This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 158126
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
llvm-svn: 158122
LLVM is now -Wunused-private-field clean except for
- lib/MC/MCDisassembler/Disassembler.h. Not sure why it keeps all those unaccessible fields.
- gtest.
llvm-svn: 158096
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
llvm-svn: 158090
This allows a subtarget to explicitly specify the issue width and
other properties without providing pipeline stage details for every
instruction.
llvm-svn: 157979
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits.
<rdar://problem/11481151>
llvm-svn: 157966
It seems that this no longer causes test suite failures on PPC64 (after r157159),
and often gives a performance benefit, so it can be enabled by default.
llvm-svn: 157911
This is the first of a series of patches which make changes to the backend to
emit unaligned load/store instructions (lwl,lwr,swl,swr) during instruction
selection.
llvm-svn: 157862
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
This patch will optimize the following:
sub r1, r3
cmp r3, r1 or cmp r1, r3
bge L1
TO
sub r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can eliminate
the "cmp" instruction.
llvm-svn: 157831
This implements codegen support for accesses to thread-local variables
using the local-dynamic model, and adds a clean-up pass so that the base
address for the TLS block can be re-used between local-dynamic access on
an execution path.
llvm-svn: 157818
We handle struct byval by inserting a pseudo op, which will be expanded to a
loop at ExpandISelPseudos.
A separate patch for clang will be submitted to enable struct byval.
rdar://9877866
llvm-svn: 157793
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 157755
Reg-units are named after their root registers, and most units have a
single root, so they simply print as 'AL', 'XMM0', etc. The rare dual
root reg-units print as FPSCR~FPSCR_NZCV, FP0~ST7, ...
The printing piggybacks on the existing register name tables, so no
extra const data space is required.
llvm-svn: 157754
I disabled FMA3 autodetection, since the result may differ from expected for some benchmarks.
I added tests for GodeGen and intrinsics.
I did not change llvm.fma.f32/64 - it may be done later.
llvm-svn: 157737
integer registers. This is already supported by the fastcc convention, but it doesn't
hurt to support it in the standard conventions as well.
In cases where we can cheat at the calling convention, this allows us to avoid returning
things through memory in more cases.
llvm-svn: 157698
This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
llvm-svn: 157634
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
instruction encodings can be excluded during mips16 processing.
This revision fixes the issue raised by Jim Grosbach.
bool hasStandardEncoding() const { return !inMips16Mode(); }
When micromips is added it will be
bool StandardEncoding() const { return !inMips16Mode()&& !inMicroMipsMode(); }
No additional testing is needed other than to assure that there is no regression
from this patch.
Patch by Reed Kotler.
llvm-svn: 157234
32-bit offset jump tables just use real branch instructions and so aren't
marked as data regions. We were still emitting the .end_data_region
marker though, which assert()ed.
rdar://11499158
llvm-svn: 157221
The current code will generate a prologue which starts with something like:
mflr 0
stw 31, -4(1)
stw 0, 4(1)
stwu 1, -16(1)
But under the PPC32 SVR4 ABI, access to negative offsets from R1 is not allowed.
This was pointed out by Peter Bergner.
llvm-svn: 157133
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
llvm-svn: 157062
the 0b10 mask encoding bits. Make MSR APSR writes without a _<bits> qualifier
an alias for MSR APSR_nzcvq even though ARM as deprecated it use. Also add
support for suffixes (_nzcvq, _g, _nzcvqg) for APSR versions. Some FIXMEs in
the code for better error checking when versions shouldn't be used.
rdar://11457025
llvm-svn: 157019
llc to recognize MIPS16 as a MIPS ASE extension. -mips16 will mean the
mips16 ASE for mips32 by default.
As part of fixing of adding this we discovered some small changes that
need to be made to MipsInstrInfo::storeRegToStackSLot and
MipsInstrInfo::loadRegFromStackSlot. We were using some "==" equality tests
where in fact we should have been using Mips::<regclas>.hasSubClassEQ instead,
per suggestion of Jakob Stoklund Olesen.
