This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
llvm-svn: 156233
In file included from ../lib/Target/NVPTX/VectorElementize.cpp:53:
../lib/Target/NVPTX/NVPTX.h:44:3: warning: default label in switch which covers all enumeration values [-Wcovered-switch-default]
default: assert(0 && "Unknown condition code");
^
1 warning generated.
The prevailing pattern in LLVM is to not use a default label, and instead to
use llvm_unreachable to denote that the switch in fact covers all return paths
from the function.
llvm-svn: 156209
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196
This moves the logic for selecting a TLS model to a single place,
instead of the previous three (ARM, Mips, and X86 which already
uses this function).
llvm-svn: 156162
This iterator class provides a more abstract interface to the (Idx,
Mask) lists of super-registers for a register class. The layout of the
tables shouldn't be exposed to clients.
llvm-svn: 156144
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
llvm-svn: 156118
The ensures that virtual registers always belong to an allocatable class.
If your target attempts to create a vreg for an operand that has no
allocatable register subclass, you will crash quickly.
This ensures that targets define register classes as intended.
llvm-svn: 156046
Expressions for movw/movt don't always have an :upper16: or :lower16:
on them and that's ok. When they don't, it's just a plain [0-65536]
immediate result, effectively the same as a :lower16: variant kind.
rdar://10550147
llvm-svn: 155941
in order to avoid assertion failures in the register scavenger. The assertion
failures were “Bad machine code: Using an undefined physical register” and
“Bad machine code: MBB exits via unconditional fall-through but its successor
differs from its CFG successor!”.
llvm-svn: 155930
This patch will optimize the following cases on X86
(a > b) ? (a-b) : 0
(a >= b) ? (a-b) : 0
(b < a) ? (a-b) : 0
(b <= a) ? (a-b) : 0
FROM
movl %edi, %ecx
subl %esi, %ecx
cmpl %edi, %esi
movl $0, %eax
cmovll %ecx, %eax
TO
xorl %eax, %eax
subl %esi, %edi
cmovll %eax, %edi
movl %edi, %eax
rdar: 10734411
llvm-svn: 155919
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
llvm-svn: 155902
Replace some assert() calls w/ actual diagnostics. In a perfect world,
there'd be range checks on these values long before things ever reached
this code. For now, though, issuing a better-late-than-never diagnostic
is still a big improvement over assert().
rdar://11347287
llvm-svn: 155851
This was exposed by SingleSource/UnitTests/Vector/constpool.c.
The computed size of a basic block isn't always a multiple of its known
alignment, and that can introduce extra alignment padding after the
block.
<rdar://problem/11347135>
llvm-svn: 155845
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
(this time, actually commit what was reviewed!)
llvm-svn: 155825
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
llvm-svn: 155824
The code could search past the end of the basic block when there was
already a constant pool entry after the block.
Test case with giant basic block in SingleSource/UnitTests/Vector/constpool.c
llvm-svn: 155753
Make sure when parsing the Thumb1 sp+register ADD instruction that
the source and destination operands match. In thumb2, just use the
wide encoding if they don't. In Thumb1, issue a diagnostic.
rdar://11219154
llvm-svn: 155748
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
llvm-svn: 155745
Previously, ARMConstantIslandPass would conservatively compute the
address of an aligned basic block as:
RoundUpToAlignment(Offset + UnknownPadding)
This worked fine for the layout algorithm itself, but it could fool the
verify() function because it accounts for alignment padding twice: Once
when adding the worst case UnknownPadding, and again by rounding up the
fictional block offset. This meant that when optimizeThumb2Instructions
would shrink an instruction, the conservative distance estimate could
grow. That shouldn't be possible since the woorst case alignment padding
wss already included.
This patch drops the use of RoundUpToAlignment, and depends only on
worst case padding to compute conservative block offsets. This has the
weird effect that the computed offset for an aligned block may not be
aligned.
The important difference is that shrinking an instruction can never
cause the estimated distance between two instructions to grow. The
estimated distance is always larger than the real distance that only the
assembler knows.
<rdar://problem/11339352>
llvm-svn: 155744
x == -y --> x+y == 0
x != -y --> x+y != 0
On x86, the generated code goes from
negl %esi
cmpl %esi, %edi
je .LBB0_2
to
addl %esi, %edi
je .L4
This case is correctly handled for ARM with "cmn".
Patch by Manman Ren.
rdar://11245199
PR12545
llvm-svn: 155739
* Model FPSW (the FPU status word) as a register.
