Commit Graph

107 Commits

Author SHA1 Message Date
Sam Parker 97a476eb56 [NFC][ARM] Tail fold test changes
Run update script on one test and add another.
2020-09-17 13:09:10 +01:00
David Green 08baa97923 [ARM] Enable tail predication for reduction tests. NFC 2020-09-14 14:26:10 +01:00
David Green 74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
Anna Welker 064981f0ce [ARM][MVE] Enable MVE gathers and scatters by default
Enable MVE gather/scatters by default, which requires some
minor adaptations in some tests.

Differential revision: https://reviews.llvm.org/D86776
2020-08-28 19:05:29 +01:00
Sjoerd Meijer bda8fbe2d2 [LV] Fallback strategies if tail-folding fails
This implements 2 different vectorisation fallback strategies if tail-folding
fails: 1) don't vectorise at all, or 2) vectorise using a scalar epilogue. This
can be controlled with option -prefer-predicate-over-epilogue, that has been
changed to take a numeric value corresponding to the tail-folding preference
and preferred fallback.

Patch by: Pierre van Houtryve, Sjoerd Meijer.

Differential Revision: https://reviews.llvm.org/D79783
2020-08-26 16:55:25 +01:00
David Green 677c1590c0 [ARM] Increase MVE gather/scatter cost by MVECostFactor.
MVE Gather scatter codegeneration is looking a lot better than it used
to, but still has some issues. The instructions we currently model as 1
cycle per element, which is a bit low for some cases. Increasing the
cost by the MVECostFactor brings them in-line with our other instruction
costs. This will have the effect of only generating then when the extra
benefit is more likely to overcome some of the issues. Notably in
running out of registers and vectorizing loops that could otherwise be
SLP vectorized.

In the short-term whilst we look at other ways of dealing with those
more directly, we can increase the costs of gathers to make them more
likely to be beneficial when created.

Differential Revision: https://reviews.llvm.org/D86444
2020-08-26 13:03:46 +01:00
Sjoerd Meijer ae366479e8 [LV] get.active.lane.mask consuming tripcount instead of backedge-taken count
This adapts LV to the new semantics of get.active.lane.mask as discussed in
D86147, which means that the LV now emits intrinsic get.active.lane.mask with
the loop tripcount instead of the backedge-taken count as its second argument.
The motivation for this is described in D86147.

Differential Revision: https://reviews.llvm.org/D86304
2020-08-25 13:49:19 +01:00
Anna Welker 8048068c3e [ARM][MVE] Allow tail predication for strides !=1 with gather/scatters
If gather/scatters are enabled, ARMTargetTransformInfo now allows
tail predication for loops with a much wider range of strides, up
to anything that is loop invariant.

Differential Revision: https://reviews.llvm.org/D85410
2020-08-24 13:54:47 +01:00
David Green 2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green b8088ada05 [LV] Predicated reduction tests. NFC 2020-08-18 16:02:21 +01:00
David Green 9ddb28964c [ARM] Tune getCastInstrCost for extending masked loads and truncating masked stores
This patch uses the feature added in D79162 to fix the cost of a
sext/zext of a masked load, or a trunc for a masked store.
Previously, those were considered cheap or even free, but it's
not the case as we cannot split the load in the same way we would for
normal loads.

This updates the costs to better reflect reality, and adds a test for it
in test/Analysis/CostModel/ARM/cast.ll.

It also adds a vectorizer test that showcases the improvement: in some
cases, the vectorizer will now choose a smaller VF when
tail-predication is enabled, which results in better codegen. (Because
if it were to use a higher VF in those cases, the code we see above
would be generated, and the vmovs would block tail-predication later in
the process, resulting in very poor codegen overall)

Original Patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79163
2020-07-29 13:41:34 +01:00
David Green 2f4c3e8097 [LV] Add additional InLoop redution tests. NFC 2020-07-18 12:14:23 +01:00
Sjoerd Meijer 7ebc6bed84 [ARM][MVE] Reorg of the LV tail-folding tests
It was getting difficult to see which test was in which file, so this
reorganises the test files so that now all filenames start with tail-folding-*
followed by a more descriptive name what that group of tests check.
2020-07-17 15:54:15 +01:00
Anna Welker 23c9534515 [LV] Enable the LoopVectorizer to create pointer inductions
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.

