We do not compute the scalarization overhead in getVectorIntrinsicCost
and TTI::getIntrinsicInstrCost requires the full arguments list.
llvm-svn: 366049
Loop invariant operands do not need to be scalarized, as we are using
the values outside the loop. We should ignore them when computing the
scalarization overhead.
Fixes PR41294
Reviewers: hsaito, rengolin, dcaballe, Ayal
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D59995
llvm-svn: 366030
This reverts commit r365260 which broke the following tests:
Clang :: CodeGenCXX/cfi-mfcall.cpp
Clang :: CodeGenObjC/ubsan-nullability.m
LLVM :: Transforms/LoopVectorize/AArch64/pr36032.ll
llvm-svn: 365284
Without this, we have the unfortunate property that tests are dependent on the order of operads passed the CreateOr and CreateAnd functions. In actual usage, we'd promptly optimize them away, but it made tests slightly more verbose than they should have been.
llvm-svn: 365260
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
> llvm-svn: 363046
llvm-svn: 363786
When considering a loop containing nontemporal stores or loads for
vectorization, suppress the vectorization if the corresponding
vectorized store or load with the aligment of the original scaler
memory op is not supported with the nontemporal hint on the target.
This adds two new functions:
bool isLegalNTStore(Type *DataType, unsigned Alignment) const;
bool isLegalNTLoad(Type *DataType, unsigned Alignment) const;
to TTI, leaving the target independent default implementation as
returning true, but with overriding implementations for X86 that
check the legality based on available Subtarget features.
This fixes https://llvm.org/PR40759
Differential Revision: https://reviews.llvm.org/D61764
llvm-svn: 363581
Summary:
Avoid that loop vectorizer creates loads/stores of vectors
with "irregular" types when interleaving. An example of
an irregular type is x86_fp80 that is 80 bits, but that
may have an allocation size that is 96 bits. So an array
of x86_fp80 is not bitcast compatible with a vector
of the same type.
Not sure if interleavedAccessCanBeWidened is the best
place for this check, but it solves the problem seen
in the added test case. And it is the same kind of check
that already exists in memoryInstructionCanBeWidened.
Reviewers: fhahn, Ayal, craig.topper
Reviewed By: fhahn
Subscribers: hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63386
llvm-svn: 363547
InsertBinop now accepts NoWrapFlags, so pass them through when
expanding a simple add expression.
This is the first re-commit of the functional changes from rL362687,
which was previously reverted.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 363364
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.
For example:
; The LLVM LangRef specifies that the scalar result must equal the
; vector element type, but this is not checked/enforced by LLVM.
declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
This patch changes that into:
declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)
Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.
Reviewers: RKSimon, arsenm, rnk, greened, aemerson
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62996
llvm-svn: 363240
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 362687
Currently, only the following information is provided by LoopVectorizer
in the case when the CF of the loop is not legal for vectorization:
LV: Can't vectorize the instructions or CFG
LV: Not vectorizing: Cannot prove legality.
But this information is not enough for the root cause analysis; what is
exactly wrong with the loop should also be printed:
LV: Not vectorizing: The exiting block is not the loop latch.
Patch by Pavel Samolysov.
Reviewers: mkuper, hsaito, rengolin, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D62311
llvm-svn: 362056
This is a regression test for vectorization, so remove instcombine
from the RUN line and adjust the comparison predicates to show what
the vectorizer is creating rather than how instcombine cleans it up.
llvm-svn: 361648
This is a minimal start to correcting a problem most directly discussed in PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
We have been hacking around a limitation for FP select patterns by using the
fast-math-flags on the condition of the select rather than the select itself.
This patch just allows FMF to appear with the 'select' opcode. No changes are
needed to "FPMathOperator" because it already includes select-of-FP because
that definition is based on the (return) value type.
Once we have this ability, we can start correcting and adding IR transforms
to use the FMF on a 'select' instruction. The instcombine and vectorizer test
diffs only show that the IRBuilder change is behaving as expected by applying
an FMF guard value to 'select'.
For reference:
rL241901 - allowed FMF with fcmp
rL255555 - allowed FMF with FP calls
Differential Revision: https://reviews.llvm.org/D61917
llvm-svn: 361401
This test file has a long history of edits from changes outside
of vectorization, and it would happen again with the proposal in
D61726.
End-to-end testing shouldn't be happening in a test file that is
specifically checking for vector masked load/store ops.
Larger-scale testing goes in PhaseOrdering or the test-suite.
I've hopefully preserved the intent by taking what was completely
unoptimized IR in some tests and passing that through the -O1
pipeline. That becomes the input IR, and now we just run the loop
vectorizer and verify that the vector masked ops are produced as
expected.
llvm-svn: 360340
InsertBinop tries to move insertion-points out of loops for expressions
that are loop-invariant. This patch adds a new parameter, IsSafeToHost,
to guard that hoisting. This allows callers to suppress that hoisting
for unsafe situations, such as divisions that may have a zero
denominator.
This fixes PR38697.
Differential Revision: https://reviews.llvm.org/D55232
llvm-svn: 360280
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel
Reviewed By: hfinkel
Subscribers: bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 360162
Summary:
Currently we express umin as `~umax(~x, ~y)`. However, this becomes
a problem for operands in non-integral pointer spaces, because `~x`
is not something we can compute for `x` non-integral. However, since
comparisons are generally still allowed, we are actually able to
express `umin(x, y)` directly as long as we don't try to express is
as a umax. Support this by adding an explicit umin/smin representation
to SCEV. We do this by factoring the existing getUMax/getSMax functions
into a new function that does all four. The previous two functions were
largely identical.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D50167
llvm-svn: 360159
Summary:
Match NewPassManager behavior: add option for interleaved loops in the
old pass manager, and use that instead of the flag used to disable loop unroll.
No changes in the defaults.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, dmgreen, hsaito, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61030
llvm-svn: 359615
Summary:
When refactoring vectorization flags, vectorization was disabled by default in the new pass manager.
This patch re-enables is for both managers, and changes the assumptions opt makes, based on the new defaults.
Comments in opt.cpp should clarify the intended use of all flags to enable/disable vectorization.
Reviewers: chandlerc, jgorbe
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61091
llvm-svn: 359167
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
1. Use computed VF for stress testing.
2. If the computed VF does not produce vector code (VF smaller than 2), force VF to be 4.
3. Test vectorization of i64 data on AArch64 to make sure we generate VF != 4 (on X86 that was already tested on AVX).
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D59952
llvm-svn: 358056
Bug: https://bugs.llvm.org/show_bug.cgi?id=41180
In the bug test case the debug location was missing for the cmp instruction in
the "middle block" BB. This patch fixes the bug by copying the debug location
from the cmp of the scalar loop's terminator branch, if it exists.
The patch also fixes the debug location on the subsequent branch instruction.
It was previously using the location of the of the original loop's pre-header
block terminator. Both of these instructions will now map to the source line of
the conditional branch in the original loop.
A regression test has been added that covers these issues.
Patch by Orlando Cazalet-Hyams!
Differential Revision: https://reviews.llvm.org/D59944
llvm-svn: 357499
With this change, the VPlan native path is triggered with the directive:
#pragma clang loop vectorize(enable)
There is no need to specify the vectorize_width(N) clause.
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D57598
llvm-svn: 357156
Remove attempts to commute non-Instructions to the LHS - the codegen changes appear to rely on chance more than anything else and also have a tendency to fight existing instcombine canonicalization which moves constants to the RHS of commutable binary ops.
This is prep work towards:
(a) reusing reorderInputsAccordingToOpcode for alt-shuffles and removing the similar reorderAltShuffleOperands
(b) improving reordering to optimized cases with commutable and non-commutable instructions to still find splat/consecutive ops.
Differential Revision: https://reviews.llvm.org/D59738
llvm-svn: 356913
If they have other users we'll just end up increasing the instruction count.
We might be able to weaken this to only one of them having a single use if we can prove that the and will be removed.
Fixes PR41164.
Differential Revision: https://reviews.llvm.org/D59630
llvm-svn: 356690
Improve computeOverflowForUnsignedAdd/Sub in ValueTracking by
intersecting the computeConstantRange() result into the ConstantRange
created from computeKnownBits(). This allows us to detect some
additional never/always overflows conditions that can't be determined
from known bits.
This revision also adds basic handling for constants to
computeConstantRange(). Non-splat vectors will be handled in a followup.
The signed case will also be handled in a followup, as it needs some
more groundwork.
Differential Revision: https://reviews.llvm.org/D59386
llvm-svn: 356489
This reinstates r347934, along with a tweak to address a problem with
PHI node ordering that that commit created (or exposed). (That commit
was reverted at r348426, due to the PHI node issue.)
Original commit message:
r320789 suppressed moving the insertion point of SCEV expressions with
dev/rem operations to the loop header in non-loop-invariant situations.
This, and similar, hoisting is also unsafe in the loop-invariant case,
since there may be a guard against a zero denominator. This is an
adjustment to the fix of r320789 to suppress the movement even in the
loop-invariant case.