* Add ISel patterns for the FUCOM*, FNSTSW and SAHF instructions.
* During Legalize/Lowering, build a node sequence to transfer the comparison
result from FPSW into EFLAGS. If you're wondering about the right-shift: That's
an implicit sub-register extraction (%ax -> %ah) which is handled later on by
the instruction selector.
Fixes PR6679. Patch by Christoph Erhardt!
llvm-svn: 155704
The base address for the PC-relative load is Align(PC,4), so it's the
address of the word containing the 16-bit instruction, not the address
of the instruction itself. Ugh.
rdar://11314619
llvm-svn: 155659
On some cores it's a bad idea for performance to mix VFP and NEON instructions
and since these patterns are NEON anyway, the NEON load should be used.
llvm-svn: 155630
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
llvm-svn: 155601
When an instruction match is found, but the subtarget features it
requires are not available (missing floating point unit, or thumb vs arm
mode, for example), issue a diagnostic that identifies what the feature
mismatch is.
rdar://11257547
llvm-svn: 155499
immediate. We can't use it here because the shuffle code does not check that
the lower part of the word is identical to the upper part.
llvm-svn: 155440
using the pattern (vbroadcast (i32load src)). In some cases, after we generate
this pattern new users are added to the load node, which prevent the selection
of the blend pattern. This commit provides fallback patterns which perform
in-vector broadcast (using in-vector vbroadcast in AVX2 and pshufd on AVX1).
llvm-svn: 155437
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
llvm-svn: 155395
test suite failures. The failures occur at each stage, and only get
worse, so I'm reverting all of them.
Please resubmit these patches, one at a time, after verifying that the
regression test suite passes. Never submit a patch without running the
regression test suite.
llvm-svn: 155372
Use the new TwoOperandAliasConstraint to handle lots of the two-operand aliases
for NEON instructions. There's still more to go, but this is a good chunk of
them.
llvm-svn: 155210
(load only has one operand) and smuggle in some whitespace changes too
NB: I am obviously testing the water here, and believe that the unguarded
cast is still wrong, but why is the getZExtValue of the load's operand
tested against zero here? Any review is appreciated.
llvm-svn: 155190
symbolicated. These have and operand type of TYPE_RELv which was not handled
as isBranch in translateImmediate() in X86Disassembler.cpp. rdar://11268426
llvm-svn: 155074
commits have had several major issues pointed out in review, and those
issues are not being addressed in a timely fashion. Furthermore, this
was all committed leading up to the v3.1 branch, and we don't need piles
of code with outstanding issues in the branch.
It is possible that not all of these commits were necessary to revert to
get us back to a green state, but I'm going to let the Hexagon
maintainer sort that out. They can recommit, in order, after addressing
the feedback.
Reverted commits, with some notes:
Primary commit r154616: HexagonPacketizer
- There are lots of review comments here. This is the primary reason
for reverting. In particular, it introduced large amount of warnings
due to a bad construct in tablegen.
- Follow-up commits that should be folded back into this when
reposting:
- r154622: CMake fixes
- r154660: Fix numerous build warnings in release builds.
- Please don't resubmit this until the three commits above are
included, and the issues in review addressed.
Primary commit r154695: Pass to replace transfer/copy ...
- Reverted to minimize merge conflicts. I'm not aware of specific
issues with this patch.
Primary commit r154703: New Value Jump.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154703: Remove iostream usage
- r154758: Fix CMake builds
- r154759: Fix build warnings in release builds
- Please incorporate these fixes and and review feedback before
resubmitting.
Primary commit r154829: Hexagon V5 (floating point) support.
- Primarily reverted due to merge conflicts.
- Follow-up commits that should be folded back into this when
reposting:
- r154841: Remove unused variable (fixing build warnings)
There are also accompanying Clang commits that will be reverted for
consistency.
llvm-svn: 155047
also fix SimplifyLibCalls to use TLI rather than compile-time conditionals to enable optimizations on floor, ceil, round, rint, and nearbyint
llvm-svn: 154960
As an example, attach range info to the "invalid instruction" message:
$ clang -arch arm -c asm.c
asm.c:2:11: error: invalid instruction
__asm__("foo r0");
^
<inline asm>:1:2: note: instantiated into assembly here
foo r0
^~~
llvm-svn: 154765
- FCOPYSIGN nodes that have operands of different types were not handled.