Differential Revision: https://reviews.llvm.org/D81267
2020-07-17 13:35:07 +01:00
Sjoerd Meijer 959eaa50d6 [ARM][MVE] Only tail-fold integer add reductions
If a vector body has live-out values, it is probably a reduction, which needs a
final reduction step after the loop. MVE has a VADDV instruction to reduce
integer vectors, but doesn't have an equivalent one for float vectors. A
live-out value that is not recognised as reduction later in the optimisation
pipeline will result in the tail-predicated loop to be reverted to a
non-predicated loop and this is very expensive, i.e. it has a significant
performance impact, which is what we hope to avoid with fine tuning the ARM TTI
hook preferPredicateOverEpilogue implementation.

Differential Revision: https://reviews.llvm.org/D82953
2020-07-14 10:15:07 +01:00
Sjoerd Meijer 595270ae39 [ARM][MVE] Refactor option -disable-mve-tail-predication
This refactors option -disable-mve-tail-predication to take different arguments
so that we have 1 option to control tail-predication rather than several
different ones.

This is also a prep step for D82953, in which we want to reject reductions
unless that is requested with this option.

Differential Revision: https://reviews.llvm.org/D83133
2020-07-13 13:40:33 +01:00
Jordan Rupprecht 10c82eecbc Revert "[LV] Enable the LoopVectorizer to create pointer inductions"
This reverts commit a8fe12065e.

It causes a crash when building gzip. Will post the detailed reduced test case to D81267.
2020-07-06 17:50:38 -07:00
David Green 146dad0077 [ARM] MVE FP16 cost adjustments
This adjusts the MVE fp16 cost model, similar to how we already do for
integer casts. It uses the base cost of 1 per cvt for most fp extend /
truncates, but adjusts it for loads and stores where we know that a
extending load has been used to get the load into the correct lane, and
only an MVE VCVTB is then needed.

Differential Revision: https://reviews.llvm.org/D81813
2020-07-06 15:57:51 +01:00
David Green 55227f85d0 [ARM] Use BaseT::getMemoryOpCost for getMemoryOpCost
This alters getMemoryOpCost to use the Base TargetTransformInfo version
that includes some additional checks for whether extending loads are
legal. This will generally have the effect of making <2 x ..> and some
<4 x ..> loads/stores more expensive, which in turn should help favour
larger vector factors.

Notably it alters the cost of a <4 x half>, which with the current
codegen will be expensive if it is not extended.

Differential Revision: https://reviews.llvm.org/D82456
2020-07-06 10:58:40 +01:00
Anna Welker a8fe12065e [LV] Enable the LoopVectorizer to create pointer inductions
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.

Differential Revision: https://reviews.llvm.org/D81267
2020-07-02 11:39:28 +01:00
Sjoerd Meijer e345d547a0 Recommit "[LV] Emit @llvm.get.active.lane.mask for tail-folded loops"
Fixed ARM regression test.

Please see the original commit message rG47650451738c for details.
2020-06-17 13:12:15 +01:00
Sjoerd Meijer d4e183f686 Revert "[LV] Emit @llvm.get.active.mask for tail-folded loops"
This reverts commit 4765045173
while I investigate the build bot failures.
2020-06-17 10:09:54 +01:00
Sjoerd Meijer 4765045173 [LV] Emit @llvm.get.active.mask for tail-folded loops
This emits new IR intrinsic @llvm.get.active.mask for tail-folded vectorised
loops if the intrinsic is supported by the backend, which is checked by
querying TargetTransform hook emitGetActiveLaneMask.

This intrinsic creates a mask representing active and inactive vector lanes,
which is used by the masked load/store instructions that are created for
tail-folded loops. The semantics of @llvm.get.active.mask are described here in
LangRef:

https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics

This intrinsic is also used to provide a hint to the backend. That is, the
second argument of the intrinsic represents the back-edge taken count of the
loop. For MVE, for example, we use that to set up tail-predication, which is a
new form of predication in MVE for vector loops that implicitely predicates the
last vector loop iteration by implicitely setting active/inactive lanes, i.e.
the tail loop is predicated. In order to set up a tail-predicated vector loop,
we need to know the number of data elements processed by the vector loop, which
corresponds the the tripcount of the scalar loop, which we can now reconstruct
using @llvm.get.active.mask.