Patch by Reed Kotler.
llvm-svn: 156958
The purpose of this option is to silence error messages issued by machine
verifier passes and enable them to run to the end. If this option is not
provided, -verify-machineinstrs complains when it discovers there is a
non-terminator instruction (an instruction that is in a delay slot) after the
first terminator in a basic block.
llvm-svn: 156790
the ones that get or set the frame index for the $gp save slot.
Remove the piece of code in MipsFunctionInfo::getGlobalBaseReg() which returns
GP. This function should always return a virtual register.
llvm-svn: 156695
- Stop creating stack frame objects needed for saving $gp.
- Insert a node that copies the global pointer register to register $gp
before the call node. This will ensure $gp is valid at the entry of the
called function.
llvm-svn: 156692
- Stop emitting instructions needed to initialize the global pointer register.
- Stop emitting .cprestore directive.
- Do not take into account the $gp save slot when computing stack size.
llvm-svn: 156691
- Remove code which lowers pseudo SETGP01.
- Fix LowerSETGP01. The first two of the three instructions that are emitted to
initialize the global pointer register now use register $2.
- Stop emitting .cpload directive.
llvm-svn: 156689
pointer register.
This is the first of the series of patches which clean up the way global pointer
register is used. The patches will make the following improvements:
- Make $gp an allocatable temporary register rather than reserving it.
- Use a virtual register as the global pointer register and let the register
allocator decide which register to assign to it or whether spill/reloads are
needed.
- Make sure $gp is valid at the entry of a called function, which is necessary
for functions using lazy binding.
- Remove the need for emitting .cprestore and .cpload directives.
llvm-svn: 156671
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
llvm-svn: 156599
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
llvm-svn: 156550
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
llvm-svn: 156328
This function is a generalization of getMatchingSuperRegClass() to the
symmetric case where both sides are using a sub-register index. It will
find a super-register class and sub-register indexes that make this
diagram commute:
PreA
SuperRC ----------> RCA
| |
| |
PreB | | SubA
| |
| |
V V
RCB ----------> SubRC
SubB
This can be used to coalesce copies like:
%vreg1:sub16 = COPY %vreg2:sub16; GR64:%vreg1, GR32: %vreg2
llvm-svn: 156317
This patch will optimize -(x != 0) on X86
FROM
cmpl $0x01,%edi
sbbl %eax,%eax
notl %eax
TO
negl %edi
sbbl %eax %eax
In order to generate negl, I added patterns in Target/X86/X86InstrCompiler.td:
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
rdar: 10961709
llvm-svn: 156312
This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
llvm-svn: 156233
In file included from ../lib/Target/NVPTX/VectorElementize.cpp:53:
../lib/Target/NVPTX/NVPTX.h:44:3: warning: default label in switch which covers all enumeration values [-Wcovered-switch-default]
default: assert(0 && "Unknown condition code");
^
1 warning generated.
The prevailing pattern in LLVM is to not use a default label, and instead to
use llvm_unreachable to denote that the switch in fact covers all return paths
from the function.
llvm-svn: 156209
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196
This moves the logic for selecting a TLS model to a single place,
instead of the previous three (ARM, Mips, and X86 which already
uses this function).
llvm-svn: 156162
This iterator class provides a more abstract interface to the (Idx,
Mask) lists of super-registers for a register class. The layout of the
tables shouldn't be exposed to clients.
llvm-svn: 156144
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
llvm-svn: 156118
The ensures that virtual registers always belong to an allocatable class.
If your target attempts to create a vreg for an operand that has no
allocatable register subclass, you will crash quickly.
This ensures that targets define register classes as intended.
llvm-svn: 156046
Expressions for movw/movt don't always have an :upper16: or :lower16:
on them and that's ok. When they don't, it's just a plain [0-65536]
immediate result, effectively the same as a :lower16: variant kind.
rdar://10550147
llvm-svn: 155941
in order to avoid assertion failures in the register scavenger. The assertion
failures were “Bad machine code: Using an undefined physical register” and
“Bad machine code: MBB exits via unconditional fall-through but its successor
differs from its CFG successor!”.