- Different code was generated depending on the endianness of the target.
Additionally, code is added that emits INS and EXT instructions, if they are
supported by target (they are R2 instructions).
llvm-svn: 154540
While there is an encoding for it in VUZP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11222366
llvm-svn: 154511
While there is an encoding for it in VZIP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11221911
llvm-svn: 154505
Original message:
Modify the code that lowers shuffles to blends from using blendvXX to vblendXX.
blendV uses a register for the selection while Vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154483
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
llvm-svn: 154480
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
We were incorrectly conflating some add variants which don't have a
cc_out operand with the mirroring sub encodings, which do. Part of the
awesome non-orthogonality legacy of thumb1. Similarly, handling of
add/sub of an immediate was sometimes incorrectly removing the cc_out
operand for add/sub register variants.
rdar://11216577
llvm-svn: 154411
blendv uses a register for the selection while vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154396
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
llvm-svn: 154370
in-register, such that we can use a single vector store rather then a
series of scalar stores.
For func_4_8 the generated code
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vmov.u16 r0, d16[3]
strb r0, [r2, #3]
vmov.u16 r0, d16[2]
strb r0, [r2, #2]
vmov.u16 r0, d16[1]
strb r0, [r2, #1]
vmov.u16 r0, d16[0]
strb r0, [r2]
bx lr
becomes
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vuzp.8 d16, d17
vst1.32 {d16[0]}, [r2, :32]
bx lr
I'm not fond of how this combine pessimizes 2012-03-13-DAGCombineBug.ll,
but I couldn't think of a way to judiciously apply this combine.
This
ldrh r0, [r0, #4]
strh r0, [r1]
becomes
vldr d16, [r0]
vmov.u16 r0, d16[2]
vmov.32 d16[0], r0
vuzp.16 d16, d17
vst1.32 {d16[0]}, [r1, :32]
PR11158
rdar://10703339
llvm-svn: 154340
A couple of cases where we were accidentally creating constant conditions by
something like "x == a || b" instead of "x == a || x == b". In one case a
conditional & then unreachable was used - I transformed this into a direct
assert instead.
llvm-svn: 154324
x86 addressing modes. This allows PIE-based TLS offsets to fit directly
into an addressing mode immediate offset, which is the last remaining
code quality issue from PR12380. With this patch, that PR is completely
fixed.
To understand why this patch is correct to match these offsets into
addressing mode immediates, break it down by cases:
1) 32-bit is trivially correct, and unmodified here.
2) 64-bit non-small mode is unchanged and never matches.
3) 64-bit small PIC code which is RIP-relative is handled specially in
the match to try to fit RIP into the base register. If it fails, it
now early exits. This behavior is unchanged by the patch.
4) 64-bit small non-PIC code which is not RIP-relative continues to work
as it did before. The reason these immediates are safe is because the
ABI ensures they fit in small mode. This behavior is unchanged.
5) 64-bit small PIC code which is *not* using RIP-relative addressing.
This is the only case changed by the patch, and the primary place you
see it is in TLS, either the win64 section offset TLS or Linux
local-exec TLS model in a PIC compilation. Here the ABI again ensures
that the immediates fit because we are in small mode, and any other
operations required due to the PIC relocation model have been handled
externally to the Wrapper node (extra loads etc are made around the
wrapper node in ISelLowering).
I've tested this as much as I can comparing it with GCC's output, and
everything appears safe. I discussed this with Anton and it made sense
to him at least at face value. That said, if there are issues with PIC
code after this patch, yell and we can revert it.
llvm-svn: 154304
optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
llvm-svn: 154294
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
llvm-svn: 154292
Previously we used three instructions to broadcast an immediate value into a
vector register.
On Sandybridge we continue to load the broadcasted value from the constant pool.
llvm-svn: 154284
The tLDRr instruction with the last register operand set to the zero register
prints in assembly as if no register was specified, and the assembler encodes
it as a tLDRi instruction with a zero immediate. With the integrated assembler,
that zero register gets emitted as "r0", so we get "ldr rx, [ry, r0]" which
is broken. Emit the instruction as tLDRi with a zero immediate. I don't
know if there's a good way to write a testcase for this. Suggestions welcome.
Opportunities for follow-up work:
1) The asm printer should complain if a non-optional register operand is set
to the zero register, instead of silently dropping it.