This fixes PR30806.
Differential Revision: https://reviews.llvm.org/D57428
llvm-svn: 356392
Change from original commit: move test (that uses an X86 triple) into the X86
subdirectory.
Original description:
Gating vectorizing reductions on *all* fastmath flags seems unnecessary;
`reassoc` should be sufficient.
Reviewers: tvvikram, mkuper, kristof.beyls, sdesmalen, Ayal
Reviewed By: sdesmalen
Subscribers: dcaballe, huntergr, jmolloy, mcrosier, jlebar, bixia, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57728
llvm-svn: 355889
Second part of D58593.
Compute precise overflow conditions based on all known bits, rather
than just the sign bits. Unsigned a - b overflows iff a < b, and we
can determine whether this always/never happens based on the minimal
and maximal values achievable for a and b subject to the known bits
constraint.
llvm-svn: 355109
Loop::setAlreadyUnrolled() and
LoopVectorizeHints::setLoopAlreadyUnrolled() both add loop metadata that
stops the same loop from being transformed multiple times. This patch
merges both implementations.
In doing so we fix 3 potential issues:
* setLoopAlreadyUnrolled() kept the llvm.loop.vectorize/interleave.*
metadata even though it will not be used anymore. This already caused
problems such as http://llvm.org/PR40546. Change the behavior to the
one of setAlreadyUnrolled which deletes this loop metadata.
* setAlreadyUnrolled() used to create a new LoopID by calling
MDNode::get with nullptr as the first operand, then replacing it by
the returned references using replaceOperandWith. It is possible
that MDNode::get would instead return an existing node (due to
de-duplication) that then gets modified. To avoid, use a fresh
TempMDNode that does not get uniqued with anything else before
replacing it with replaceOperandWith.
* LoopVectorizeHints::matchesHintMetadataName() only compares the
suffix of the attribute to set the new value for. That is, when
called with "enable", would erase attributes such as
"llvm.loop.unroll.enable", "llvm.loop.vectorize.enable" and
"llvm.loop.distribute.enable" instead of the one to replace.
Fortunately, function was only called with "isvectorized".
Differential Revision: https://reviews.llvm.org/D57566
llvm-svn: 353738
Summary:
Check the bool value of the attribute in getOptionalBoolLoopAttribute
not just its existance.
Eliminates the warning noise generated when vectorization is explicitly disabled.
Reviewers: Meinersbur, hfinkel, dmgreen
Subscribers: jlebar, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D57260
llvm-svn: 352555
Bitcast and certain Ptr2Int/Int2Ptr instructions will not alter the
value of their operand and can therefore be looked through when we
determine non-nullness.
Differential Revision: https://reviews.llvm.org/D54956
llvm-svn: 352293
Prior to SSE41 (and sometimes on AVX1), vector select has to be performed as a ((X & C)|(Y & ~C)) bit select.
Exposes a couple of issues with the min/max reduction costs (which only go down to SSE42 for some reason).
The increase pre-SSE41 selection costs also prevent a couple of tests from firing any longer, so I've either tweaked the target or added AVX tests as well to the existing SSE2 tests.
llvm-svn: 351685
If we found unsafe dependences other than 'unknown', we already know at
compile time that they are unsafe and the runtime checks should always
fail. So we can avoid generating them in those cases.
This should have no negative impact on performance as the runtime checks
that would be created previously should always fail. As a sanity check,
I measured the test-suite, spec2k and spec2k6 and there were no regressions.
Reviewers: Ayal, anemet, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D55798
llvm-svn: 349794
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.
This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).
This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.
The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.
Differential Revision: https://reviews.llvm.org/D52116
llvm-svn: 349725
This patch adds a VectorizationSafetyStatus enum, which will be extended
in a follow up patch to distinguish between 'safe with runtime checks'
and 'known unsafe' dependences.
Reviewers: anemet, anna, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D54892
llvm-svn: 349556
The first test claims to show that the vectorizer will
generate a vector load/loop, but then this file runs
other passes which might scalarize that op. I'm removing
instcombine from the RUN line here to break that dependency.
Also, I'm generating full checks to make it clear exactly
what the vectorizer has done.
llvm-svn: 349554
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
DemandedBits and BDCE currently only support scalar integers. This
patch extends them to also handle vector integer operations. In this
case bits are not tracked for individual vector elements, instead a
bit is demanded if it is demanded for any of the elements. This matches
the behavior of computeKnownBits in ValueTracking and
SimplifyDemandedBits in InstCombine.
Unlike the previous iteration of this patch, getDemandedBits() can now
again be called on arbirary (sized) instructions, even if they don't
have integer or vector of integer type. (For vector types the size of the
returned mask will now be the scalar size in bits though.)
The added LoopVectorize test case shows a case which triggered an
assertion failure with the previous attempt, because getDemandedBits()
was called on a pointer-typed instruction.
Differential Revision: https://reviews.llvm.org/D55297
llvm-svn: 348602
This change caused SEGVs in instcombine. (The r347934 change seems to me to be a
precipitating cause, not a root cause. Details are on the llvm-commits thread
for r347934.)
llvm-svn: 348426
Adding a new reduction pattern match for vectorizing code similar
to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
The difference from the previous patch(https://reviews.llvm.org/D49168)
is as follows:
- Added check of fast-math property of fp-instruction to the
previous patch
- Fix/add some pattern for if-reduction.ll
Differential Revision: https://reviews.llvm.org/D54464
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>
and Masakazu Ueno <masakazu.ueno@linaro.org>
llvm-svn: 347989
r320789 suppressed moving the insertion point of SCEV expressions with
dev/rem operations to the loop header in non-loop-invariant situations.
This, and similar, hoisting is also unsafe in the loop-invariant case,
since there may be a guard against a zero denominator. This is an
adjustment to the fix of r320789 to suppress the movement even in the
loop-invariant case.
This fixes PR30806.
Differential Revision: https://reviews.llvm.org/D54713
llvm-svn: 347934
This reverts commits r347776 and r347778.
The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.
llvm-svn: 347867
This changeset is modeled after Intel's submission for SVML. It enables
trigonometry functions vectorization via SLEEF: http://sleef.org/.
* A new vectorization library enum is added to TargetLibraryInfo.h: SLEEF.
* A new option is added to TargetLibraryInfoImpl - ClVectorLibrary: SLEEF.
* A comprehensive test case is included in this changeset.
* In a separate changeset (for clang), a new vectorization library argument is
added to -fveclib: -fveclib=SLEEF.
Trigonometry functions that are vectorized by sleef:
acos
asin
atan
atanh
cos
cosh
exp
exp2
exp10
lgamma
log10
log2
log
sin
sinh
sqrt
tan
tanh
tgamma
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D53927
llvm-svn: 347510
Summary:
Currently, when vectorizing stores to uniform addresses, the only
instance we prevent vectorization is if there are multiple stores to the
same uniform address causing an unsafe dependency.
This patch teaches LAA to avoid vectorizing loops that have an unsafe
cross-iteration dependency between a load and a store to the same uniform address.
Fixes PR39653.
Reviewers: Ayal, efriedma
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D54538
llvm-svn: 347220
The general approach taken is to make note of loop invariant branches, then when
we see something conditional on that branch, such as a phi, we create a copy of
the branch and (empty versions of) its successors and hoist using that.
This has no impact by itself that I've been able to see, as LICM typically
doesn't see such phis as they will have been converted into selects by the time
LICM is run, but once we start doing phi-to-select conversion later it will be
important.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347190
This just identifies the intrinsics as candidates for vectorization.
It does not mean we will attempt to vectorize under normal conditions
(the test file is forcing vectorization).
The cost model must be fixed to show that the transform is profitable
in general.
Allowing vectorization with these intrinsics is required to avoid
potential regressions from canonicalizing to the intrinsics from
generic IR:
https://bugs.llvm.org/show_bug.cgi?id=37417
llvm-svn: 346661
Model this function more closely after the BasicTTIImpl version, with
separate handling of loads and stores. For loads, the set of actually loaded
vectors is checked.
This makes it more readable and just slightly more accurate generally.
Review: Ulrich Weigand
https://reviews.llvm.org/D53071
llvm-svn: 345998
Fix PR39417, PR39497
The loop vectorizer may generate runtime SCEV checks for overflow and stride==1
cases, leading to execution of original scalar loop. The latter is forbidden
when optimizing for size. An assert introduced in r344743 triggered the above
PR's showing it does happen. This patch fixes this behavior by preventing
vectorization in such cases.
Differential Revision: https://reviews.llvm.org/D53612
llvm-svn: 345959
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
This commit is a combination of two patches:
* "Fix in getScalarizationOverhead()"
If target returns false in TTI.prefersVectorizedAddressing(), it means the
address registers will not need to be extracted. Therefore, there should
be no operands scalarization overhead for a load instruction.
* "Don't pass the instruction pointer from getMemInstScalarizationCost."
Since VF is always > 1, this is a cost query for an instruction in the
vectorized loop and it should not be evaluated within the scalar
context of the instruction.
