This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
llvm-svn: 148686
We have patterns for vector sext and zext operations but were missing
anyext. Without those patterns, codegen will fail when the selection DAG
has any_extend nodes.
llvm-svn: 148568
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
llvm-svn: 148556
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
llvm-svn: 148444
Load/store instructions w/ a fixup to be relative a function marked as thumb
don't use the low bit to specify thumb vs. non-thumb like interworking
branches do, so don't set it when dealing with those fixups.
rdar://10348687.
llvm-svn: 148366
When set, this bit indicates that a register is completely defined by
the value of its sub-registers.
Use the CoveredBySubRegs property to infer which super-registers are
call-preserved given a list of callee-saved registers. For example, the
ARM registers D8-D15 are callee-saved. This now automatically implies
that Q4-Q7 are call-preserved.
Conversely, Win64 callees save XMM6-XMM15, but the corresponding
YMM6-YMM15 registers are not call-preserved because they are not fully
defined by their sub-registers.
llvm-svn: 148363
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
llvm-svn: 148262
live across BBs before register allocation. This miscompiled 197.parser
when a cmp + b are optimized to a cbnz instruction even though the CPSR def
is live-in a successor.
cbnz r6, LBB89_12
...
LBB89_12:
ble LBB89_1
The fix consists of two parts. 1) Teach LiveVariables that some unallocatable
registers might be liveouts so don't mark their last use as kill if they are.
2) ARM constantpool island pass shouldn't form cbz / cbnz if the conditional
branch does not kill CPSR.
rdar://10676853
llvm-svn: 148168
The QQ and QQQQ registers are not 'real', they are pseudo-registers used
to model some vld and vst instructions.
This makes the call clobber lists longer, but I intend to get rid of
those soon.
llvm-svn: 148151
Allow LDRD to be formed from pairs with different LDR encodings. This was the original intention of the pass. Somewhere along the way, the LDR opcodes were refined which broke the optimization. We really don't care what the original opcodes are as long as they both map to the same LDRD and the immediate still fits.
Fixes rdar://10435045 ARMLoadStoreOptimization cannot handle mixed LDRi8/LDRi12
llvm-svn: 147922
This function runs after all constant islands have been placed, and may
shrink some instructions to their 2-byte forms. This can actually cause
some constant pool entries to move out of range because of growing
alignment padding.
Treat instructions that may be shrunk the same as inline asm - they
erode the known alignment bits.
Also reinstate an old assertion in verify(). It is correct now that
basic block offsets include alignments.
Add a single large test case that will hopefully exercise many parts of
the constant island pass.
<rdar://problem/10670199>
llvm-svn: 147885
On Thumb, the displacement computation hardware uses the address of the
current instruction rouned down to a multiple of 4. Include this
rounding in the UserOffset we compute for each instruction.
When inline asm is present, the instruction alignment may not be known.
Constrain the maximum displacement instead in that case.
This makes it possible for CreateNewWater() and OffsetIsInRange() to
agree about the valid displacements. When they disagree, infinite
looping happens.
As always, test cases for this stuff are insane.
<rdar://problem/10660175>
llvm-svn: 147825
This eliminates a lot of constant pool entries for -O0 builds of code
with many global variable accesses.
This speeds up -O0 codegen of consumer-typeset by 2x because the
constant island pass no longer has to look at thousands of constant pool
entries.
<rdar://problem/10629774>
llvm-svn: 147712
Now that canRealignStack() understands frozen reserved registers, it is
safe to use it for aligned spill instructions.
It will only return true if the registers reserved at the beginning of
register allocation allow for dynamic stack realignment.
<rdar://problem/10625436>
llvm-svn: 147579
Once register allocation has started the reserved registers are frozen.
Fix the ARM canRealignStack() hook to respect the frozen register state.
Now the hook returns false if register allocation was started with frame
pointer elimination enabled.
It also returns false if register allocation started without a reserved
base pointer, and stack realignment would require a base pointer. This
bug was breaking oggenc on armv6.