2) The integrated assembler should complain in the same situation, instead of
silently emitting the operand as "r0".
llvm-svn: 154261
Cygwin-1.7 supports dw2. Some recent mingw distros support one, too.
I have confirmed test-suite/SingleSource/Benchmarks/Shootout-C++/except.cpp can pass on Cygwin.
llvm-svn: 154247
by default.
This is a behaviour configurable in the MCAsmInfo. I've decided to turn
it on by default in (possibly optimistic) hopes that most assemblers are
reasonably sane. If this proves a problem, switching to default seems
reasonable.
I'm not sure if this is the opportune place to test, but it seemed good
to make sure it was tested somewhere.
llvm-svn: 154235
After register masks were introdruced to represent the call clobbers, it
is no longer necessary to have duplicate instruction for iOS.
llvm-svn: 154209
We had special instructions for iOS because r9 is call-clobbered, but
that is represented dynamically by the register mask operands now, so
there is no need for the pseudo-instructions.
llvm-svn: 154144
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
llvm-svn: 154141
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
llvm-svn: 154123
A MOVCCr instruction can be commuted by inverting the condition. This
can help reduce register pressure and remove unnecessary copies in some
cases.
<rdar://problem/11182914>
llvm-svn: 154033
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
This patch allows llvm to recognize that a 64 bit object file is being produced
and that the subsequently generated ELF header has the correct information.
The test case checks for both big and little endian flavors.
Patch by Jack Carter.
llvm-svn: 153889
Post-RA scheduling gives a significant performance improvement on
the embedded cores, so turn it on. Using full anti-dep. breaking is
important for FP-intensive blocks, so turn it on (just on the
embedded cores for now; this should also be good on the 970s because
post-ra scheduling is all that we have for now, but that should have
more testing first).
llvm-svn: 153843
This adds a full itinerary for IBM's PPC64 A2 embedded core. These
cores form the basis for the CPUs in the new IBM BG/Q supercomputer.
llvm-svn: 153842
Loads and stores can have different pipeline behavior, especially on
embedded chips. This change allows those differences to be expressed.
Except for the 440 scheduler, there are no functionality changes.
On the 440, the latency adjustment is only by one cycle, and so this
probably does not affect much. Nevertheless, it will make a larger
difference in the future and this removes a FIXME from the 440 itin.
llvm-svn: 153821
Dynamic linking on PPC64 has had problems since we had to move the top-down
hazard-detection logic post-ra. For dynamic linking to work there needs to be
a nop placed after every call. It turns out that it is really hard to guarantee
that nothing will be placed in between the call (bl) and the nop during post-ra
scheduling. Previous attempts at fixing this by placing logic inside the
hazard detector only partially worked.
This is now fixed in a different way: call+nop codegen-only instructions. As far
as CodeGen is concerned the pair is now a single instruction and cannot be split.
This solution works much better than previous attempts.
The scoreboard hazard detector is also renamed to be more generic, there is currently
no cpu-specific logic in it.
llvm-svn: 153816
ARMConstantIslandPass still has bugs where jump table compression can
cause constant pool entries to go out of range.
Add a safety margin of 2 bytes when placing constant islands, but use
the real max displacement for verification.
<rdar://problem/11156595>
llvm-svn: 153789
When an immediate is both a value [t2_]so_imm and a [t2_]so_imm_neg,
we want to use the non-negated form to make sure we prefer the normal
encoding, not the aliased encoding via the negation of, e.g., 'cmp.w'.
llvm-svn: 153770
For 'adds r2, r2, #56' outside of an IT block, the 16-bit encoding T2
can be used for this syntax. Prefer the narrow encoding when possible.
rdar://11156277
llvm-svn: 153759
This pass splits basic blocks to insert constant islands, and it
doesn't recompute the live-in lists. No later passes depend on accurate
liveness information.
This fixes PR12410 where the machine code verifier was complaining.
llvm-svn: 153700
We are sometimes allocatinog from the DPair register class which
contains odd-even pairs in addition to the Q registers.
Place the Q registers first in the DPair allocation order as they can be
copied with a single instruction. The odd-even pairs should only be
allocated as a last resort.
llvm-svn: 153699
ARM recently gained DPair, DTriple, and DQuad register classes.
Update copyPhysReg() to handle copies in these register classes.
No test case, it is difficult to make the register allocator emit the
odd copies reliably. The missing DPair copy caused a failure on
partialsums in the nightly test suite.