Review: Ulrich Weigand, Hal Finkel
https://reviews.llvm.org/D52351https://reviews.llvm.org/D52417
llvm-svn: 345603
masked-interleaving is enabled
Enable interleave-groups under fold-tail scenario for Opt for size compilation;
D50480 added support for vectorizing loops of arbitrary trip-count without a
remiander, which in turn makes everything in the loop conditional, including
interleave-groups if any. It therefore invalidated all interleave-groups
because we didn't have support for vectorizing predicated interleaved-groups
at the time. In the meantime, D53011 introduced this support, so we don't
have to invalidate interleave-groups when masked-interleaved support is enabled.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: hsaito
Differential Revision: https://reviews.llvm.org/D53559
llvm-svn: 345115
optimizing for size
LV is careful to respect -Os and not to create a scalar epilog in all cases
(runtime tests, trip-counts that require a remainder loop) except for peeling
due to gaps in interleave-groups. This patch fixes that; -Os will now have us
invalidate such interleave-groups and vectorize without an epilog.
The patch also removes a related FIXME comment that is now obsolete, and was
also inaccurate:
"FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a smaller
MaxVF that does not require a scalar epilog."
(requiresScalarEpilog() has nothing to do with VF).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53420
llvm-svn: 344883
When optimizing for size, a loop is vectorized only if the resulting vector loop
completely replaces the original scalar loop. This holds if no runtime guards
are needed, if the original trip-count TC does not overflow, and if TC is a
known constant that is a multiple of the VF. The last two TC-related conditions
can be overcome by
1. rounding the trip-count of the vector loop up from TC to a multiple of VF;
2. masking the vector body under a newly introduced "if (i <= TC-1)" condition.
The patch allows loops with arbitrary trip counts to be vectorized under -Os,
subject to the existing cost model considerations. It also applies to loops with
small trip counts (under -O2) which are currently handled as if under -Os.
The patch does not handle loops with reductions, live-outs, or w/o a primary
induction variable, and disallows interleave groups.
(Third, final and main part of -)
Differential Revision: https://reviews.llvm.org/D50480
llvm-svn: 344743
Summary:
Teach vectorizer about vectorizing variant value stores to uniform
address. Similar to rL343028, we do not allow vectorization if we have
multiple stores to the same uniform address.
Cost model already has the change for considering the extract
instruction cost for a variant value store. See added test cases for how
vectorization is done.
The patch also contains changes to the ORE messages.
Reviewers: Ayal, mkuper, anemet, hsaito
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D52656
llvm-svn: 344613
Landing this as a separate part of https://reviews.llvm.org/D50480, recording
current behavior more accurately, to clarify subsequent diff ([LV] Vectorizing
loops of arbitrary trip count without remainder under opt for size).
llvm-svn: 344606
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Adding a new reduction pattern match for vectorizing code similar to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
I have forwarded to trunk, added fsub and fmul functionality and
additional tests, but the credit goes to Takahiro, who did most of the
actual work.
Differential Revision: https://reviews.llvm.org/D49168
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>.
llvm-svn: 344172
At the point when we perform `emitTransformedIndex`, we have a broken IR (in
particular, we have Phis for which not every incoming value is properly set). On
such IR, it is illegal to create SCEV expressions, because their internal
simplification process may try to prove some predicates and break when it
stumbles across some broken IR.
The only purpose of using SCEV in this particular place is attempt to simplify
the generated code slightly. It seems that the result isn't worth it, because
some trivial cases (like addition of zero and multiplication by 1) can be
handled separately if needed, but more generally InstCombine is able to achieve
the goals we want to achieve by using SCEV.
This patch fixes a functional crash described in PR39160, and as side-effect it
also generates a bit smarter code in some simple cases. It also may cause some
optimality loss (i.e. we will now generate `mul` by power of `2` instead of
shift etc), but there is nothing what InstCombine could not handle later. In
case of dire need, we can support more trivial cases just in place.
Note that this patch only fixes one particular case of the general problem that
LV misuses SCEV, attempting to create SCEVs or prove predicates on invalid IR.
The general solution, however, seems complex enough.
Differential Revision: https://reviews.llvm.org/D52881
Reviewed By: fhahn, hsaito
llvm-svn: 343954
This patch fixes PR39099.
When strided loads are predicated, each of them will form an interleaved-group
(with gaps). However, subsequent stages of vectorization (planning and
transformation) assume that if a load is part of an Interleave-Group it is not
predicated, resulting in wrong code - unmasked wide loads are created.
The Interleaving Analysis does take care not to have conditional interleave
groups of size > 1, but until we extend the planning and transformation stages
to support masked-interleave-groups we should also avoid having them for
size == 1.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D52682
llvm-svn: 343931
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
Support for vectorizing loops with secondary floating-point induction
variables was added in r276554. A primary integer IV is still required
for vectorization to be done. If an FP IV was found, but no integer IV
was found at all (primary or secondary), the attempt to vectorize still
went forward, causing a compiler-crash. This change abandons that
attempt when no integer IV is found. (Vectorizing FP-only cases like
this, rather than bailing out, is discussed as possible future work
in D52327.)
See PR38800 for more information.
Differential Revision: https://reviews.llvm.org/D52327
llvm-svn: 342786
Summary:
[VPlan] Implement vector code generation support for simple outer loops.
Context: Patch Series #1 for outer loop vectorization support in LV using VPlan. (RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
This patch introduces vector code generation support for simple outer loops that are currently supported in the VPlanNativePath. Changes here essentially do the following:
- force vector code generation using explicit vectorize_width
- add conservative early returns in cost model and other places for VPlanNativePath
- add code for setting up outer loop inductions
- support for widening non-induction PHIs that can result from inner loops and uniform conditional branches
- support for generating uniform inner branches
We plan to add a handful C outer loop executable tests once the initial code generation support is committed. This patch is expected to be NFC for the inner loop vectorizer path. Since we are moving in the direction of supporting outer loop vectorization in LV, it may also be time to rename classes such as InnerLoopVectorizer.
Reviewers: fhahn, rengolin, hsaito, dcaballe, mkuper, hfinkel, Ayal
Reviewed By: fhahn, hsaito
Subscribers: dmgreen, bollu, tschuett, rkruppe, rogfer01, llvm-commits
Differential Revision: https://reviews.llvm.org/D50820
llvm-svn: 342197
Move the 2 classes out of LoopVectorize.cpp to make it easier to re-use
them for VPlan outside LoopVectorize.cpp
Reviewers: Ayal, mssimpso, rengolin, dcaballe, mkuper, hsaito, hfinkel, xbolva00
Reviewed By: rengolin, xbolva00
Differential Revision: https://reviews.llvm.org/D49488
llvm-svn: 342027
There were two combines not covered by the check before now, neither of which
actually differed from normal in the benefit analysis.
The most recent seems to be because it was just added at the top of the
function (naturally). The older is from way back in 2008 (r46687) when we just
didn't put those checks in so routinely, and has been diligently maintained
since.
llvm-svn: 341831
Fix a latent bug in loop vectorizer which generates incorrect code for
memory accesses that are executed conditionally. As pointed in review,
this bug definitely affects uniform loads and may affect conditional
stores that should have turned into scatters as well).
The code gen for conditionally executed uniform loads on architectures
that support masked gather instructions is broken.
Without this patch, we were unconditionally executing the *conditional*
load in the vectorized version.
This patch does the following:
1. Uniform conditional loads on architectures with gather support will
have correct code generated. In particular, the cost model
(setCostBasedWideningDecision) is fixed.
2. For the recipes which are handled after the widening decision is set,
we use the isScalarWithPredication(I, VF) form which is added in the
patch.
3. Fix the vectorization cost model for scalarization
(getMemInstScalarizationCost): implement and use isPredicatedInst to
identify *all* predicated instructions, not just scalar+predicated. So,
now the cost for scalarization will be increased for maskedloads/stores
and gather/scatter operations. In short, we should be choosing the
gather/scatter in place of scalarization on archs where it is
profitable.
4. We needed to weaken the assert in useEmulatedMaskMemRefHack.
Reviewers: Ayal, hsaito, mkuper
Differential Revision: https://reviews.llvm.org/D51313
llvm-svn: 341673
This is fix for PR38786.
First order recurrence phis were incorrectly treated as uniform,
which caused them to be vectorized as uniform instructions.
Patch by Ayal Zaks and Orivej Desh!
Reviewed by: Anna
Differential Revision: https://reviews.llvm.org/D51639
llvm-svn: 341416
This reverts r319889.
Unfortunately, wrapping flags are not a part of SCEV's identity (they
do not participate in computing a hash value or in equality
comparisons) and in fact they could be assigned after the fact w/o
rebuilding a SCEV.
Grep for const_cast's to see quite a few of examples, apparently all
for AddRec's at the moment.
So, if 2 expressions get built in 2 slightly different ways: one with
flags set in the beginning, the other with the flags attached later
on, we may end up with 2 expressions which are exactly the same but
have their operands swapped in one of the commutative N-ary
expressions, and at least one of them will have "sorted by complexity"
invariant broken.
