This switches to using DSE + MemorySSA by default again, after
fixing the issues reported after the first commit.
Notable fixes fc82006331, a0017c2bc2.
This reverts commit 3a59628f3c.
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~
~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~
~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~
~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~
See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .
This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.
Testing
Ninja check
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D86156
The tests have been updated and I plan to move them from the MSSA
directory up.
Some end-to-end tests needed small adjustments. One difference to the
legacy DSE is that legacy DSE also deletes trivially dead instructions
that are unrelated to memory operations. Because MemorySSA-backed DSE
just walks the MemorySSA, we only visit/check memory instructions. But
removing unrelated dead instructions is not really DSE's job and other
passes will clean up.
One noteworthy change is in llvm/test/Transforms/Coroutines/ArgAddr.ll,
but I think this comes down to legacy DSE not handling instructions that
may throw correctly in that case. To cover this with MemorySSA-backed
DSE, we need an update to llvm.coro.begin to treat it's return value to
belong to the same underlying object as the passed pointer.
There are some minor cases MemorySSA-backed DSE currently misses, e.g. related
to atomic operations, but I think those can be implemented after the switch.
This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-August/144417.html
For the MultiSource/SPEC2000/SPEC2006 the number of eliminated stores
goes from ~17500 (legayc DSE) to ~26300 (MemorySSA-backed). More numbers
and details in the thread on llvm-dev.
Impact on CTMark:
```
Legacy Pass Manager
exec instrs size-text
O3 + 0.60% - 0.27%
ReleaseThinLTO + 1.00% - 0.42%
ReleaseLTO-g. + 0.77% - 0.33%
RelThinLTO (link only) + 0.87% - 0.42%
RelLO-g (link only) + 0.78% - 0.33%
```
http://llvm-compile-time-tracker.com/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
```
New Pass Manager
exec instrs. size-text
O3 + 0.95% - 0.25%
ReleaseThinLTO + 1.34% - 0.41%
ReleaseLTO-g. + 1.71% - 0.35%
RelThinLTO (link only) + 0.96% - 0.41%
RelLO-g (link only) + 2.21% - 0.35%
```
http://195.201.131.214:8000/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
Reviewed By: asbirlea, xbolva00, nikic
Differential Revision: https://reviews.llvm.org/D87163
This is a followup to 1ccfb52a61, which made a number of changes
including the apparently innocuous reordering of required passes in
MemCpyOptimizer. This however altered the creation order of BasicAA vs
Phi Values analysis, meaning BasicAA did not pick up PhiValues as a
cached result. Instead if we require MemoryDependence first it will
require PhiValuesAnalysis allowing BasicAA to use it for better results.
I don't claim this is an excellent design, but it fixes a nasty little
regressions where a query later in JumpThreading was getting worse
results.
Differential Revision: https://reviews.llvm.org/D87027
Summary:
Analyses are preserved in MemCpyOptimizer.
Get analyses before running the pass and store the pointers, instead of
using lambdas and getting them every time on demand.
Reviewers: lenary, deadalnix, mehdi_amini, nikic, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74494