<rdar://problem/11147997>
llvm-svn: 153686
This is a code change to add support for changing instruction sequences of the form:
load
inc/dec of 8/16/32/64 bits
store
into the appropriate X86 inc/dec through memory instruction:
inc[qlwb] / dec[qlwb]
The checks that were in X86DAGToDAGISel::Select(SDNode *Node)>>ISD::STORE have been extracted to isLoadIncOrDecStore and reworked to use the better
named wrappers for getOperand(unsigned) (e.g. getOffset()) and replaced Chain.getNode() with LoadNode. The comments have also been expanded.
llvm-svn: 153635
This is a code change to add support for changing instruction sequences of the form:
load
inc/dec of 8/16/32/64 bits
store
into the appropriate X86 inc/dec through memory instruction:
inc[qlwb] / dec[qlwb]
The checks that were in X86DAGToDAGISel::Select(SDNode *Node)>>ISD::STORE have been extracted to isLoadIncOrDecStore and reworked to use the better
named wrappers for getOperand(unsigned) (e.g. getOffset()) and replaced Chain.getNode() with LoadNode. The comments have also been expanded.
llvm-svn: 153617
Some targets still mess up the liveness information, but that isn't
verified after MRI->invalidateLiveness().
The verifier can still check other useful things like register classes
and CFG, so it should be enabled after all passes.
llvm-svn: 153615
When an strd instruction doesn't get the registers it wants, it can be
expanded into two str instructions. Make sure the first str doesn't kill
the base register in the case where the base and data registers are
identical:
t2STRi12 %R0<kill>, %R0, 4, pred:14, pred:%noreg
t2STRi12 %R2<kill>, %R0, 8, pred:14, pred:%noreg
<rdar://problem/11101911>
llvm-svn: 153611
When a number of sub-register VLRDS instructions are combined into a
VLDM, preserve any super-register implicit defs. This is required to
keep the register scavenger and machine code verifier happy.
Enable machine code verification after ARMLoadStoreOptimizer.
ARM/2012-01-26-CopyPropKills.ll was failing because of this.
llvm-svn: 153610
The arm_neon intrinsics can create virtual registers from the DPair
register class which allows both even-odd and odd-even D-register pairs.
This fixes PR12389.
llvm-svn: 153603
Revert r153519: "ARMLoadStoreOptimizer invalidates register liveness."
These patches caused miscompilations in povray by turning off branch
folding's updating of live-in lists.
It turns out the the late scheduler depends on the live-in lists, even
if it doesn't need correct kill flags.
<rdar://problem/11139228>
llvm-svn: 153593
them as machine instructions. Directives ".set noat" and ".set at" are now
emitted only at the beginning and end of a function except in the case where
they are emitted to enclose .cpload with an immediate operand that doesn't fit
in 16-bit field or unaligned load/stores.
Also, make the following changes:
- Remove function isUnalignedLoadStore and use a switch-case statement to
determine whether an instruction is an unaligned load or store.
- Define helper function CreateMCInst which generates an instance of an MCInst
from an opcode and a list of operands.
llvm-svn: 153552
This pass tries to update kill flags, but there are still many bugs.
Passes after the load/store optimizer don't need accurate liveness, so
don't even try.
<rdar://problem/11101911>
llvm-svn: 153519
MachinePointerInfo when getStore is called to create a node that stores an
argument passed in register to the stack. Without this change, the post RA
scheduler will fail to discover the dependencies between the stores
instructions and the instructions that load from a structure passed by value.
The link to the related discussion is here:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-March/048055.html
llvm-svn: 153499
produces a 32-bit immediate which is consumed by the use. It tries to
fold the immediate by breaking it into two parts and fold them into the
immmediate fields of two uses. e.g
movw r2, #40885
movt r3, #46540
add r0, r0, r3
=>
add.w r0, r0, #3019898880
add.w r0, r0, #30146560
;
However, this transformation is incorrect if the user produces a flag. e.g.
movw r2, #40885
movt r3, #46540
adds r0, r0, r3
=>
add.w r0, r0, #3019898880
adds.w r0, r0, #30146560
Note the adds.w may not set the carry flag even if the original sequence
would.
rdar://11116189
llvm-svn: 153484
The PPC64 SVR4 ABI requires integer stack arguments, and thus the var. args., that
are smaller than 64 bits be zero extended to 64 bits.