llvm-svn: 155930
This patch will optimize the following cases on X86
(a > b) ? (a-b) : 0
(a >= b) ? (a-b) : 0
(b < a) ? (a-b) : 0
(b <= a) ? (a-b) : 0
FROM
movl %edi, %ecx
subl %esi, %ecx
cmpl %edi, %esi
movl $0, %eax
cmovll %ecx, %eax
TO
xorl %eax, %eax
subl %esi, %edi
cmovll %eax, %edi
movl %edi, %eax
rdar: 10734411
llvm-svn: 155919
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
llvm-svn: 155902
Replace some assert() calls w/ actual diagnostics. In a perfect world,
there'd be range checks on these values long before things ever reached
this code. For now, though, issuing a better-late-than-never diagnostic
is still a big improvement over assert().
rdar://11347287
llvm-svn: 155851
This was exposed by SingleSource/UnitTests/Vector/constpool.c.
The computed size of a basic block isn't always a multiple of its known
alignment, and that can introduce extra alignment padding after the
block.
<rdar://problem/11347135>
llvm-svn: 155845
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
(this time, actually commit what was reviewed!)
llvm-svn: 155825
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
llvm-svn: 155824
The code could search past the end of the basic block when there was
already a constant pool entry after the block.
Test case with giant basic block in SingleSource/UnitTests/Vector/constpool.c
llvm-svn: 155753
Make sure when parsing the Thumb1 sp+register ADD instruction that
the source and destination operands match. In thumb2, just use the
wide encoding if they don't. In Thumb1, issue a diagnostic.
rdar://11219154
llvm-svn: 155748
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
llvm-svn: 155745
Previously, ARMConstantIslandPass would conservatively compute the
address of an aligned basic block as:
RoundUpToAlignment(Offset + UnknownPadding)
This worked fine for the layout algorithm itself, but it could fool the
verify() function because it accounts for alignment padding twice: Once
when adding the worst case UnknownPadding, and again by rounding up the
fictional block offset. This meant that when optimizeThumb2Instructions
would shrink an instruction, the conservative distance estimate could
grow. That shouldn't be possible since the woorst case alignment padding
wss already included.
This patch drops the use of RoundUpToAlignment, and depends only on
worst case padding to compute conservative block offsets. This has the
weird effect that the computed offset for an aligned block may not be
aligned.
The important difference is that shrinking an instruction can never
cause the estimated distance between two instructions to grow. The
estimated distance is always larger than the real distance that only the
assembler knows.
<rdar://problem/11339352>
llvm-svn: 155744
x == -y --> x+y == 0
x != -y --> x+y != 0
On x86, the generated code goes from
negl %esi
cmpl %esi, %edi
je .LBB0_2
to
addl %esi, %edi
je .L4
This case is correctly handled for ARM with "cmn".
Patch by Manman Ren.
rdar://11245199
PR12545
llvm-svn: 155739
* Model FPSW (the FPU status word) as a register.
* Add ISel patterns for the FUCOM*, FNSTSW and SAHF instructions.
* During Legalize/Lowering, build a node sequence to transfer the comparison
result from FPSW into EFLAGS. If you're wondering about the right-shift: That's
an implicit sub-register extraction (%ax -> %ah) which is handled later on by
the instruction selector.
Fixes PR6679. Patch by Christoph Erhardt!
llvm-svn: 155704
The base address for the PC-relative load is Align(PC,4), so it's the
address of the word containing the 16-bit instruction, not the address
of the instruction itself. Ugh.
rdar://11314619
llvm-svn: 155659
On some cores it's a bad idea for performance to mix VFP and NEON instructions
and since these patterns are NEON anyway, the NEON load should be used.
llvm-svn: 155630
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
llvm-svn: 155601
When an instruction match is found, but the subtarget features it
requires are not available (missing floating point unit, or thumb vs arm
mode, for example), issue a diagnostic that identifies what the feature
mismatch is.
rdar://11257547
llvm-svn: 155499
immediate. We can't use it here because the shuffle code does not check that
the lower part of the word is identical to the upper part.
llvm-svn: 155440
using the pattern (vbroadcast (i32load src)). In some cases, after we generate
this pattern new users are added to the load node, which prevent the selection
of the blend pattern. This commit provides fallback patterns which perform
in-vector broadcast (using in-vector vbroadcast in AVX2 and pshufd on AVX1).
llvm-svn: 155437
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
llvm-svn: 155395
test suite failures. The failures occur at each stage, and only get
worse, so I'm reverting all of them.