2 identical SCEV's won't compare equal by pointer comparison as they
are supposed to.
A real-world reproducer is added as a regression test: the issue
described causes 2 identical SCEV expressions to have different order
of operands and therefore compare not equal, which in its turn
prevents LoadStoreVectorizer from vectorizing a pair of consecutive
loads.
On a larger example (the source of the test attached, which is a
bugpoint) I have seen even weirder behavior: adding a constant to an
existing SCEV changes the order of the existing terms, for instance,
getAddExpr(1, ((A * B) + (C * D))) returns (1 + (C * D) + (A * B)).
Differential Revision: https://reviews.llvm.org/D40645
llvm-svn: 340777
This is preparation for landing a use-before-def verifier for debug
intrinsics (D46100).
As a drive-by, remove `tail` from debug intrinsic calls because it
doesn't mean anything in that context.
llvm-svn: 340366
Summary:
Follow up change to rL339703, where we now vectorize loops with non-phi
instructions used outside the loop. Note that the cyclic dependency
identification occurs when identifying reduction/induction vars.
We also need to identify that we do not allow users where the PSCEV information
within and outside the loop are different. This was the fix added in rL307837
for PR33706.
Reviewers: Ayal, mkuper, fhahn
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D50778
llvm-svn: 340278
Summary:
This patch teaches the loop vectorizer to vectorize loops with non
header phis that have have outside uses. This is because the iteration
dependence distance for these phis can be widened upto VF (similar to
how we do for induction/reduction) if they do not have a cyclic
dependence with header phis. When identifying reduction/induction/first
order recurrence header phis, we already identify if there are any cyclic
dependencies that prevents vectorization.
The vectorizer is taught to extract the last element from the vectorized
phi and update the scalar loop exit block phi to contain this extracted
element from the vector loop.
This patch can be extended to vectorize loops where instructions other
than phis have outside uses.
Reviewers: Ayal, mkuper, mssimpso, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50579
llvm-svn: 339703
Added a test case to reduction showing where it's illegal to identify
vectorize a loop.
Resetting the reduction var during loop iterations disallows us from
widening the dependency cycle to VF, thereby making it illegal to
vectorize the loop.
llvm-svn: 339605
Summary: truncateToMinimalBitWidths() doesn't handle all Instructions and the worst case is compiler crash via llvm_unreachable(). Fix is to add a case to handle PHINode and changed the worst case to NO-OP (from compiler crash).
Reviewers: sbaranga, mssimpso, hsaito
Reviewed By: hsaito
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49461
llvm-svn: 337861
When creating `phi` instructions to resume at the scalar part of the loop,
copy the DebugLoc from the original phi over to the new one.
Differential Revision: https://reviews.llvm.org/D48769
llvm-svn: 336256
This patch changes order of transform in InstCombineCompares to avoid
performing transforms based on ranges which produce complex bit arithmetics
before more simple things (like folding with constants) are done. See PR37636
for the motivating example.
Differential Revision: https://reviews.llvm.org/D48584
Reviewed By: spatel, lebedev.ri
llvm-svn: 336172
This patch adds a custom trunc store lowering for v4i8 vector types.
Since there is not v.4b register, the v4i8 is promoted to v4i16 (v.4h)
and default action for v4i8 is to extract each element and issue 4
byte stores.
A better strategy would be to extended the promoted v4i16 to v8i16
(with undef elements) and extract and store the word lane which
represents the v4i8 subvectores. The construction:
define void @foo(<4 x i16> %x, i8* nocapture %p) {
%0 = trunc <4 x i16> %x to <4 x i8>
%1 = bitcast i8* %p to <4 x i8>*
store <4 x i8> %0, <4 x i8>* %1, align 4, !tbaa !2
ret void
}
Can be optimized from:
umov w8, v0.h[3]
umov w9, v0.h[2]
umov w10, v0.h[1]
umov w11, v0.h[0]
strb w8, [x0, #3]
strb w9, [x0, #2]
strb w10, [x0, #1]
strb w11, [x0]
ret
To:
xtn v0.8b, v0.8h
str s0, [x0]
ret
The patch also adjust the memory cost for autovectorization, so the C
code:
void foo (const int *src, int width, unsigned char *dst)
{
for (int i = 0; i < width; i++)
*dst++ = *src++;
}
can be vectorized to:
.LBB0_4: // %vector.body
// =>This Inner Loop Header: Depth=1
ldr q0, [x0], #16
subs x12, x12, #4 // =4
xtn v0.4h, v0.4s
xtn v0.8b, v0.8h
st1 { v0.s }[0], [x2], #4
b.ne .LBB0_4
Instead of byte operations.
llvm-svn: 335735
This avoids creating unnecessary casts if the IP used to be a dbg info
intrinsic. Fixes PR37727.
Reviewers: vsk, aprantl, sanjoy, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D47874
llvm-svn: 335513
redundant-vf2-cost.ll is X86 specific. Moved from
test/Transforms/LoopVectorize/redundant-vf2-cost.ll to
test/Transforms/LoopVectorize/X86/redundant-vf2-cost.ll
llvm-svn: 334854
This is a minor fix for LV cost model, where the cost for VF=2 was
computed twice when the vectorization of the loop was forced without
specifying a VF.
Reviewers: xusx595, hsaito, fhahn, mkuper
Reviewed By: hsaito, xusx595
Differential Revision: https://reviews.llvm.org/D48048
llvm-svn: 334840
There could be more than one PHIs in exit block using same loop recurrence.
Don't assume there is only one and fix each user.
Differential Revision: https://reviews.llvm.org/D47788
llvm-svn: 334271
These weren't included in D19544 - probably just an oversight.
D40044 made it more likely that we'll have LLVM math intrinsics rather
than libcalls, so this bug was more easily exposed.
As the tests/code show, we already have the complete mappings for pow/exp/log.
I don't have any experience with SVML, so I don't know if anything else is
missing. It's also not clear to me that we should be doing this transform in
IR rather than DAG/isel, but that's a separate issue.
Differential Revision: https://reviews.llvm.org/D47610
llvm-svn: 334211
Summary:
Getelementptr returns a vector of pointers, instead of a single address,
when one or more of its arguments is a vector. In such case it is not
possible to simplify the expression by inserting a bitcast of operand(0)
into the destination type, as it will create a bitcast between different
sizes.
Reviewers: majnemer, mkuper, mssimpso, spatel
Reviewed By: spatel
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D46379
llvm-svn: 333783
r332654 was reverted due to an unused function warning in
release build. This commit includes the same code with the
warning silenced.
Differential Revision: https://reviews.llvm.org/D44338
llvm-svn: 332860
This patch aims to match the changes introduced in gcc by
https://gcc.gnu.org/ml/gcc-cvs/2018-04/msg00534.html. The
IBT feature definition is removed, with the IBT instructions
being freely available on all X86 targets. The shadow stack
instructions are also being made freely available, and the
use of all these CET instructions is controlled by the module
flags derived from the -fcf-protection clang option. The hasSHSTK
option remains since clang uses it to determine availability of
shadow stack instruction intrinsics, but it is no longer directly used.
Comes with a clang patch (D46881).
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46882
llvm-svn: 332705
Patch #3 from VPlan Outer Loop Vectorization Patch Series #1
(RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
Expected to be NFC for the current inner loop vectorization path. It
introduces the basic algorithm to build the VPlan plain CFG (single-level
CFG, no hierarchical CFG (H-CFG), yet) in the VPlan-native vectorization
path using VPInstructions. It includes:
- VPlanHCFGBuilder: Main class to build the VPlan H-CFG (plain CFG without nested regions, for now).
- VPlanVerifier: Main class with utilities to check the consistency of a H-CFG.
- VPlanBlockUtils: Main class with utilities to manipulate VPBlockBases in VPlan.
Reviewers: rengolin, fhahn, mkuper, mssimpso, a.elovikov, hfinkel, aprantl.
Differential Revision: https://reviews.llvm.org/D44338
llvm-svn: 332654
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary:
Broadcast code generation emitted instructions in pre-header, while the instruction they are dependent on in the vector loop body.
This resulted in an IL verification error ---- value used before defined.
Reviewers: rengolin, fhahn, hfinkel
Reviewed By: rengolin, fhahn
Subscribers: dcaballe, Ka-Ka, llvm-commits
Differential Revision: https://reviews.llvm.org/D46302
llvm-svn: 331799
Summary:
This fixes a build break with r331269.
test/Transforms/LoopVectorize/pr23997.ll
should be in:
test/Transforms/LoopVectorize/X86/pr23997.ll
llvm-svn: 331281
Summary:
This is a fix for PR23997.
The loop vectorizer is not preserving the inbounds property of GEPs that it creates.
This is inhibiting some optimizations. This patch preserves the inbounds property in
the case where a load/store is being fed by an inbounds GEP.
Reviewers: mkuper, javed.absar, hsaito
Reviewed By: hsaito
Subscribers: dcaballe, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D46191
llvm-svn: 331269
Patch #2 from VPlan Outer Loop Vectorization Patch Series #1
(RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
This patch introduces the basic infrastructure to detect, legality check
and process outer loops annotated with hints for explicit vectorization.