llvm-svn: 153373
Code such as:
%vreg100 = setcc %vreg10, -1, SETNE
brcond %vreg10, %tgt
was being incorrectly morphed into
%vreg100 = and %vreg10, 1
brcond %vreg10, %tgt
where the 'and' instruction could be eliminated since
such logic is on 1-bit types in the PTX back-end, leaving
us with just:
brcond %vreg10, %tgt
which essentially gives us inverted branch conditions.
llvm-svn: 153364
These changes allow us to compile big endian from the command line for 32 bit
Mips targets. This patch will result in code and data actually being produced
in the correct endianess.
llvm-svn: 153153
ARMBaseRegisterInfo::canRealignStack was checking for variable-sized objects
but not for stack adjustments around calls. Use hasReservedCallFrame() to
check for both. The hasBasePointer function was already correctly checking
both conditions, so the effect of this was that a base pointer would be used
without checking whether the base pointer register could be reserved. I don't
have a small testcase for this.
<rdar://problem/11075906>
llvm-svn: 153110
This results in things such as
vmovups 16(%rdi), %xmm0
vinsertf128 $1, %xmm0, %ymm0, %ymm0
to be combined to
vinsertf128 $1, 16(%rdi), %ymm0, %ymm0
rdar://11076953
llvm-svn: 153092
X86InstrCompiler.td.
It also adds –mcpu-generic to the legalize-shift-64.ll test so the test
will pass if run on an Intel Atom CPU, which would otherwise
produce an instruction schedule which differs from that which the test expects.
llvm-svn: 153033
fast-isel before emitting code. If the program bails after code was emitted,
then it could lead to the stack being adjusted more than once (two
CALLSEQ_BEGINs emitted) but being adjuste back only once after the call. This
leads to general badness and gnashing of teeth.
<rdar://problem/11050630>
llvm-svn: 152959
It's not a good style idea, as the registers will be laid down in memory in
numerical order, not the order they're in the list, but it's legal. vldm/vstm
are stricter.
rdar://11064740
llvm-svn: 152943
This results in things such as
vmovaps -96(%rbx), %xmm1
vinsertf128 $1, %xmm1, %ymm0, %ymm0
to be combined to
vinsertf128 $1, -96(%rbx), %ymm0, %ymm0
rdar://10643481
llvm-svn: 152762
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
llvm-svn: 152532
Original commit message from r147481:
DAGCombine for transforming 128->256 casts into a vmovaps, rather
then a vxorps + vinsertf128 pair if the original vector came from a load.
Fix:
Unaligned loads need to generate a vmovups.
rdar://10974078
llvm-svn: 152366
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
For example, this pattern
(select (setcc lhs, rhs, cc), true, 0)
is transformed to this one:
(select (setcc lhs, rhs, inverse(cc)), 0, true)
This enables MipsDAGToDAGISel::ReplaceUsesWithZeroReg (added in r152280) to
replace 0 with $zero.
llvm-svn: 152285
For example, the first instruction in the code below can be eliminated if the
use of $vr0 is replaced with $zero:
addiu $vr0, $zero, 0
add $vr2, $vr1, $vr0
add $vr2, $vr1, $zero
llvm-svn: 152280
The ARM code generator makes aggressive assumptions about the encodings
being selected for branches which MCRelaxAll invalidates.
rdar://11006355
llvm-svn: 152268
When an instruction only writes sub-registers, it is still necessary to
add an <imp-def> operand for the super-register. When reloading into a
virtual register, rewriting will add the operand, but when loading
directly into a virtual register, the <imp-def> operand is still
necessary.
llvm-svn: 152095
The fpscr register contains both flags (set by FP operations/comparisons) and
control bits. The control bits (FPSCR) should be reserved, since they're always
available and needn't be defined before use. The flag bits (FPSCR_NZCV) should
like to be unreserved so they can be hoisted by MachineCSE. This fixes PR12165.
llvm-svn: 152076
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
llvm-svn: 152045
Specifically, remove the magic number when checking to see if the copy has a
glue operand and simplify the checking logic.
rdar://10930395
llvm-svn: 152041
In this update:
- I assumed neon2 does not imply vfpv4, but neon and vfpv4 imply neon2.
- I kept setting .fpu=neon-vfpv4 code attribute because that is what the
assembler understands.
Patch by Ana Pazos <apazos@codeaurora.org>
llvm-svn: 152036
MachineOperands that define part of a virtual register must have an
<undef> flag if they are not intended as read-modify-write operands.
The old trick of adding an <imp-def> operand doesn't work any longer.