No test case, an upcoming patch will use this functionality to realign
the stack for spill slots when possible.
llvm-svn: 147578
This patch caused a miscompilation of oggenc because a frame pointer was
suddenly needed halfway through register allocation.
<rdar://problem/10625436>
llvm-svn: 147487
If anybody has strong feelings about 'default: assert(0 && "blah")' vs
'default: llvm_unreachable("blah")', feel free to regularize the instances of
each in this file.
llvm-svn: 147459
ARM targets with NEON units have access to aligned vector loads and
stores that are potentially faster than unaligned operations.
Add support for spilling the callee-saved NEON registers to an aligned
stack area using 16-byte aligned NEON loads and store.
This feature is off by default, controlled by an -align-neon-spills
command line option.
llvm-svn: 147211
My change r146949 added register clobbers to the eh_sjlj_dispatchsetup pseudo
instruction, but on Thumb1 some of those registers cannot be used. This
caused massive failures on the testsuite when compiling for Thumb1. While
fixing that, I noticed that the eh_sjlj_setjmp instruction has a "nofp"
variant, and I realized that dispatchsetup needs the same thing, so I have
added that as well.
llvm-svn: 147204
The value from the operands isn't right yet, but we weren't encoding it at
all previously. The parser needs to twiddle the values when building the
instruction.
Partial for: rdar://10558523
llvm-svn: 147170
Rather than require the symbol to be explicitly an argument of the directive,
allow it to look ahead and grab the symbol from the next non-whitespace
line.
rdar://10611140
llvm-svn: 147100
Use the spill slot alignment as well as the local variable alignment to
determine when the stack needs to be realigned. This works now that the
ARM target can always realign the stack by using a base pointer.
Still respect the ARMBaseRegisterInfo::canRealignStack() function
vetoing a realigned stack. Don't use aligned spill code in that case.
llvm-svn: 146997
We used to rely on the *eh_sjlj_setjmp instructions to mark that a function
with setjmp/longjmp exception handling clobbers all the registers. But with
the recent reorganization of ARM EH, those eh_sjlj_setjmp instructions are
expanded away earlier, before PEI can see them to determine what registers to
save and restore. Mark the dispatchsetup instruction in the same way, since
that instruction cannot be expanded early. This also more accurately reflects
when the registers are clobbered.
llvm-svn: 146949
"mov r1, r2, lsl #0" should assemble as "mov r1, r2" even though it's
not strictly legal UAL syntax. It's a common extension and the friendly
thing to do.
rdar://10604663
llvm-svn: 146937
Use information computed while inferring new register classes to emit
accurate, table-driven implementations of getMatchingSuperRegClass().
Delete the old manual, error-prone implementations in the targets.
llvm-svn: 146873
This adjustment is already included in the block offsets computed by
BasicBlockInfo, and adjusting again here can cause the pass to loop.
When CreateNewWater splits a basic block, OffsetIsInRange would reject
the new CPE on the next pass because of the too conservative alignment
adjustment. This caused the block to be split again, and so on.
llvm-svn: 146751
The command line option should be removed, but not until the feature has
gotten a lot of testing. The ARMConstantIslandPass tends to have subtle
bugs that only show up after a while.
llvm-svn: 146739
An aligned constant pool entry may require extra alignment padding where
the new water is created. Take that into account when computing offset.
Also consider the alignment of other constant pool entries when
splitting a basic block. Alignment padding may make it necessary to
move the split point higher.
llvm-svn: 146609
r0 = mov #0
r0 = moveq #1
Then the second instruction has an implicit data dependency on the first
instruction. Sadly I have yet to come up with a small test case that
demonstrate the post-ra scheduler taking advantage of this.
llvm-svn: 146583
Work in progress. Parsing for non-writeback, single spaced register lists
works now. The rest have the representations better factored, but still
need more to be able to parse properly.
llvm-svn: 146579
When 'cmp rn #imm' doesn't match due to the immediate not being representable,
but 'cmn rn, #-imm' does match, use the latter in place of the former, as
it's equivalent.
rdar://10552389
llvm-svn: 146567
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
prevent IT blocks from being broken apart.
llvm-svn: 146542
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
llvm-svn: 146466
Constant pool entries with different alignment may cause more alignment
padding to be inserted. Compute the amount of padding needed, and try to
pick the location that requires the least amount of padding.