Please resubmit these patches, one at a time, after verifying that the
regression test suite passes. Never submit a patch without running the
regression test suite.
llvm-svn: 155372
Use the new TwoOperandAliasConstraint to handle lots of the two-operand aliases
for NEON instructions. There's still more to go, but this is a good chunk of
them.
llvm-svn: 155210
(load only has one operand) and smuggle in some whitespace changes too
NB: I am obviously testing the water here, and believe that the unguarded
cast is still wrong, but why is the getZExtValue of the load's operand
tested against zero here? Any review is appreciated.
llvm-svn: 155190
symbolicated. These have and operand type of TYPE_RELv which was not handled
as isBranch in translateImmediate() in X86Disassembler.cpp. rdar://11268426
llvm-svn: 155074
commits have had several major issues pointed out in review, and those
issues are not being addressed in a timely fashion. Furthermore, this
was all committed leading up to the v3.1 branch, and we don't need piles
of code with outstanding issues in the branch.
It is possible that not all of these commits were necessary to revert to
get us back to a green state, but I'm going to let the Hexagon
maintainer sort that out. They can recommit, in order, after addressing
the feedback.
Reverted commits, with some notes:
Primary commit r154616: HexagonPacketizer
- There are lots of review comments here. This is the primary reason
for reverting. In particular, it introduced large amount of warnings
due to a bad construct in tablegen.
- Follow-up commits that should be folded back into this when
reposting:
- r154622: CMake fixes
- r154660: Fix numerous build warnings in release builds.
- Please don't resubmit this until the three commits above are
included, and the issues in review addressed.
Primary commit r154695: Pass to replace transfer/copy ...
- Reverted to minimize merge conflicts. I'm not aware of specific
issues with this patch.
Primary commit r154703: New Value Jump.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154703: Remove iostream usage
- r154758: Fix CMake builds
- r154759: Fix build warnings in release builds
- Please incorporate these fixes and and review feedback before
resubmitting.
Primary commit r154829: Hexagon V5 (floating point) support.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154841: Remove unused variable (fixing build warnings)
There are also accompanying Clang commits that will be reverted for
consistency.
llvm-svn: 155047
also fix SimplifyLibCalls to use TLI rather than compile-time conditionals to enable optimizations on floor, ceil, round, rint, and nearbyint
llvm-svn: 154960
As an example, attach range info to the "invalid instruction" message:
$ clang -arch arm -c asm.c
asm.c:2:11: error: invalid instruction
__asm__("foo r0");
^
<inline asm>:1:2: note: instantiated into assembly here
foo r0
^~~
llvm-svn: 154765
- FCOPYSIGN nodes that have operands of different types were not handled.
- Different code was generated depending on the endianness of the target.
Additionally, code is added that emits INS and EXT instructions, if they are
supported by target (they are R2 instructions).
llvm-svn: 154540
While there is an encoding for it in VUZP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11222366
llvm-svn: 154511
While there is an encoding for it in VZIP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11221911
llvm-svn: 154505
Original message:
Modify the code that lowers shuffles to blends from using blendvXX to vblendXX.
blendV uses a register for the selection while Vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154483
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
llvm-svn: 154480
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
We were incorrectly conflating some add variants which don't have a
cc_out operand with the mirroring sub encodings, which do. Part of the
awesome non-orthogonality legacy of thumb1. Similarly, handling of
add/sub of an immediate was sometimes incorrectly removing the cc_out
operand for add/sub register variants.
rdar://11216577
llvm-svn: 154411
blendv uses a register for the selection while vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154396
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
llvm-svn: 154370
in-register, such that we can use a single vector store rather then a
series of scalar stores.