All these changes are protected under the feature flag
-enable-vplan-native-path. This should make this patch NFC for the existing
inner loop vectorizer.
Reviewers: hfinkel, mkuper, rengolin, fhahn, aemerson, mssimpso.
Differential Revision: https://reviews.llvm.org/D42447
llvm-svn: 330739
The function getMinimumVF(ElemWidth) will return the minimum VF for
a vector with elements of size ElemWidth bits. This value will only
apply to targets for which TTI::shouldMaximizeVectorBandwidth returns
true. The value of 0 indicates that there is no minimum VF.
Differential Revision: https://reviews.llvm.org/D45271
llvm-svn: 330062
This change brings performance of zlib up by 10%. The example below is from a
hot loop in longest_match() from zlib.
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 %idx.ext1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 -1
In this example %idx.ext1 is a loop invariant. It will be moved above the use of
loop induction variable %idx.ext such that it can be hoisted out of the loop by
LICM. The operands that have dependences carried by the loop will be sinked down
in the GEP chain. This patch will produce the following output:
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext1
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 -1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 %idx.ext
llvm-svn: 328539
Summary:
Revert r325687 workaround for PR36032 since
a fix was committed in r326154.
Reviewers: sbaranga
Differential Revision: http://reviews.llvm.org/D44768
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 328257
Summary:
It turned out to be error-prone to expect the callers to handle that - better to
leave the decision to this routine and make the required data to be explicitly
passed to the function.
This handles the case that was missed in the r322473 and fixes the assert
mentioned in PR36524.
Reviewers: dorit, mssimpso, Ayal, dcaballe
Reviewed By: dcaballe
Subscribers: Ka-Ka, hiraditya, dneilson, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D43812
llvm-svn: 327960
The range of SCEVUnknown Phi which merges values `X1, X2, ..., XN`
can be evaluated as `U(Range(X1), Range(X2), ..., Range(XN))`.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D43810
llvm-svn: 326418
This is a slight reduction of one of the benchmarks
that suffered with D43079. Cost model changes should
not cause this test to remain scalarized.
llvm-svn: 326221
All SIMD architectures can emulate masked load/store/gather/scatter
through element-wise condition check, scalar load/store, and
insert/extract. Therefore, bailing out of vectorization as legality
failure, when they return false, is incorrect. We should proceed to cost
model and determine profitability.
This patch is to address the vectorizer's architectural limitation
described above. As such, I tried to keep the cost model and
vectorize/don't-vectorize behavior nearly unchanged. Cost model tuning
should be done separately.
Please see
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120164.html for
RFC and the discussions.
Closes D43208.
Patch by: Hideki Saito <hideki.saito@intel.com>
llvm-svn: 326079
of turning SCEVUnknowns of PHIs into AddRecExprs.
This feature is now hidden behind the -scev-version-unknown flag.
Fixes PR36032 and PR35432.
llvm-svn: 325687
There are too many perf regressions resulting from this, so we need to
investigate (and add tests for) targets like ARM and AArch64 before
trying to reinstate.
llvm-svn: 325658
This change was mentioned at least as far back as:
https://bugs.llvm.org/show_bug.cgi?id=26837#c26
...and I found a real program that is harmed by this:
Himeno running on AMD Jaguar gets 6% slower with SLP vectorization:
https://bugs.llvm.org/show_bug.cgi?id=36280
...but the change here appears to solve that bug only accidentally.
The div/rem costs for x86 look very wrong in some cases, but that's already true,
so we can fix those in follow-up patches. There's also evidence that more cost model
changes are needed to solve SLP problems as shown in D42981, but that's an independent
problem (though the solution may be adjusted after this change is made).
Differential Revision: https://reviews.llvm.org/D43079
llvm-svn: 325515
Summary:
If -pass-remarks=loop-vectorize, atomic ops will be seen by
analyzeInterleaving(), even though canVectorizeMemory() == false. This
is because we are requesting extra analysis instead of bailing out.
In such a case, we end up with a Group in both Load- and StoreGroups,
and then we'll try to access freed memory when traversing LoadGroups after having had released the Group when iterating over StoreGroups.
The fix is to include mayWriteToMemory() when validating that two
instructions are the same kind of memory operation.
Reviewers: mssimpso, davidxl
Reviewed By: davidxl
Subscribers: hsaito, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D43064
llvm-svn: 324786
Summary:
Loops with inequality comparers, such as:
// unsigned bound
for (unsigned i = 1; i < bound; ++i) {...}
have getSmallConstantMaxTripCount report a large maximum static
trip count - in this case, 0xffff fffe. However, profiling info
may show that the trip count is much smaller, and thus
counter-recommend vectorization.
This change:
- flips loop-vectorize-with-block-frequency on by default.
- validates profiled loop frequency data supports vectorization,
when static info appears to not counter-recommend it. Absence
of profile data means we rely on static data, just as we've
done so far.
Reviewers: twoh, mkuper, davidxl, tejohnson, Ayal
Reviewed By: davidxl
Subscribers: bkramer, llvm-commits
Differential Revision: https://reviews.llvm.org/D42946
llvm-svn: 324543
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.
PR35734
Differential Revision: https://reviews.llvm.org/D42309
llvm-svn: 324195
This will cause the vectorizers to do some limiting of the vector widths they create. This is not a strict limit. There are reasons I know of that the loop vectorizer will generate larger vectors for.
I've written this in such a way that the interface will only return a properly supported width(0/128/256/512) even if the attribute says something funny like 384 or 10.
This has been split from D41895 with the remainder in a follow up commit.
llvm-svn: 323015
Summary:
This method is supposed to be called for IVs that have casts in their use-def
chains that are completely ignored after vectorization under PSE. However, for
truncates of such IVs the same InductionDescriptor is used during
creation/widening of both original IV based on PHINode and new IV based on
TruncInst.
This leads to unintended second call to recordVectorLoopValueForInductionCast
with a VectorLoopVal set to the newly created IV for a trunc and causes an
assert due to attempt to store new information for already existing entry in the
map. This is wrong and should not be done.
Fixes PR35773.
Reviewers: dorit, Ayal, mssimpso
Reviewed By: dorit
Subscribers: RKSimon, dim, dcaballe, hsaito, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41913
llvm-svn: 322473
canVectorize is only checking if the loop has a normalized pre-header if DoExtraAnalysis is true.
This doesn't make sense to me because reporting analysis information shouldn't alter legality
checks. This is probably the result of a last minute minor change before committing (?).
Patch by Diego Caballero.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D40973
llvm-svn: 321172
Changes to the original scalar loop during LV code gen cause the return value
of Legal->isConsecutivePtr() to be inconsistent with the return value during
legal/cost phases (further analysis and information of the bug is in D39346).
This patch is an alternative fix to PR34965 following the CM_Widen approach
proposed by Ayal and Gil in D39346. It extends InstWidening enum with
CM_Widen_Reverse to properly record the widening decision for consecutive
reverse memory accesses and, consequently, get rid of the
Legal->isConsetuviePtr() call in LV code gen. I think this is a simpler/cleaner
solution to PR34965 than the one in D39346.
Fixes PR34965.
Patch by Diego Caballero, thanks!
Differential Revision: https://reviews.llvm.org/D40742
llvm-svn: 320913
D30041 extended SCEVPredicateRewriter to improve handling of Phi nodes whose
update chain involves casts; PSCEV can now build an AddRecurrence for some
forms of such phi nodes, under the proper runtime overflow test. This means
that we can identify such phi nodes as an induction, and the loop-vectorizer
can now vectorize such inductions, however inefficiently. The vectorizer
doesn't know that it can ignore the casts, and so it vectorizes them.
This patch records the casts in the InductionDescriptor, so that they could
be marked to be ignored for cost calculation (we use VecValuesToIgnore for
that) and ignored for vectorization/widening/scalarization (i.e. treated as
TriviallyDead).
In addition to marking all these casts to be ignored, we also need to make
sure that each cast is mapped to the right vector value in the vector loop body
(be it a widened, vectorized, or scalarized induction). So whenever an
induction phi is mapped to a vector value (during vectorization/widening/
scalarization), we also map the respective cast instruction (if exists) to that
vector value. (If the phi-update sequence of an induction involves more than one
cast, then the above mapping to vector value is relevant only for the last cast
of the sequence as we allow only the "last cast" to be used outside the
induction update chain itself).
This is the last step in addressing PR30654.
llvm-svn: 320672
VecValuesToIgnore holds values that will not appear in the vectorized loop.
We should therefore ignore their cost when VF > 1.
Differential Revision: https://reviews.llvm.org/D40883
llvm-svn: 320463
CreateAddRecFromPHIWithCastsImpl() adds an IncrementNUSW overflow predicate
which allows the PSCEV rewriter to rewrite this scev expression:
(zext i8 {0, + , (trunc i32 step to i8)} to i32)
into
{0, +, (sext i8 (trunc i32 step to i8) to i32)}
But then it adds the wrong Equal predicate:
%step == (zext i8 (trunc i32 %step to i8) to i32).
instead of:
%step == (sext i8 (trunc i32 %step to i8) to i32)
This is fixed here.