Also take the extra padding into account when the water is above the
use.
llvm-svn: 146458
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
llvm-svn: 146436
These modifiers simply select either the low or high D subregister of a Neon
Q register. I've also removed the unimplemented 'p' modifier, which turns out
to be a bit different than the comment here suggests and as far as I can tell
was only intended for internal use in Apple's version of gcc.
llvm-svn: 146417
Downgrade the alignment of the initial constant island when constant
pool entries are moved elsewhere.
This is all gated by -arm-align-constant-islands.
llvm-svn: 146391
Order constant pool entries by descending alignment in the initial
island to ensure packing and correct alignment. When the command line
flag is set, also align the basic block containing the constant pool
entries.
This is only a partial implementation of constant island alignment. More
to come.
llvm-svn: 146375
The split point is picked such that the newly created water has the same
alignment as the function. This makes the island suitable for constant
pool entries with potentially higher alignment.
This also fixes an issue where the basic block was split one instruction
too late, causing nonconvergence of the algorithm.
<rdar://problem/10550705>
There is still an issue with correctly packing differently aligned
entries in the island.
llvm-svn: 146314
Backwards compatibility with 'gas'. #imm is the preferered and documented
syntax, but lots of existing code uses the '$' prefix, so we should
support it if we can.
llvm-svn: 146285
When the immediate operand of an AND or BIC instruction isn't representable
in the immediate field of the instruction, but the bitwise negation of the
immediate is, assemble the instruction as the inverse operation instead
with the inverted immediate as the operand.
rdar://10550057
llvm-svn: 146283
Refactor the instructions into fixed writeback and register-stride
writeback variants to simplify the offset operand (no more optional
register operand using reg0). This is a simpler representation and allows
the assembly parser to more easily handle these instructions.
Add tests for the instruction variants now supported.
llvm-svn: 146278
It is not used any more. We are tracking inline assembly misalignments
directly through the BBInfo.Unalign and KnownBits fields.
A simple conservative size estimate is not good enough since it can
cause alignment padding to be underestimated.
llvm-svn: 146124
Compute alignment padding before and after basic blocks dynamically.
Heed basic block alignment.
This simplifies bookkeeping because we don't have to constantly add and
remove padding from BBInfo.Size. It also makes it possible to track the
extra known alignment bits we get after a tBR_JTr terminator and when
entering an aligned basic block.
This makes the ARMConstantIslandPass aware of aligned basic blocks.
It is tricky to model block alignment correctly when dealing with inline
assembly and tBR_JTr instructions that have variable size. If inline
assembly turns out to be smaller than expected, that may cause following
alignment padding to be larger than expected. This could cause constant
pool entries to move out of range.
To avoid that problem, we use the worst case alignment padding following
inline assembly. This may cause slightly suboptimal constant island
placement in aligned basic blocks following inline assembly. Normal
functions should be unaffected.
llvm-svn: 146118
When the file isn't being built with subsections-via-symbols, symbol
differences involving non-local symbols can be resolved more aggressively.
Needed for gas compatibility.
llvm-svn: 146054
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
The block offset can be computed from the previous block. That is more
robust than keeping track of a delta.
Eliminate one redundant AdjustBBOffsetsAfter call.
llvm-svn: 146018
1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
llvm-svn: 145975
This pseudo-instruction contains a .align directive in its expansion, so
the total size may vary by 2 bytes.
It is too difficult to accurately keep track of this alignment
directive, just use the worst-case size instead.
llvm-svn: 145971
ARMConstantIslandPass may sometimes leave empty constant islands behind
(it really shouldn't). Remove the alignment from the empty islands so
the size calculations are still correct.
This should fix the many Thumb1 assembler errors in the nightly test
suite.
The reduced test case for this problem is way too big. That is to be
expected for ARMConstantIslandPass bugs.