For func_4_8 the generated code
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vmov.u16 r0, d16[3]
strb r0, [r2, #3]
vmov.u16 r0, d16[2]
strb r0, [r2, #2]
vmov.u16 r0, d16[1]
strb r0, [r2, #1]
vmov.u16 r0, d16[0]
strb r0, [r2]
bx lr
becomes
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vuzp.8 d16, d17
vst1.32 {d16[0]}, [r2, :32]
bx lr
I'm not fond of how this combine pessimizes 2012-03-13-DAGCombineBug.ll,
but I couldn't think of a way to judiciously apply this combine.
This
ldrh r0, [r0, #4]
strh r0, [r1]
becomes
vldr d16, [r0]
vmov.u16 r0, d16[2]
vmov.32 d16[0], r0
vuzp.16 d16, d17
vst1.32 {d16[0]}, [r1, :32]
PR11158
rdar://10703339
llvm-svn: 154340
A couple of cases where we were accidentally creating constant conditions by
something like "x == a || b" instead of "x == a || x == b". In one case a
conditional & then unreachable was used - I transformed this into a direct
assert instead.
llvm-svn: 154324
x86 addressing modes. This allows PIE-based TLS offsets to fit directly
into an addressing mode immediate offset, which is the last remaining
code quality issue from PR12380. With this patch, that PR is completely
fixed.
To understand why this patch is correct to match these offsets into
addressing mode immediates, break it down by cases:
1) 32-bit is trivially correct, and unmodified here.
2) 64-bit non-small mode is unchanged and never matches.
3) 64-bit small PIC code which is RIP-relative is handled specially in
the match to try to fit RIP into the base register. If it fails, it
now early exits. This behavior is unchanged by the patch.
4) 64-bit small non-PIC code which is not RIP-relative continues to work
as it did before. The reason these immediates are safe is because the
ABI ensures they fit in small mode. This behavior is unchanged.
5) 64-bit small PIC code which is *not* using RIP-relative addressing.
This is the only case changed by the patch, and the primary place you
see it is in TLS, either the win64 section offset TLS or Linux
local-exec TLS model in a PIC compilation. Here the ABI again ensures
that the immediates fit because we are in small mode, and any other
operations required due to the PIC relocation model have been handled
externally to the Wrapper node (extra loads etc are made around the
wrapper node in ISelLowering).
I've tested this as much as I can comparing it with GCC's output, and
everything appears safe. I discussed this with Anton and it made sense
to him at least at face value. That said, if there are issues with PIC
code after this patch, yell and we can revert it.
llvm-svn: 154304
optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
llvm-svn: 154294
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
llvm-svn: 154292
Previously we used three instructions to broadcast an immediate value into a
vector register.
On Sandybridge we continue to load the broadcasted value from the constant pool.
llvm-svn: 154284
The tLDRr instruction with the last register operand set to the zero register
prints in assembly as if no register was specified, and the assembler encodes
it as a tLDRi instruction with a zero immediate. With the integrated assembler,
that zero register gets emitted as "r0", so we get "ldr rx, [ry, r0]" which
is broken. Emit the instruction as tLDRi with a zero immediate. I don't
know if there's a good way to write a testcase for this. Suggestions welcome.
Opportunities for follow-up work:
1) The asm printer should complain if a non-optional register operand is set
to the zero register, instead of silently dropping it.
2) The integrated assembler should complain in the same situation, instead of
silently emitting the operand as "r0".
llvm-svn: 154261
Cygwin-1.7 supports dw2. Some recent mingw distros support one, too.
I have confirmed test-suite/SingleSource/Benchmarks/Shootout-C++/except.cpp can pass on Cygwin.
llvm-svn: 154247
by default.
This is a behaviour configurable in the MCAsmInfo. I've decided to turn
it on by default in (possibly optimistic) hopes that most assemblers are
reasonably sane. If this proves a problem, switching to default seems
reasonable.
I'm not sure if this is the opportune place to test, but it seemed good
to make sure it was tested somewhere.
llvm-svn: 154235
After register masks were introdruced to represent the call clobbers, it
is no longer necessary to have duplicate instruction for iOS.
llvm-svn: 154209
We had special instructions for iOS because r9 is call-clobbered, but
that is represented dynamically by the register mask operands now, so
there is no need for the pseudo-instructions.
llvm-svn: 154144
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
llvm-svn: 154141
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
llvm-svn: 154123
A MOVCCr instruction can be commuted by inverting the condition. This
can help reduce register pressure and remove unnecessary copies in some
cases.