Differential Revision: https://reviews.llvm.org/D79100
2020-06-17 09:53:58 +01:00
David Green 46529978bf [ARM] Always use reductions intrinsics under MVE
Similar to a recent change to the X86 backend, this changes things so
that we always produce a reduction intrinsics for all reduction types,
not just the legal ones. This gives a better chance in the backend to
custom lower them to something more suitable for MVE. Especially for
something like fadd the in-order reduction produced during DAG lowering
is already better than the shuffles produced in the midend, and we can
do even better with a bit of custom lowering.

Differential Revision: https://reviews.llvm.org/D81398
2020-06-12 19:21:17 +01:00
David Green a4cf68e743 [ARM] MVE vectorizer reduction tests for each reduction type. NFC 2020-06-10 11:18:24 +01:00
Jon Roelofs 5fb979dd06 [llvm][test] Add missing FileCheck colons. NFC 2020-05-21 09:29:27 -06:00
Sjoerd Meijer 9529597cf4 Recommit #2: "[LV] Induction Variable does not remain scalar under tail-folding."
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:

If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.
2020-05-13 13:50:09 +01:00
Sam Parker b4a8091a11 [ARM][CostModel] Improve getCastInstrCost
- Specifically check for sext/zext users which have 'long' form NEON
  instructions.
- Add more entries to the table for sext/zexts so that we can report
  more accurately the number of vmovls required for NEON.
- Pass the instruction to the pass implementation.

Differential Revision: https://reviews.llvm.org/D79561
2020-05-12 10:32:20 +01:00
Benjamin Kramer f936457f80 Revert "Recommit "[LV] Induction Variable does not remain scalar under tail-folding.""
This reverts commit ae45b4dbe7. It
causes miscompilations, test case on the mailing list.
2020-05-08 14:49:10 +02:00
Sjoerd Meijer ae45b4dbe7 Recommit "[LV] Induction Variable does not remain scalar under tail-folding."
With 3 llvm regr tests fixed/updated that I had missed.
2020-05-07 11:52:20 +01:00
Sjoerd Meijer 20d67ffeae Revert "[LV] Induction Variable does not remain scalar under tail-folding."
This reverts commit 617aa64c84.

while I investigate buildbot failures.
2020-05-07 09:29:56 +01:00
Sjoerd Meijer 617aa64c84 [LV] Induction Variable does not remain scalar under tail-folding.
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.

Differential Revision: https://reviews.llvm.org/D78911
2020-05-07 09:15:23 +01:00
David Green eecba95067 [ARM] Replace arm vendor with none. NFC 2020-04-22 18:19:35 +01:00
Sjoerd Meijer 5be767d489 NFC: remove outdated TODOs from ARM test file. 2020-04-17 17:08:11 +01:00
Sjoerd Meijer 3ef614a007 NFC: update of ARM llvm regr test, follow up of 9633fc14ae. 2020-04-14 21:30:22 +01:00
Sjoerd Meijer 9633fc14ae [LV][ARM] Add tail-folding tests for MVE. NFC.
D77635 added support to recognise primary induction variables for counting-down
loops. This allows us to fold the scalar tail loop into the main vector body,
which we need for MVE tail-predication. This adds some ARM tail-folding test
cases that we want to support.

This test was extracted from D76838, which implemented a different approach to
reverse and thus find a primary induction variable.
2020-04-14 16:03:29 +01:00
Jonathan Roelofs 7c5d2bec76 [llvm] Fix missing FileCheck directive colons
https://reviews.llvm.org/D77352
2020-04-06 09:59:08 -06:00
David Green 587feec07e [ARM] Change all tests from "thumbv8.1-m.main" to "thumbv8.1m.main". NFC 2020-03-04 13:47:35 +00:00
David Green b535aa405a [ARM] Use reduction intrinsics for larger than legal reductions
The codegen for splitting a llvm.vector.reduction intrinsic into parts
will be better than the codegen for the generic reductions. This will
only directly effect when vectorization factors are specified by the
user.

Also added tests to make sure the codegen for larger reductions is OK.

Differential Revision: https://reviews.llvm.org/D72257
2020-01-24 17:07:24 +00:00
Momchil Velikov 173b711e83 [ARM][MVE] MVE-I should not be disabled by -mfpu=none
Architecturally, it's allowed to have MVE-I without an FPU, thus
-mfpu=none should not disable MVE-I, or moves to/from FP-registers.