Fixes PR12177.
llvm-svn: 152008
In this instance we are generating the tail-call during legalizeDAG. The 2nd
floor call can't be a tail call because it clobbers %xmm1, which is defined by
the first floor call. The first floor call can't be a tail-call because it's
not in the tail position. The only reasonable way I could think to fix this
in a target-independent manner was to check for glue logic on the copy reg.
rdar://10930395
llvm-svn: 151877
floating point equality comparisons into integer ones with -ffast-math. The
issue is the optimization causes +0.0 != -0.0.
Now the optimization is only done when one side is known to be 0.0. The other
side's sign bit is masked off for the comparison.
rdar://10964603
llvm-svn: 151861
This function could have r12 live across a function call when compiling
thumb1 code.
The test case for this is not included because it is very long. It must
provoke emergency spilling near a function call. The behavior is
provoked by MultiSource/Applications/JM/lencod, and it triggers an
assertion in the scavenger.
<rdar://problem/10963642>
llvm-svn: 151855
and stores was added.
- SelectAddr should return false if Parent is an unaligned f32 load or store.
- Only aligned load and store nodes should be matched to select reg+imm
floating point instructions.
- MIPS does not have support for f64 unaligned load or store instructions.
llvm-svn: 151843
This allows us to make TRC non-polymorphic and value-initializable, eliminating a huge static
initializer and a ton of cruft from the generated code.
Shrinks ARMBaseRegisterInfo.o by ~100k.
llvm-svn: 151806
Without this hook, functions w/ a completely empty body (including no
epilogue) will cause an MCEmitter assertion failure.
For example,
define internal fastcc void @empty_function() {
unreachable
}
rdar://10947471
llvm-svn: 151673
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
llvm-svn: 151623
When an outgoing call takes more than 2k of arguments on the stack, we
don't allocate that call frame in the prolog, but adjust the stack
pointer immediately before the call instead.
This causes problems with the emergency spill slot because PEI can't
track stack pointer adjustments on the second pass, and if the outgoing
arguments are too big, SP can't be used to reach the emergency spill
slot at all.
Work around these problems by ensuring there is a base or frame pointer
that can be used to access the emergency spill slot.
<rdar://problem/10917166>
llvm-svn: 151604
We on the linker to resolve calls to the appropriate BL/BLX instruction
to make interworking function correctly. It uses the symbol in the
relocation to do that, so we need to be careful about being too clever.
To enable this for ARM mode, split the BL/BLX fixup kind off from the
unconditional-branch fixups.
rdar://10927209
llvm-svn: 151571
Reverting this because it breaks static linking on ppc64. Specifically, it may be linkonce_odr functions that are the problem.
With this patch, if you link statically, calls to some functions end up calling their descriptor addresses instead
of calling to their entry points. This causes the execution to fail with SIGILL (b/c the descriptor address just
has some pointers, not code).
llvm-svn: 151433
[Joe Groff] Hi everyone. My previous patch applied as r151382 had a few problems:
Clang raised a warning, and X86 LowerOperation would assert out for
fptoui f64 to i32 because it improperly lowered to an illegal
BUILD_PAIR. Here's a patch that addresses these issues. Let me know if
any other changes are necessary. Thanks.
llvm-svn: 151432
reserving a physical register ($gp or $28) for that purpose.
This will completely eliminate loads that restore the value of $gp after every
function call, if the register allocator assigns a callee-saved register, or
eliminate unnecessary loads if it assigns a temporary register.
example:
.cpload $25 // set $gp.
...
.cprestore 16 // store $gp to stack slot 16($sp).
...
jalr $25 // function call. clobbers $gp.
lw $gp, 16($sp) // not emitted if callee-saved reg is chosen.
...
lw $2, 4($gp)
...
jalr $25 // function call.
lw $gp, 16($sp) // not emitted if $gp is not live after this instruction.
...
llvm-svn: 151402
I'll let the buildbots determine the compile time improvements from this
change, but 464.h264ref has 5% faster codegen at -O2.
This patch does cause some assembly changes. Branch folding can make
different decisions about calls with dead return values.