<rdar://problem/11182914>
llvm-svn: 154033
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
This patch allows llvm to recognize that a 64 bit object file is being produced
and that the subsequently generated ELF header has the correct information.
The test case checks for both big and little endian flavors.
Patch by Jack Carter.
llvm-svn: 153889
Post-RA scheduling gives a significant performance improvement on
the embedded cores, so turn it on. Using full anti-dep. breaking is
important for FP-intensive blocks, so turn it on (just on the
embedded cores for now; this should also be good on the 970s because
post-ra scheduling is all that we have for now, but that should have
more testing first).
llvm-svn: 153843
This adds a full itinerary for IBM's PPC64 A2 embedded core. These
cores form the basis for the CPUs in the new IBM BG/Q supercomputer.
llvm-svn: 153842
Loads and stores can have different pipeline behavior, especially on
embedded chips. This change allows those differences to be expressed.
Except for the 440 scheduler, there are no functionality changes.
On the 440, the latency adjustment is only by one cycle, and so this
probably does not affect much. Nevertheless, it will make a larger
difference in the future and this removes a FIXME from the 440 itin.
llvm-svn: 153821
Dynamic linking on PPC64 has had problems since we had to move the top-down
hazard-detection logic post-ra. For dynamic linking to work there needs to be
a nop placed after every call. It turns out that it is really hard to guarantee
that nothing will be placed in between the call (bl) and the nop during post-ra
scheduling. Previous attempts at fixing this by placing logic inside the
hazard detector only partially worked.
This is now fixed in a different way: call+nop codegen-only instructions. As far
as CodeGen is concerned the pair is now a single instruction and cannot be split.
This solution works much better than previous attempts.
The scoreboard hazard detector is also renamed to be more generic, there is currently
no cpu-specific logic in it.
llvm-svn: 153816
ARMConstantIslandPass still has bugs where jump table compression can
cause constant pool entries to go out of range.
Add a safety margin of 2 bytes when placing constant islands, but use
the real max displacement for verification.
<rdar://problem/11156595>
llvm-svn: 153789
When an immediate is both a value [t2_]so_imm and a [t2_]so_imm_neg,
we want to use the non-negated form to make sure we prefer the normal
encoding, not the aliased encoding via the negation of, e.g., 'cmp.w'.
llvm-svn: 153770
For 'adds r2, r2, #56' outside of an IT block, the 16-bit encoding T2
can be used for this syntax. Prefer the narrow encoding when possible.
rdar://11156277
llvm-svn: 153759
This pass splits basic blocks to insert constant islands, and it
doesn't recompute the live-in lists. No later passes depend on accurate
liveness information.
This fixes PR12410 where the machine code verifier was complaining.
llvm-svn: 153700
We are sometimes allocatinog from the DPair register class which
contains odd-even pairs in addition to the Q registers.
Place the Q registers first in the DPair allocation order as they can be
copied with a single instruction. The odd-even pairs should only be
allocated as a last resort.
llvm-svn: 153699
ARM recently gained DPair, DTriple, and DQuad register classes.
Update copyPhysReg() to handle copies in these register classes.
No test case, it is difficult to make the register allocator emit the
odd copies reliably. The missing DPair copy caused a failure on
partialsums in the nightly test suite.
<rdar://problem/11147997>
llvm-svn: 153686
This is a code change to add support for changing instruction sequences of the form:
load
inc/dec of 8/16/32/64 bits
store
into the appropriate X86 inc/dec through memory instruction:
inc[qlwb] / dec[qlwb]
The checks that were in X86DAGToDAGISel::Select(SDNode *Node)>>ISD::STORE have been extracted to isLoadIncOrDecStore and reworked to use the better
named wrappers for getOperand(unsigned) (e.g. getOffset()) and replaced Chain.getNode() with LoadNode. The comments have also been expanded.
llvm-svn: 153635
This is a code change to add support for changing instruction sequences of the form:
load
inc/dec of 8/16/32/64 bits
store
into the appropriate X86 inc/dec through memory instruction:
inc[qlwb] / dec[qlwb]
The checks that were in X86DAGToDAGISel::Select(SDNode *Node)>>ISD::STORE have been extracted to isLoadIncOrDecStore and reworked to use the better
named wrappers for getOperand(unsigned) (e.g. getOffset()) and replaced Chain.getNode() with LoadNode. The comments have also been expanded.
llvm-svn: 153617
Some targets still mess up the liveness information, but that isn't
verified after MRI->invalidateLiveness().