Differential Revision: https://reviews.llvm.org/D40641
llvm-svn: 320298
As a new access is generated spanning across multiple fields, we need to
propagate alias info from all the fields to form the most generic alias info.
rdar://35602528
Differential Revision: https://reviews.llvm.org/D40617
llvm-svn: 319979
This patch adds a new abstraction layer to VPlan and leverages it to model the planned
instructions that manipulate masks (AND, OR, NOT), introduced during predication.
The new VPValue and VPUser classes model how data flows into, through and out
of a VPlan, forming the vertices of a planned Def-Use graph. The new
VPInstruction class is a generic single-instruction Recipe that models a
planned instruction along with its opcode, operands and users. See
VectorizationPlan.rst for more details.
Differential Revision: https://reviews.llvm.org/D38676
llvm-svn: 318645
This patch is part of D38676.
The patch introduces two new Recipes to handle instructions whose vectorization
involves masking. These Recipes take VPlan-level masks in D38676, but still rely
on ILV's existing createEdgeMask(), createBlockInMask() in this patch.
VPBlendRecipe handles intra-loop phi nodes, which are vectorized as a sequence
of SELECTs. Its execute() code is refactored out of ILV::widenPHIInstruction(),
which now handles only loop-header phi nodes.
VPWidenMemoryInstructionRecipe handles load/store which are to be widened
(but are not part of an Interleave Group). In this patch it simply calls
ILV::vectorizeMemoryInstruction on execute().
Differential Revision: https://reviews.llvm.org/D39068
llvm-svn: 318149
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
single-iteration loop
This fixes PR34681. Avoid adding the "Stride == 1" predicate when we know that
Stride >= Trip-Count. Such a predicate will effectively optimize a single
or zero iteration loop, as Trip-Count <= Stride == 1.
Differential Revision: https://reviews.llvm.org/D38785
llvm-svn: 317438
This is no-functional-change-intended.
This is repackaging the functionality of D30333 (defer switch-to-lookup-tables) and
D35411 (defer folding unconditional branches) with pass parameters rather than a named
"latesimplifycfg" pass. Now that we have individual options to control the functionality,
we could decouple when these fire (but that's an independent patch if desired).
The next planned step would be to add another option bit to disable the sinking transform
mentioned in D38566. This should also make it clear that the new pass manager needs to
be updated to limit simplifycfg in the same way as the old pass manager.
Differential Revision: https://reviews.llvm.org/D38631
llvm-svn: 316835
Summary: There are certain requirements for debug location of debug intrinsics, e.g. the scope of the DILocalVariable should be the same as the scope of its debug location. As a result, we should not add discriminator encoding for debug intrinsics.
Reviewers: dblaikie, aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, aprantl, bjope, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D39343
llvm-svn: 316703
When ignoring a load that participates in an interleaved group, make sure to
move a cast that needs to sink after it.
Testcase derived from reproducer of PR34743.
Differential Revision: https://reviews.llvm.org/D38338
llvm-svn: 314986
Instead of trying to keep LastWidenRecipe updated after creating each recipe,
have tryToWiden() retrieve the last recipe of the current VPBasicBlock and check
if it's a VPWidenRecipe when attempting to extend its range. This ensures that
such extensions, optimized to maintain the original instruction order, do so
only when the instructions are to maintain their relative order. The latter does
not always hold, e.g., when a cast needs to sink to unravel first order
recurrence (r306884).
Testcase derived from reproducer of PR34711.
Differential Revision: https://reviews.llvm.org/D38339
llvm-svn: 314981
When type shrinking reductions, we should insert the truncations and extends at
the end of the loop latch block. Previously, these instructions were inserted
at the end of the loop header block. The difference is only a problem for loops
with predicated instructions (e.g., conditional stores and instructions that
may divide by zero). For these instructions, we create new basic blocks inside
the vectorized loop, which cause the loop header and latch to no longer be the
same block. This should fix PR34687.
Reference: https://bugs.llvm.org/show_bug.cgi?id=34687
llvm-svn: 314542
The 1st attempt at this:
https://reviews.llvm.org/rL314117
was reverted at:
https://reviews.llvm.org/rL314118
because of bot fails for clang tests that were checking optimized IR. That should be fixed with:
https://reviews.llvm.org/rL314144
...so try again.
Original commit message:
The transform to convert an extract-of-a-select-of-vectors was added at:
https://reviews.llvm.org/rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314147
The transform to convert an extract-of-a-select-of-vectors was added at:
rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314117
This patch fixes pr34283, which exposed that the computation of
maximum legal width for vectorization was wrong, because it relied
on MaxInterleaveFactor to obtain the maximum stride used in the loop,
however not all strided accesses in the loop have an interleave-group
associated with them.
Instead of recording the maximum stride in the loop, which can be over
conservative (e.g. if the access with the maximum stride is not involved
in the dependence limitation), this patch tracks the actual maximum legal
width imposed by accesses that are involved in dependencies.
Differential Revision: https://reviews.llvm.org/D37507
llvm-svn: 313237
These are changes to reduce redundant computations when calculating a
feasible vectorization factor:
1. early return when target has no vector registers
2. don't compute register usage for the default VF.
Suggested during review for D37702.
llvm-svn: 313176
When converting a PHI into a series of 'select' instructions to combine the
incoming values together according their edge masks, initialize the first
value to the incoming value In0 of the first predecessor, instead of
generating a redundant assignment 'select(Cond[0], In0, In0)'. The latter
fails when the Cond[0] mask is null, representing a full mask, which can
happen only when there's a single incoming value.
No functional changes intended nor expected other than surviving null Cond[0]'s.
This fix follows D35725, which introduced using null to represent full masks.
Differential Revision: https://reviews.llvm.org/D37619
llvm-svn: 313119
Summary:
When the MaxVectorSize > ConstantTripCount, we should just clamp the
vectorization factor to be the ConstantTripCount.
This vectorizes loops where the TinyTripCountThreshold >= TripCount < MaxVF.
Earlier we were finding the maximum vector width, which could be greater than
the trip count itself. The Loop vectorizer does all the work for generating a
vectorizable loop, but in the end we would always choose the scalar loop (since
the VF > trip count). This allows us to choose the VF keeping in mind the trip
count if available.
This is a fix on top of rL312472.
Reviewers: Ayal, zvi, hfinkel, dneilson
Reviewed by: Ayal
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37702
llvm-svn: 313046
Summary:
Improve how MaxVF is computed while taking into account that MaxVF should not be larger than the loop's trip count.
Other than saving on compile-time by pruning the possible MaxVF candidates, this patch fixes pr34438 which exposed the following flow:
1. Short trip count identified -> Don't bail out, set OptForSize:=True to avoid tail-loop and runtime checks.
2. Compute MaxVF returned 16 on a target supporting AVX512.
3. OptForSize -> choose VF:=MaxVF.
4. Bail out because TripCount = 8, VF = 16, TripCount % VF !=0 means we need a tail loop.
With this patch step 2. will choose MaxVF=8 based on TripCount.
Reviewers: Ayal, dorit, mkuper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D37425
llvm-svn: 312472
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144
We were handling some vectors in foldSelectIntoOp, but not if the operand of the bin op was any kind of vector constant. This patch fixes it to treat vector splats the same as scalars.
Differential Revision: https://reviews.llvm.org/D37232
llvm-svn: 311940
Original commit r311077 of D32871 was reverted in r311304 due to failures
reported in PR34248.
This recommit fixes PR34248 by restricting the packing of predicated scalars
into vectors only when vectorizing, avoiding doing so when unrolling w/o
vectorizing. Added a test derived from the reproducer of PR34248.
llvm-svn: 311849
Store operation takes 2 UOps on X86 processors. The exact cost calculation affects several optimization passes including loop unroling.
This change compensates performance degradation caused by https://reviews.llvm.org/D34458 and shows improvements on some benchmarks.
Differential Revision: https://reviews.llvm.org/D35888
llvm-svn: 311285
Added a separate metadata to indicate when the loop
has already been vectorized instead of setting width and count to 1.
Patch written by Divya Shanmughan and Aditya Kumar
Differential Revision: https://reviews.llvm.org/D36220
llvm-svn: 311281
Summary:
The New Pass Manager infrastructure was forgetting to keep around the optimization remark yaml file that the compiler might have been producing. This meant setting the option to '-' for stdout worked, but setting it to a filename didn't give file output (presumably it was deleted because compilation didn't explicitly keep it). This change just ensures that the file is kept if compilation succeeds.
So far I have updated one of the optimization remark output tests to add a version with the new pass manager. It is my intention for this patch to also include changes to all tests that use `-opt-remark-output=` but I wanted to get the code patch ready for review while I was making all those changes.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33951
Reviewers: anemet, chandlerc
Reviewed By: anemet, chandlerc
Subscribers: javed.absar, chandlerc, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D36906
llvm-svn: 311271
VPlan is an ongoing effort to refactor and extend the Loop Vectorizer. This
patch introduces the VPlan model into LV and uses it to represent the vectorized
code and drive the generation of vectorized IR.