<rdar://problem/10534709>
llvm-svn: 145970
Previously, all ARM::CONSTPOOL_ENTRY instructions had a hardwired
alignment of 4 bytes emitted by ARMAsmPrinter. Now the same alignment
is set on the basic block.
This is in preparation of supporting ARM constant pool islands with
different alignments.
llvm-svn: 145890
Whether a fixup needs relaxation for the associated instruction is a
target-specific function, as the FIXME indicated. Create a hook for that
and use it.
llvm-svn: 145881
Not right yet, as the rules for when to relax in the MCAssembler aren't
(yet) correct for ARM. This is a step in the proper direction, though.
llvm-svn: 145871
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
argument value type. Otherwise, the sign/zero-extend has no effect on arguments
passed via the stack (i.e., undefined high-order bits).
rdar://10515467
llvm-svn: 145701
We don't (yet) have the granularity in the fixups to be specific about which
bitranges are affected. That's a future cleanup, but we're not there yet.
llvm-svn: 144852
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
The EmitBasePointerRecalculation function has 2 problems, one minor and one
fatal. The minor problem is that it inserts the code at the setjmp
instead of in the dispatch block. The fatal problem is that at the point
where this code runs, we don't know whether there will be a base pointer,
so the entire function is a no-op. The base pointer recalculation needs to
be handled as it was before, by inserting a pseudo instruction that gets
expanded late.
Most of the support for the old approach is still here, but it no longer
has any connection to the eh_sjlj_dispatchsetup intrinsic. Clean up the
parts related to the intrinsic and just generate the pseudo instruction
directly.
llvm-svn: 144781
This will widen 32-bit register vmov instructions to 64-bit when
possible. The 64-bit vmovd instructions can then be translated to NEON
vorr instructions by the execution dependency fix pass.
The copies are only widened if they are marked as clobbering the whole
D-register.
llvm-svn: 144734
For example,
vld1.f64 {d2-d5}, [r2,:128]!
Should be equivalent to:
vld1.f64 {d2,d3,d4,d5}, [r2,:128]!
It's not documented syntax in the ARM ARM, but it is consistent with what's
accepted for VLDM/VSTM and is unambiguous in meaning, so it's a good thing to
support.
rdar://10451128
llvm-svn: 144727
When the 3rd operand is not a low-register, and the first two operands are
the same low register, the parser was incorrectly trying to use the 16-bit
instruction encoding.
rdar://10449281
llvm-svn: 144679
violating a dependency is to emit all loads prior to stores. This would likely
cause a great deal of spillage offsetting any potential gains.
llvm-svn: 144585
SimplifyAddress to handle either a 12-bit unsigned offset or the ARM +/-imm8
offsets (addressing mode 3). This enables a load followed by an integer
extend to be folded into a single load.
For example:
ldrb r1, [r0] ldrb r1, [r0]
uxtb r2, r1 =>
mov r3, r2 mov r3, r1
llvm-svn: 144488
It's ignored by the assembler when present, but is legal syntax. Other
instructions have something similar, but for some mnemonics it's
only sometimes not significant, so this quick check in the parser will
need refactored into something more robust soon-ish. This gets some
basics working in the meantime.
Partial for rdar://10435264
llvm-svn: 144422
Get the source register that isn't tied to the destination register correct,
even when the assembly source operand order is backwards.
rdar://10428630
llvm-svn: 144322
Use the getIdentifier() method of the token, not getString(), otherwise
we keep the quotes as part of the symbol name, which we don't want.
rdar://10428015
llvm-svn: 144315
handle defining the "magic" target related components (like native,
nativecodegen, and engine).
