While this work is still fairly tentative (destructors are still left out of
the CFG by default), we now handle destructors in the same way as any other
calls, instead of just automatically trying to inline them.
llvm-svn: 160020
These are currently unused, but are intended to be used in lieu of PreStmt
and PostStmt when the call is implicit (e.g. an automatic object destructor).
This also modifies the Data1 field of ProgramPoints to allow storing any
pointer-sized value, as opposed to only aligned pointers. This is necessary
to store SourceLocations.
There is currently no BugReporter support for these; they should be skipped
over in any diagnostic output.
This commit also tags checkers that currently rely on function calls only
occurring at StmtPoints.
llvm-svn: 160019
very simple semantic analysis that just builds the AST; minor changes for lexer
to pick up source locations I didn't think about before.
Comments AST is modelled along the ideas of HTML AST: block and inline content.
* Block content is a paragraph or a command that has a paragraph as an argument
or verbatim command.
* Inline content is placed within some block. Inline content includes plain
text, inline commands and HTML as tag soup.
llvm-svn: 159790
Our current inlining support (specifically RegionStore::enterStackFrame)
doesn't know that calls to overloaded operators may be calls to non-static
member functions, and that in these cases the first argument should be
treated as 'this'. This caused incorrect results and sometimes crashes.
The long-term fix will be to rewrite RegionStore::enterStackFrame to use
CallEvent and its subclasses, but for now we can just disable these
problematic calls by classifying them under a new CallEvent,
CXXMemberOperatorCall.
llvm-svn: 159692
The preObjCMessage and postObjCMessage callbacks now take an ObjCMethodCall
argument, which can represent an explicit message send (ObjCMessageSend) or an
implicit message generated by a property access (ObjCPropertyAccess).
llvm-svn: 159559
Previously, the CallEvent subclass ObjCMessageInvocation was just a wrapper
around the existing ObjCMessage abstraction (over message sends and property
accesses). Now, we have abstract CallEvent ObjCMethodCall with subclasses
ObjCMessageSend and ObjCPropertyAccess.
In addition to removing yet another wrapper object, this should make it easy
to add a ObjCSubscriptAccess call event soon.
llvm-svn: 159558
This involved refactoring some common pointer-escapes code onto CallEvent,
then having MallocChecker use those callbacks for whether or not to consider
a pointer's /ownership/ as escaping. This still needs to be pinned down, and
probably we want to make the new argumentsMayEscape() function a little more
discerning (content invalidation vs. ownership/metadata invalidation), but
this is a good improvement.
As a bonus, also remove CallOrObjCMessage from the source completely.
llvm-svn: 159557
Both of these got uglier rather than cleaner because we don't have preCall and
postCall yet; properly wrapping a CallExpr in a CallEvent requires doing a bit
of deconstruction on the callee. Even when we have preCall and postCall we may
want to expose the current CallEvent to pre/postStmt<CallExpr>.
llvm-svn: 159556
This ended allowing quite a bit of cleanup, and some minor changes.
- CallEvent makes it easy to use hasNonZeroCallbackArg more aggressively, which
we check in order to avoid false positives with callbacks that might release
the object.
- In order to support this for functions which consume their arguments, there
are two new ArgEffects: DecRefAndStopTracking and DecRefMsgAndStopTracking.
These act just like StopTracking, except that if the object only had a
return count of +1 it's now considered released instead (so we still get
use-after-free messages).
- On the plus side, we no longer have to special-case
+[NSObject performSelector:withObject:afterDelay:] and friends.
- The use of IdentifierInfos in the method summary cache is now hidden; only
the ObjCInterfaceDecl gets passed around most of the time.
- Since we cache all "simple" summaries and check every function call, there is
no real benefit to having NULL stand in for default summaries anymore.
- Whitespace, unused methods, etc.
Even more simplification to come when we get check::postCall and can unify all
these other post* checks.
llvm-svn: 159555
This is intended to replace CallOrObjCMessage, and is eventually intended to be
used for anything that cares more about /what/ is being called than /how/ it's
being called. For example, inlining destructors should be the same as inlining
blocks, and checking __attribute__((nonnull)) should apply to the allocator
calls generated by operator new.
llvm-svn: 159554
The solution is a bit inefficient: it creates N checkers, one for each check, and
each check does a dispatch on the function name. This is redundant, but we can fix
this once we have the proper ability to enable/disable subchecks.
Fixes <rdar://problem/11780180>.
llvm-svn: 159459
Previously:
...the comment said DFS...
...the WorkList being instantiated said BFS...
...and the implementation was actually DFS...
...due to an unintentional change in 2010...
...and everything kept working anyway.
This fixes our std::deque implementation of BFS, but switches back to a
SmallVector-based implementation of DFS.