In this patch VPlan models the vectorized loop body: the vectorized control-flow
is represented using VPlan's Hierarchical CFG, with predication refactored from
being a post-vectorization-step into a vectorization planning step modeling
if-then VPRegionBlocks, and generating code inline with non-predicated code. The
vectorized code within each VPBasicBlock is represented as a sequence of
Recipes, each responsible for modelling and generating a sequence of IR
instructions. To keep the size of this commit manageable the Recipes in this
patch are coarse-grained and capture large chunks of LV's code-generation logic.
The constructed VPlans are dumped in dot format under -debug.
This commit retains current vectorizer output, except for minor instruction
reorderings; see associated modifications to lit tests.
For further details on the VPlan model see docs/Proposals/VectorizationPlan.rst
and its references.
Authors: Gil Rapaport and Ayal Zaks
Differential Revision: https://reviews.llvm.org/D32871
llvm-svn: 311077
Two minor savings: avoid copying the SinkAfter map and avoid moving a cast if it
is not needed.
Differential Revision: https://reviews.llvm.org/D36408
llvm-svn: 310910
Summary:
When vectorizing fcmps we can trip on incorrect cast assertion when setting the
FastMathFlags after generating the vectorized FCmp.
This can happen if the FCmp can be folded to true or false directly. The fix
here is to set the FastMathFlag using the FastMathFlagBuilder *before* creating
the FCmp Instruction. This is what's done by other optimizations such as
InstCombine.
Added a test case which trips on cast assertion without this patch.
Reviewers: Ayal, mssimpso, mkuper, gilr
Reviewed by: Ayal, mssimpso
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36244
llvm-svn: 310389
The Loop Vectorizer generates redundant operations when manipulating masks:
AND with true, OR with false, compare equal to true. Instead of relying on
a subsequent pass to clean them up, this patch avoids generating them.
Use null (no-mask) to represent all-one full masks, instead of a constant
all-one vector, following the convention of masked gathers and scatters.
Preparing for a follow-up VPlan patch in which these mask manipulating
operations are modeled using recipes.
Differential Revision: https://reviews.llvm.org/D35725
llvm-svn: 309558
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop unrolling and loop interleaving).
This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.
Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: efriedma
Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35411
llvm-svn: 308422
Generate a single test to decide if there are enough iterations to jump to the
vectorized loop, or else go to the scalar remainder loop. This test compares the
Scalar Trip Count: if STC < VF * UF go to the scalar loop. If
requiresScalarEpilogue() holds, at-least one iteration must remain scalar; the
rest can be used to form vector iterations. So in this case the test checks
instead if (STC - 1) < VF * UF by comparing STC <= VF * UF, and going to the
scalar loop if so. Otherwise the vector loop is entered for at-least one vector
iteration.
This test covers the case where incrementing the backedge-taken count will
overflow leading to an incorrect trip count of zero. In this (rare) case we will
also avoid the vector loop and jump to the scalar loop.
This patch simplifies the existing tests and effectively removes the basic-block
originally named "min.iters.checked", leaving the single test in block
"vector.ph".
Original observation and initial patch by Evgeny Stupachenko.
Differential Revision: https://reviews.llvm.org/D34150
llvm-svn: 308421
using runtime checks
Extend the SCEVPredicateRewriter to work a bit harder when it encounters an
UnknownSCEV for a Phi node; Try to build an AddRecurrence also for Phi nodes
whose update chain involves casts that can be ignored under the proper runtime
overflow test. This is one step towards addressing PR30654.
Differential revision: http://reviews.llvm.org/D30041
llvm-svn: 308299
I'm looking at a cmp transform in InstCombine that would affect these tests,
but it's hard to know if it makes things better or worse without seeing the
full IR. OTOH, maybe these tests shouldn't be running a bunch of transform
passes in the first place?
llvm-svn: 307475
this patch updates the cost of addq\subq (add\subtract of vectors of 64bits)
based on the performance numbers of SLM arch.
Differential Revision: https://reviews.llvm.org/D33983
llvm-svn: 306974
Summary:
vectorizer-maximize-bandwidth is generally useful in terms of performance. I've tested the impact of changing this to default on speccpu benchmarks on sandybridge machines. The result shows non-negative impact:
spec/2006/fp/C++/444.namd 26.84 -0.31%
spec/2006/fp/C++/447.dealII 46.19 +0.89%
spec/2006/fp/C++/450.soplex 42.92 -0.44%
spec/2006/fp/C++/453.povray 38.57 -2.25%
spec/2006/fp/C/433.milc 24.54 -0.76%
spec/2006/fp/C/470.lbm 41.08 +0.26%
spec/2006/fp/C/482.sphinx3 47.58 -0.99%
spec/2006/int/C++/471.omnetpp 22.06 +1.87%
spec/2006/int/C++/473.astar 22.65 -0.12%
spec/2006/int/C++/483.xalancbmk 33.69 +4.97%
spec/2006/int/C/400.perlbench 33.43 +1.70%
spec/2006/int/C/401.bzip2 23.02 -0.19%
spec/2006/int/C/403.gcc 32.57 -0.43%
spec/2006/int/C/429.mcf 40.35 +0.27%
spec/2006/int/C/445.gobmk 26.96 +0.06%
spec/2006/int/C/456.hmmer 24.4 +0.19%
spec/2006/int/C/458.sjeng 27.91 -0.08%
spec/2006/int/C/462.libquantum 57.47 -0.20%
spec/2006/int/C/464.h264ref 46.52 +1.35%
geometric mean +0.29%
The regression on 453.povray seems real, but is due to secondary effects as all hot functions are bit-identical with and without the flag.
I started this patch to consult upstream opinions on this. It will be greatly appreciated if the community can help test the performance impact of this change on other architectures so that we can decided if this should be target-dependent.
Reviewers: hfinkel, mkuper, davidxl, chandlerc
Reviewed By: chandlerc
Subscribers: rengolin, sanjoy, javed.absar, bjope, dorit, magabari, RKSimon, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33341
llvm-svn: 306933
Check if a single cast is preventing handling a first-order-recurrence Phi,
because the scheduling constraints it imposes on the first-order-recurrence
shuffle are infeasible; but they can be made feasible by moving the cast
downwards. Record such casts and move them when vectorizing the loop.
Differential Revision: https://reviews.llvm.org/D33058
llvm-svn: 306884
It may be detrimental to vectorize loops with very small trip count, as various
costs of the vectorized loop body as well as enclosing overheads including
runtime tests and scalar iterations may outweigh the gains of vectorizing. The
current cost model measures the cost of the vectorized loop body only, expecting
it will amortize other costs, and loops with known or expected very small trip
counts are not vectorized at all. This patch allows loops with very small trip
counts to be vectorized, but under OptForSize constraints, which ensure the cost
of the loop body is dominant, having no runtime guards nor scalar iterations.
Patch inspired by D32451.
Differential Revision: https://reviews.llvm.org/D34373
llvm-svn: 306803
r306381 caused PR33613, by reversing the order in which insertelements were
generated per unroll part. This patch fixes PR33613 by retraining this order,
placing each set of insertelements per part immediately after the last scalar
being packed for this part. Includes a test case derived from PR33613.
Reference: https://bugs.llvm.org/show_bug.cgi?id=33613
Differential Revision: https://reviews.llvm.org/D34760
llvm-svn: 306575
This canonicalization was suggested in D33172 as a way to make InstCombine behavior more uniform.
We have this transform for icmp+br, so unless there's some reason that icmp+select should be
treated differently, we should do the same thing here.
The benefit comes from increasing the chances of creating identical instructions. This is shown in
the tests in logical-select.ll (PR32791). InstCombine doesn't fold those directly, but EarlyCSE
can simplify the identical cmps, and then InstCombine can fold the selects together.
The possible regression for the tests in select.ll raises questions about poison/undef:
http://lists.llvm.org/pipermail/llvm-dev/2017-May/113261.html
...but that transform is just as likely to be triggered by this canonicalization as it is to be
missed, so we're just pointing out a commutation deficiency in the pattern matching:
https://reviews.llvm.org/rL228409
Differential Revision: https://reviews.llvm.org/D34242
llvm-svn: 306435
Summary:
vectorizer-maximize-bandwidth is generally useful in terms of performance. I've tested the impact of changing this to default on speccpu benchmarks on sandybridge machines. The result shows non-negative impact:
spec/2006/fp/C++/444.namd 26.84 -0.31%
spec/2006/fp/C++/447.dealII 46.19 +0.89%
spec/2006/fp/C++/450.soplex 42.92 -0.44%
spec/2006/fp/C++/453.povray 38.57 -2.25%
spec/2006/fp/C/433.milc 24.54 -0.76%
spec/2006/fp/C/470.lbm 41.08 +0.26%
spec/2006/fp/C/482.sphinx3 47.58 -0.99%
spec/2006/int/C++/471.omnetpp 22.06 +1.87%
spec/2006/int/C++/473.astar 22.65 -0.12%
spec/2006/int/C++/483.xalancbmk 33.69 +4.97%
spec/2006/int/C/400.perlbench 33.43 +1.70%
spec/2006/int/C/401.bzip2 23.02 -0.19%
spec/2006/int/C/403.gcc 32.57 -0.43%
spec/2006/int/C/429.mcf 40.35 +0.27%
spec/2006/int/C/445.gobmk 26.96 +0.06%
spec/2006/int/C/456.hmmer 24.4 +0.19%
spec/2006/int/C/458.sjeng 27.91 -0.08%
spec/2006/int/C/462.libquantum 57.47 -0.20%
spec/2006/int/C/464.h264ref 46.52 +1.35%
geometric mean +0.29%
The regression on 453.povray seems real, but is due to secondary effects as all hot functions are bit-identical with and without the flag.