- We still require these components to be in the project (currently in
lib/Target) so that we have a place to document them and hopefully make it
more obvious that they are "magic".
llvm-svn: 144253
Add support for trimming constants to GetDemandedBits. This fixes some funky
constant generation that occurs when stores are expanded for targets that don't
support unaligned stores natively.
llvm-svn: 144102
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
callee's responsibility to sign or zero-extend the return value. The additional
test case just checks to make sure the calls are selected (i.e., -fast-isel-abort
doesn't assert).
llvm-svn: 144047
zero-extend the constant integer encoding. Test case provides testing for
both call parameters and materialization of i1, i8, and i16 types.
llvm-svn: 143821
in a 16-bit immediate. However, for the shorter non-legal types (i.e., i1, i8,
i16) we should not sign-extend. This prevents us from materializing things
such as 'true' (i.e., i1 1).
llvm-svn: 143743
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
Outside an IT block, "add r3, #2" should select a 32-bit wide encoding
rather than generating an error indicating the 16-bit encoding is only
legal in an IT block (outside, the 'S' suffic is required for the 16-bit
encoding).
rdar://10348481
llvm-svn: 143201
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
up. Thus, improving the support for compares is goodness because it increases
the number of terminator instructions we can handle. This creates many more
opportunities for target specific fast-isel.
llvm-svn: 143079
We were parsing label references to the i12 encoding, which isn't right.
They need to go to the pci variant instead.
More of rdar://10348687
llvm-svn: 143068
Split am6offset into fixed and register offset variants so the instruction
encodings are explicit rather than relying an a magic reg0 marker.
Needed to being able to parse these.
llvm-svn: 142853
that the set of callee-saved registers is correct for the specific platform.
<rdar://problem/10313708> & ctor_dtor_count & ctor_dtor_count-2
llvm-svn: 142706
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
llvm-svn: 142670
On spec/gcc, this caused a codesize improvement of ~1.9% for ARM mode and ~4.9% for Thumb(2) mode. This is
codesize including literal pools.
The pools themselves doubled in size for ARM mode and quintupled for Thumb mode, leaving suggestion that there
is still perhaps redundancy in LLVM's use of constant pools that could be decreased by sharing entries.
Fixes PR11087.
llvm-svn: 142530
register and then compare against that" method when it's too large. We have to
move the value into the register in the "movw, movt" pair of instructions.
llvm-svn: 142440
register and then compare against that" method when it's too large. We have to
move the value into the register in the "movw, movt" pair of instructions.
llvm-svn: 142437
Clean up the patterns, fix comments, and avoid confusing both tools
and coders. Note that the special adds/subs SelectionDAG nodes no
longer have the dummy cc_out operand.
llvm-svn: 142397
predecessor to remove the jump to it as well. Delay clearing the 'landing pad'
flag until after the jumps have been removed. (There is an implicit assumption
in several modules that an MBB which jumps to a landing pad has only two
successors.)
<rdar://problem/10304224>
llvm-svn: 142390
Use the custom inserter for the ARM setjmp intrinsics. Instead of creating the
SjLj dispatch table in IR, where it frequently violates serveral assumptions --
in particular assumptions made by the landingpad instruction about what can
branch to a landing pad and what cannot. Performing this in the back-end allows
us to violate these assumptions without the IR getting angry at us.
It also allows us to perform a small optimization. We can shove the address of
the dispatch's basic block into the function context and not have to add code
around the setjmp to check for the return value and jump to the dispatch.
Neat, huh?
<rdar://problem/10116753>
llvm-svn: 142294
NEON immediates are "interesting". Start of the work to handle parsing them
in an 'as' compatible manner. Getting the matcher to play nicely with
these and the floating point immediates from VFP is an extra fun wrinkle.
llvm-svn: 142293
Once the intrinsics are marked as having a custom inserter, it will call this
method to emit the dispatch table into the machine function.
llvm-svn: 142245
It really doesn't, but when r141929 removed the hasSideEffects flag from
this instruction, it caused miscompilations. I am guessing that it got
moved across a stack pointer update.
Also clear isRematerializable after checking that this instruction is
in fact never rematerialized in the nightly test suite.
llvm-svn: 142030
rdar://10288916 is tracking this fix.
In the past, instcombine and other passes were promoting alloca alignment past
the natural alignment, resulting in dynamic stack realignment. Lang's work now
prevents this from happening (LLVM commit r141599). Now that this really
shouldn't happen report a fatal error rather than silently generate bad code.
llvm-svn: 142028