:
store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
%42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
The bitcast expression was mistakenly cached while processing loads,
and never examined later when processing store. This caused @bar to
be mistakenly treated as read-only variable. See load-store-caching.ll.
llvm-svn: 365188
This reverts r365040 (git commit 5cacb91475)
Speculatively reverting, since this appears to have broken check-lld on
Linux. Partial analysis in https://crbug.com/981168.
llvm-svn: 365097
This transform came up in D62414, but we should deal with it first.
We have LLVM intrinsics that correspond exactly to libm calls (unlike
most libm calls, these libm calls never set errno).
This holds without any fast-math-flags, so we should always canonicalize
to those intrinsics directly for better optimization.
Currently, we convert to fcmp+select only when we have FMF (nnan) because
fcmp+select does not preserve the semantics of the call in the general case.
Differential Revision: https://reviews.llvm.org/D63214
llvm-svn: 364714
This patch introduces a new function attribute, willreturn, to indicate
that a call of this function will either exhibit undefined behavior or
comes back and continues execution at a point in the existing call stack
that includes the current invocation.
This attribute guarantees that the function does not have any endless
loops, endless recursion, or terminating functions like abort or exit.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert
Subscribers: mehdi_amini, hiraditya, steven_wu, dexonsmith, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62801
llvm-svn: 364555
FunctionComparator attempts to produce a stable comparison of two Function
instances by looking at all available properties. Since ByVal attributes now
contain a Type pointer, they are not trivially ordered and FunctionComparator
should use its own Type comparison logic to sort them.
llvm-svn: 364523
This patch generalizes the UnrollLoop utility to support loops that exit
from the header instead of the latch. Usually, LoopRotate would take care
of must of those cases, but in some cases (e.g. -Oz), LoopRotate does
not kick in.
Codesize impact looks relatively neutral on ARM64 with -Oz + LTO.
Program master patch diff
External/S.../CFP2006/447.dealII/447.dealII 629060.00 627676.00 -0.2%
External/SPEC/CINT2000/176.gcc/176.gcc 1245916.00 1244932.00 -0.1%
MultiSourc...Prolangs-C/simulator/simulator 86100.00 86156.00 0.1%
MultiSourc...arks/Rodinia/backprop/backprop 66212.00 66252.00 0.1%
MultiSourc...chmarks/Prolangs-C++/life/life 67276.00 67312.00 0.1%
MultiSourc...s/Prolangs-C/compiler/compiler 69824.00 69788.00 -0.1%
MultiSourc...Prolangs-C/assembler/assembler 86672.00 86696.00 0.0%
Reviewers: efriedma, vsk, paquette
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D61962
llvm-svn: 364398