I started this patch to consult upstream opinions on this. It will be greatly appreciated if the community can help test the performance impact of this change on other architectures so that we can decided if this should be target-dependent.
Reviewers: hfinkel, mkuper, davidxl, chandlerc
Reviewed By: chandlerc
Subscribers: rengolin, sanjoy, javed.absar, bjope, dorit, magabari, RKSimon, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33341
llvm-svn: 306336
Summary:
vectorizer-maximize-bandwidth is generally useful in terms of performance. I've tested the impact of changing this to default on speccpu benchmarks on sandybridge machines. The result shows non-negative impact:
spec/2006/fp/C++/444.namd 26.84 -0.31%
spec/2006/fp/C++/447.dealII 46.19 +0.89%
spec/2006/fp/C++/450.soplex 42.92 -0.44%
spec/2006/fp/C++/453.povray 38.57 -2.25%
spec/2006/fp/C/433.milc 24.54 -0.76%
spec/2006/fp/C/470.lbm 41.08 +0.26%
spec/2006/fp/C/482.sphinx3 47.58 -0.99%
spec/2006/int/C++/471.omnetpp 22.06 +1.87%
spec/2006/int/C++/473.astar 22.65 -0.12%
spec/2006/int/C++/483.xalancbmk 33.69 +4.97%
spec/2006/int/C/400.perlbench 33.43 +1.70%
spec/2006/int/C/401.bzip2 23.02 -0.19%
spec/2006/int/C/403.gcc 32.57 -0.43%
spec/2006/int/C/429.mcf 40.35 +0.27%
spec/2006/int/C/445.gobmk 26.96 +0.06%
spec/2006/int/C/456.hmmer 24.4 +0.19%
spec/2006/int/C/458.sjeng 27.91 -0.08%
spec/2006/int/C/462.libquantum 57.47 -0.20%
spec/2006/int/C/464.h264ref 46.52 +1.35%
geometric mean +0.29%
The regression on 453.povray seems real, but is due to secondary effects as all hot functions are bit-identical with and without the flag.
I started this patch to consult upstream opinions on this. It will be greatly appreciated if the community can help test the performance impact of this change on other architectures so that we can decided if this should be target-dependent.
Reviewers: hfinkel, mkuper, davidxl, chandlerc
Reviewed By: chandlerc
Subscribers: rengolin, sanjoy, javed.absar, bjope, dorit, magabari, RKSimon, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33341
llvm-svn: 305960
Summary:
Existing heuristic uses the ratio between the function entry
frequency and the loop invocation frequency to find cold loops. However,
even if the loop executes frequently, if it has a small trip count per
each invocation, vectorization is not beneficial. On the other hand,
even if the loop invocation frequency is much smaller than the function
invocation frequency, if the trip count is high it is still beneficial
to vectorize the loop.
This patch uses estimated trip count computed from the profile metadata
as a primary metric to determine coldness of the loop. If the estimated
trip count cannot be computed, it falls back to the original heuristics.
Reviewers: Ayal, mssimpso, mkuper, danielcdh, wmi, tejohnson
Reviewed By: tejohnson
Subscribers: tejohnson, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32451
llvm-svn: 305729
If we're shrinking a binary operation, it may be the case that the new
operations wraps where the old didn't. If this happens, the behavior
should be well-defined. So, we can't always carry wrapping flags with us
when we shrink operations.
If we do, we get incorrect optimizations in cases like:
void foo(const unsigned char *from, unsigned char *to, int n) {
for (int i = 0; i < n; i++)
to[i] = from[i] - 128;
}
which gets optimized to:
void foo(const unsigned char *from, unsigned char *to, int n) {
for (int i = 0; i < n; i++)
to[i] = from[i] | 128;
}
Because:
- InstCombine turned `sub i32 %from.i, 128` into
`add nuw nsw i32 %from.i, 128`.
- LoopVectorize vectorized the add to be `add nuw nsw <16 x i8>` with a
vector full of `i8 128`s
- InstCombine took advantage of the fact that the newly-shrunken add
"couldn't wrap", and changed the `add` to an `or`.
InstCombine seems happy to figure out whether we can add nuw/nsw on its
own, so I just decided to drop the flags. There are already a number of
places in LoopVectorize where we rely on InstCombine to clean up.
llvm-svn: 305053
r303763 caused build failures in some out-of-tree tests due to an assertion in
TTI. The original patch updated cost estimates for induction variable update
instructions marked for scalarization. However, it didn't consider that the
incoming value of an induction variable phi node could be a cast instruction.
This caused queries for cast instruction costs with a mix of vector and scalar
types. This patch includes a fix for cast instructions and the test case from
PR33193.
The fix was suggested by Jonas Paulsson <paulsson@linux.vnet.ibm.com>.
Reference: https://bugs.llvm.org/show_bug.cgi?id=33193
Original Differential Revision: https://reviews.llvm.org/D33457
llvm-svn: 304235
For non-uniform instructions marked for scalarization, we should update
`VectorTy` when computing instruction costs to reflect the scalar type. In
addition to determining instruction costs, this type is also used to signal
that all instructions in the loop will be scalarized. This currently affects
memory instructions and non-pointer induction variables and their updates. (We
also mark GEPs scalar after vectorization, but their cost is computed together
with memory instructions.) For scalarized induction updates, this patch also
scales the scalar cost by the vectorization factor, corresponding to each
induction step.
llvm-svn: 303763
The loop vectorizer usually vectorizes any instruction it can and then
extracts the elements for a scalarized use. On SystemZ, all elements
containing addresses must be extracted into address registers (GRs). Since
this extraction is not free, it is better to have the address in a suitable
register to begin with. By forcing address arithmetic instructions and loads
of addresses to be scalar after vectorization, two benefits result:
* No need to extract the register
* LSR optimizations trigger (LSR isn't handling vector addresses currently)
Benchmarking show improvements on SystemZ with this new behaviour.
Any other target could try this by returning false in the new hook
prefersVectorizedAddressing().
Review: Renato Golin, Elena Demikhovsky, Ulrich Weigand
https://reviews.llvm.org/D32422
llvm-svn: 303744
The default behavior of -Rpass-analysis=loop-vectorizer is to report only the
first reason encountered for not vectorizing, if one is found, at which time the
vectorizer aborts its handling of the loop. This patch allows multiple reasons
for not vectorizing to be identified and reported, at the potential expense of
additional compile-time, under allowExtraAnalysis which can currently be turned
on by Clang's -fsave-optimization-record and opt's -pass-remarks-missed.
Removed from LoopVectorizationLegality::canVectorize() the redundant checking
and reporting if we CantComputeNumberOfIterations, as LAI::canAnalyzeLoop() also
does that. This redundancy is caught by a lit test once multiple reasons are
reported.
Patch initially developed by Dror Barak.
Differential Revision: https://reviews.llvm.org/D33396
llvm-svn: 303613
This caused PR33053.
Original commit message:
> The new experimental reduction intrinsics can now be used, so I'm enabling this
> for AArch64. We will need this for SVE anyway, so it makes sense to do this for
> NEON reductions as well.
>
> The existing code to match shufflevector patterns are replaced with a direct
> lowering of the reductions to AArch64-specific nodes. Tests updated with the
> new, simpler, representation.
>
> Differential Revision: https://reviews.llvm.org/D32247
llvm-svn: 303115
The new experimental reduction intrinsics can now be used, so I'm enabling this
for AArch64. We will need this for SVE anyway, so it makes sense to do this for
NEON reductions as well.
The existing code to match shufflevector patterns are replaced with a direct
lowering of the reductions to AArch64-specific nodes. Tests updated with the
new, simpler, representation.
Differential Revision: https://reviews.llvm.org/D32247
llvm-svn: 302678
Summary:
In first order recurrence vectorization, when the previous value is a phi node, we need to
set the insertion point to the first non-phi node.
We can have the previous value being a phi node, due to the generation of new
IVs as part of trunc optimization [1].
[1] https://reviews.llvm.org/rL294967
Reviewers: mssimpso, mkuper
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32969
llvm-svn: 302532
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018