We should probably still investigate the ramifications of DFS vs. BFS,
especially for large functions (and especially when we hit our block path
limit), since this might completely change our memory use. It can also mask
some bugs and reveal others depending on when we halt analysis. But at least
we will not have this kind of little mistake creep in again.
llvm-svn: 159397
The implicit global allocation functions do not have valid source locations,
but we still want to treat them as being "system header" functions for the
purposes of how they affect program state.
llvm-svn: 159160
express library-level dependencies within Clang.
This is no more verbose really, and plays nicer with the rest of the
CMake facilities. It should also have no change in functionality.
llvm-svn: 158888
This commits sets the grounds for more aggressive use after free
checking. We will use the Relinquished sate to denote that someone
else is now responsible for releasing the memory.
llvm-svn: 158850
Specifically, although the bitmap context does not take ownership of the
buffer (unlike CGBitmapContextCreateWithData), the data buffer can be extracted
out of the created CGContextRef. Thus the buffer is not leaked even if its
original pointer goes out of scope, as long as
- the context escapes, or
- it is retrieved via CGBitmapContextGetData and freed.
Actually implementing that logic is beyond the current scope of MallocChecker,
so for now CGBitmapContextCreate goes on our system function exception list.
llvm-svn: 158579
We already didn't track objects that have delegates or callbacks or
objects that are passed through void * "context pointers". It's a
not-uncommon pattern to release the object in its callback, and so
the leak message we give is not very helpful.
llvm-svn: 158532
* Add \brief to produce a summary in the Doxygen output;
* Add missing parameter names to \param commands;
* Fix mismatched parameter names for \param commands;
* Add a parameter name so that the \param has a target.
llvm-svn: 158503
While collections containing nil elements can still be iterated over in an
Objective-C for-in loop, the most common Cocoa collections -- NSArray,
NSDictionary, and NSSet -- cannot contain nil elements. This checker adds
that assumption to the analyzer state.
This was the cause of some minor false positives concerning CFRelease calls
on objects in an NSArray.
llvm-svn: 158319
This has a small hit in the case where only one class is interesting
(NilArgChecker) but is a big improvement when looking for one of several
interesting classes (VariadicMethodTypeChecker), in which the most common
case is that there is no match.
llvm-svn: 158318
to addition.
We should not to warn in case the malloc size argument is an
addition containing 'sizeof' operator - it is common to use the pattern
to pack values of different sizes into a buffer.
Ex:
uint8_t *buffer = (uint8_t*)malloc(dataSize + sizeof(length));
llvm-svn: 158219
Add a concept of symbolic memory region belonging to heap memory space.
When comparing symbolic regions allocated on the heap, assume that they
do not alias.
Use symbolic heap region to suppress a common false positive pattern in
the malloc checker, in code that relies on malloc not returning the
memory aliased to other malloc allocations, stack.
llvm-svn: 158136
In addition, I've made the pointer and reference typedef 'void' rather than T*
just so they can't get misused. I would've omitted them entirely but
std::distance likes them to be there even if it doesn't use them.
This rolls back r155808 and r155869.
Review by Doug Gregor incorporating feedback from Chandler Carruth.
llvm-svn: 158104
improved the pruning heuristics. The current heuristics are pretty good, but they make diagnostics
for uninitialized variables warnings particularly useless in some cases.
llvm-svn: 157734
The new debug.ExprInspection checker looks for calls to clang_analyzer_eval,
and emits a warning of TRUE, FALSE, or UNKNOWN (or UNDEFINED) based on the
constrained value of its (boolean) argument. It does not modify the analysis
state though the conditions tested can result in branches (e.g. through the
use of short-circuit operators).
llvm-svn: 156919
We check the address of the last element accessed, but with 0 calculating that
address results in element -1. This patch bails out early (and avoids a bunch
of other work at that).
Fixes PR12807.
llvm-svn: 156769
We report a leak at a point a leaked variable is no longer accessible.
The statement that happens to be at that point is not relevant to the
leak diagnostic and, thus, should not be highlighted.
radar://11178519
llvm-svn: 156530
don't reason about.
Self is just like a local variable in init methods, so it can be
assigned anything like result of static functions, other methods ... So
to suppress false positives that result in such cases, stop tracking the
checker-specific state after self is being assigned to (unless the
value is't being assigned to is either self or conforms to our rules).
This change does not invalidate any existing regression tests.
llvm-svn: 156420
specifically checks for equality to null.
Enforcing this general practice, which keeps the analyzer less
noisy, in the CString Checker. This change suppresses "Assigned value is
garbage or undefined" warning in the added test case.
llvm-svn: 156085
filter_decl_iterator had a weird mismatch where both op* and op-> returned T*
making it difficult to generalize this filtering behavior into a reusable
library of any kind.
This change errs on the side of value, making op-> return T* and op* return
T&.
(reviewed by Richard Smith)
llvm-svn: 155808
(Applied changes to CStringAPI, Malloc, and Taint.)