The verifier can still check other useful things like register classes
and CFG, so it should be enabled after all passes.
llvm-svn: 153615
When an strd instruction doesn't get the registers it wants, it can be
expanded into two str instructions. Make sure the first str doesn't kill
the base register in the case where the base and data registers are
identical:
t2STRi12 %R0<kill>, %R0, 4, pred:14, pred:%noreg
t2STRi12 %R2<kill>, %R0, 8, pred:14, pred:%noreg
<rdar://problem/11101911>
llvm-svn: 153611
When a number of sub-register VLRDS instructions are combined into a
VLDM, preserve any super-register implicit defs. This is required to
keep the register scavenger and machine code verifier happy.
Enable machine code verification after ARMLoadStoreOptimizer.
ARM/2012-01-26-CopyPropKills.ll was failing because of this.
llvm-svn: 153610
The arm_neon intrinsics can create virtual registers from the DPair
register class which allows both even-odd and odd-even D-register pairs.
This fixes PR12389.
llvm-svn: 153603
Revert r153519: "ARMLoadStoreOptimizer invalidates register liveness."
These patches caused miscompilations in povray by turning off branch
folding's updating of live-in lists.
It turns out the the late scheduler depends on the live-in lists, even
if it doesn't need correct kill flags.
<rdar://problem/11139228>
llvm-svn: 153593
them as machine instructions. Directives ".set noat" and ".set at" are now
emitted only at the beginning and end of a function except in the case where
they are emitted to enclose .cpload with an immediate operand that doesn't fit
in 16-bit field or unaligned load/stores.
Also, make the following changes:
- Remove function isUnalignedLoadStore and use a switch-case statement to
determine whether an instruction is an unaligned load or store.
- Define helper function CreateMCInst which generates an instance of an MCInst
from an opcode and a list of operands.
llvm-svn: 153552
This pass tries to update kill flags, but there are still many bugs.
Passes after the load/store optimizer don't need accurate liveness, so
don't even try.
<rdar://problem/11101911>
llvm-svn: 153519
MachinePointerInfo when getStore is called to create a node that stores an
argument passed in register to the stack. Without this change, the post RA
scheduler will fail to discover the dependencies between the stores
instructions and the instructions that load from a structure passed by value.
The link to the related discussion is here:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-March/048055.html
llvm-svn: 153499
produces a 32-bit immediate which is consumed by the use. It tries to
fold the immediate by breaking it into two parts and fold them into the
immmediate fields of two uses. e.g
movw r2, #40885
movt r3, #46540
add r0, r0, r3
=>
add.w r0, r0, #3019898880
add.w r0, r0, #30146560
;
However, this transformation is incorrect if the user produces a flag. e.g.
movw r2, #40885
movt r3, #46540
adds r0, r0, r3
=>
add.w r0, r0, #3019898880
adds.w r0, r0, #30146560
Note the adds.w may not set the carry flag even if the original sequence
would.
rdar://11116189
llvm-svn: 153484
The PPC64 SVR4 ABI requires integer stack arguments, and thus the var. args., that
are smaller than 64 bits be zero extended to 64 bits.
llvm-svn: 153373
Code such as:
%vreg100 = setcc %vreg10, -1, SETNE
brcond %vreg10, %tgt
was being incorrectly morphed into
%vreg100 = and %vreg10, 1
brcond %vreg10, %tgt
where the 'and' instruction could be eliminated since
such logic is on 1-bit types in the PTX back-end, leaving
us with just:
brcond %vreg10, %tgt
which essentially gives us inverted branch conditions.
llvm-svn: 153364