This patch removes `+/-fpregs` from features unconditionally added to
target feature list, depending on FPU and moves the logic to Clang
driver, where the negative form (`-fpregs`) is conditionally added to
the target features list for the cases of `-mfloat-abi=soft`, or
`-mfpu=none` without either `+mve` or `+mve.fp`. Only the negative
form is added by the driver, the positive one is derived from other
features in the backend.

Differential Revision: https://reviews.llvm.org/D71843
2020-01-09 14:03:25 +00:00
Sjoerd Meijer 8f1887456a [LV] Still vectorise when tail-folding can't find a primary inducation variable
This addresses a vectorisation regression for tail-folded loops that are
counting down, e.g. loops as simple as this:

  void foo(char *A, char *B, char *C, uint32_t N) {
    while (N > 0) {
      *C++ = *A++ + *B++;
       N--;
    }
  }

These are loops that can be vectorised, but when tail-folding is requested, it
can't find a primary induction variable which we do need for predicating the
loop. As a result, the loop isn't vectorised at all, which it is able to do
when tail-folding is not attempted. So, this adds a check for the primary
induction variable where we decide how to lower the scalar epilogue. I.e., when
there isn't a primary induction variable, a scalar epilogue loop is allowed
(i.e. don't request tail-folding) so that vectorisation could still be
triggered.

Having this check for the primary induction variable make sense anyway, and in
addition, in a follow-up of this I will look into discovering earlier the
primary induction variable for counting down loops, so that this can also be
tail-folded.

Differential revision: https://reviews.llvm.org/D72324
2020-01-09 09:14:00 +00:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
David Green d6642ed1c8 [ARM] Add missing REQUIRES: asserts to test. NFC 2019-12-09 11:43:43 +00:00
David Green b1aba0378e [ARM] Enable MVE masked loads and stores
With the extra optimisations we have done, these should now be fine to
enable by default. Which is what this patch does.

Differential Revision: https://reviews.llvm.org/D70968
2019-12-09 11:37:34 +00:00
David Green be7a107070 [ARM] Teach the Arm cost model that a Shift can be folded into other instructions
This attempts to teach the cost model in Arm that code such as:
  %s = shl i32 %a, 3
  %a = and i32 %s, %b
Can under Arm or Thumb2 become:
  and r0, r1, r2, lsl #3

So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.

We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.

Differential Revision: https://reviews.llvm.org/D70966
2019-12-09 10:24:33 +00:00
David Green f008b5b8ce [ARM] Additional tests and minor formatting. NFC
This adds some extra cost model tests for shifts, and does some minor
adjustments to some Neon code to make it clear as to what it applies to.
Both NFC.
2019-12-09 10:24:33 +00:00
David Green 3a6eb5f160 [ARM] Disable VLD4 under MVE
Alas, using half the available vector registers in a single instruction
is just too much for the register allocator to handle. The mve-vldst4.ll
test here fails when these instructions are enabled at present. This
patch disables the generation of VLD4 and VST4 by adding a
mve-max-interleave-factor option, which we currently default to 2.

Differential Revision: https://reviews.llvm.org/D71109
2019-12-08 10:37:29 +00:00
Sjoerd Meijer 901cd3b3f6 [LV] PreferPredicateOverEpilog respecting option
Follow-up of cb47b8783: don't query TTI->preferPredicateOverEpilogue when
option -prefer-predicate-over-epilog is set to false, i.e. when we prefer not
to predicate the loop.

Differential Revision: https://reviews.llvm.org/D70382
2019-11-21 14:06:10 +00:00
David Green 882f23caea [ARM] MVE interleaving load and stores.
Now that we have the intrinsics, we can add VLD2/4 and VST2/4 lowering
for MVE. This works the same way as Neon, recognising the load/shuffles
combination and converting them into intrinsics in a pre-isel pass,
which just calls getMaxSupportedInterleaveFactor, lowerInterleavedLoad
and lowerInterleavedStore.

The main difference to Neon is that we do not have a VLD3 instruction.
Otherwise most of the code works very similarly, with just some minor
differences in the form of the intrinsics to work around. VLD3 is
disabled by making isLegalInterleavedAccessType return false for those
cases.

We may need some other future adjustments, such as VLD4 take up half the
available registers so should maybe cost more. This patch should get the
basics in though.

Differential Revision: https://reviews.llvm.org/D69392
2019-11-19 18:37:30 +00:00
David Green 411bfe476b [ARM] Add and update a lot of VLDn tests. NFC 2019-11-19 18:37:30 +00:00