This might almost never happen, but we should not crash even if it does.
This fixes a crash on the internal analyzer buildbot, where postgresql's
configure was redefining memmove (radar://11219852).
llvm-svn: 154451
we use the same Expr* as the one being currently visited. This is preparation for transitioning to having
ProgramPoints refer to CFGStmts.
This required a bit of trickery. We wish to keep the old Expr* bindings in the Environment intact,
as plenty of logic relies on it and there is no reason to change it, but we sometimes want the Stmt* for
the ProgramPoint to be different than the Expr* being used for bindings. This requires adding an extra
argument for some functions (e.g., evalLocation). This looks a bit strange for some clients, but
it will look a lot cleaner when were start using CFGStmt* in the appropriate places.
As some fallout, the diagnostics arrows are a bit difference, since some of the node locations have changed.
I have audited these, and they look reasonable.
llvm-svn: 154214
consolidate some commonly used category strings into global references (more of this can be done, I just did a few).
Fixes <rdar://problem/11191537>.
llvm-svn: 154121
Fixes a false positive (radar://11152419). The current solution of
adding the info into 3 places is quite ugly. Pending a generic pointer
escapes callback.
llvm-svn: 153731
Report root function name with exhausted block diagnostic.
Also, use stack frames, not just any location context when checking if
the basic block is in the same context.
llvm-svn: 153532
assigned to a struct. This is fallout from inlining results, which expose
far more patterns where people stuff CF objects into structs and pass them
around (and we can reason about it). The problem is that we don't have
a general way to detect when values have escaped, so as an intermediate step
we need to eagerly prune out such tracking.
Fixes <rdar://problem/11104566>.
llvm-svn: 153489
This required adding a change count token to BugReport, but also allowed us to ditch ImmutableList as the BugReporterVisitor data type.
Also, remove the hack from MallocChecker, now that visitors appear in the opposite order. This is not exactly a fix, but the common case -- custom diagnostics after generic ones -- is now the default behavior.
llvm-svn: 153369
Specifically, we use the last store of the leaked symbol in the leak diagnostic.
(No support for struct fields since the malloc checker doesn't track those
yet.)
+ Infrastructure to track the regions used in store evaluations.
This approach is more precise than iterating the store to
obtain the region bound to the symbol, which is used in RetainCount
checker. The region corresponds to what is uttered in the code in the
last store and we do not rely on the store implementation to support
this functionality.
llvm-svn: 153212
This is accomplished by calling markInteresting /during/ path diagnostic generation, and as such relies on deterministic ordering of BugReporterVisitors -- namely, that BugReporterVisitors are run in /reverse/ order from how they are added. (Right now that's a consequence of storing visitors in an ImmutableList, where new items are added to the front.) It's a little hacky, but it works for now.
I think this is the best we can do without storing the relation between the old and new symbols, and that would be a hit whether or not there ends up being an error.
llvm-svn: 153010
I tried to test the effects of this change on memory usage and run time, but what I saw on retain-release.m was indistinguishable from noise (debug and release builds). Even so, some caveman profiling showed 101 cache hits that we would have generated new summaries for before (i.e. not default or stop summaries), and the more code we analyze, the more memory we should save.
Maybe we should have a standard project for benchmarking the retain count checker's memory and time?
llvm-svn: 153007
The cocoa::deriveNamingConventions helper is just using method families anyway now, and the way RetainSummaryTemplate works means we're allocating an extra summary for every method with a relevant family.
Also, fix RetainSummaryTemplate to do the right thing w/r/t annotating an /existing/ summary. This was probably the real cause of <rdar://problem/10824732> and the fix in r152448.
llvm-svn: 152998
The symbol-aware stack hint combines the checker-provided message
with the information about how the symbol was passed to the callee: as
a parameter or a return value.
For malloc, the generated messages look like this :
"Returning from 'foo'; released memory via 1st parameter"
"Returning from 'foo'; allocated memory via 1st parameter"
"Returning from 'foo'; allocated memory returned"
"Returning from 'foo'; reallocation of 1st parameter failed"
(We are yet to handle cases when the symbol is a field in a struct or
an array element.)
llvm-svn: 152962
BugVisitor DiagnosticPieces.
When checkers create a DiagnosticPieceEvent, they can supply an extra
string, which will be concatenated with the call exit message for every
call on the stack between the diagnostic event and the final bug report.
(This is a simple version, which could be/will be further enhanced.)
For example, this is used in Malloc checker to produce the ",
which allocated memory" in the following example:
static char *malloc_wrapper() { // 2. Entered call from 'use'
return malloc(12); // 3. Memory is allocated
}
void use() {
char *v;
v = malloc_wrapper(); // 1. Calling 'malloc_wrappers'
// 4. Returning from 'malloc_wrapper', which allocated memory
} // 5. Memory is never released; potential
memory leak
llvm-svn: 152837
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491