CriticalAntiDepBreaker may choose different registers because its
liveness tracking is affected. MachineCopyPropagation may sometimes
leave a dead copy behind.
llvm-svn: 151331
The tied source operand of tMUL is the second source operand, not the
first like every other two-address thumb instruction. Special case it
in the size reduction pass to make sure we create the tMUL instruction
properly.
llvm-svn: 151315
rdar://10873652
As part of this I updated the llvm-mc disassembler C API to always call the
SymbolLookUp call back even if there is no getOpInfo call back. If there is a
getOpInfo call back that is tried first and then if that gets no information
then the SymbolLookUp is called. I also made the code more robust by
memset(3)'ing to zero the LLVMOpInfo1 struct before then setting
SymbolicOp.Value before for the call to getOpInfo. And also don't use any
values from the LLVMOpInfo1 struct if getOpInfo returns 0. And also don't
use any of the ReferenceType or ReferenceName values from SymbolLookUp if it
returns NULL. rdar://10873563 and rdar://10873683
For the X86 target also fixed bugs so the annotations get printed.
Also fixed a few places in the ARM target that was not producing symbolic
operands for some instructions. rdar://10878166
llvm-svn: 151267
value is zero. Instead of a cmov + op, issue an conditional op instead. e.g.
cmp r9, r4
mov r4, #0
moveq r4, #1
orr lr, lr, r4
should be:
cmp r9, r4
orreq lr, lr, #1
That is, optimize (or x, (cmov 0, y, cond)) to (or.cond x, y). Similarly extend
this to xor as well as (and x, (cmov -1, y, cond)) => (and.cond x, y).
It's possible to extend this to ADD and SUB but I don't think they are common.
rdar://8659097
llvm-svn: 151224
The standard function epilog includes a .size directive, but ppc64 uses
an alternate local symbol to tag the actual start of each function.
Until recently, binutils accepted the .size directive as:
.size test1, .Ltmp0-test1
however, using this directive with recent binutils will result in the error:
.size expression for XXX does not evaluate to a constant
so we must use the label which actually tags the start of the function.
llvm-svn: 151200
Passes after RegAlloc should be able to rely on MRI->getNumVirtRegs() == 0.
This makes sharing code for pre/postRA passes more robust.
Now, to check if a pass is running before the RA pipeline begins, use MRI->isSSA().
To check if a pass is running after the RA pipeline ends, use !MRI->getNumVirtRegs().
PEI resets virtual regs when it's done scavenging.
PTX will either have to provide its own PEI pass or assign physregs.
llvm-svn: 151032
Call clobbers are now represented with register mask operands. The
regmask can easily represent the fact that xmm6 is call-preserved while
ymm6 isn't. This is automatically computed by TableGen from the
CalleeSavedRegs containing xmm6.
llvm-svn: 150709
Call instructions no longer have a list of 43 call-clobbered registers.
Instead, they get a single register mask operand with a bit vector of
call-preserved registers.
This saves a lot of memory, 42 x 32 bytes = 1344 bytes per call
instruction, and it speeds up building call instructions because those
43 imp-def operands no longer need to be added to use-def lists. (And
removed and shifted and re-added for every explicit call operand).
Passes like LiveVariables, LiveIntervals, RAGreedy, PEI, and
BranchFolding are significantly faster because they can deal with call
clobbers in bulk.
Overall, clang -O2 is between 0% and 8% faster, uniformly distributed
depending on call density in the compiled code. Debug builds using
clang -O0 are 0% - 3% faster.
I have verified that this patch doesn't change the assembly generated
for the LLVM nightly test suite when building with -disable-copyprop
and -disable-branch-fold.
Branch folding behaves slightly differently in a few cases because call
instructions have different hash values now.
Copy propagation flushes its data structures when it crosses a register
mask operand. This causes it to leave a few dead copies behind, on the
order of 20 instruction across the entire nightly test suite, including
SPEC. Fixing this properly would require the pass to use different data
structures.
llvm-svn: 150638
The c'tor list is stored as a list of 'void ()*'s, so all of the functions are
bitcast to that. However, the dyn_cast doesn't automagically look through
bitcasts. Do that for it.
<rdar://problem/10813350>
llvm-svn: 150572
- Use unsigned literals when the desired result is unsigned. This mostly allows unsigned/signed mismatch warnings to be less noisy even if they aren't on by default.
- Remove misplaced llvm_unreachable.
- Add static to a declaration of a function on MSVC x86 only.
- Change some instances of calling a static function through a variable to simply calling that function while removing the unused variable.
llvm-svn: 150364
If the DEC node had more than one user, it was doing this lowering but
leaving the original DEC node around and so decrementing twice.
Fixes PR11964.
llvm-svn: 150356
This requires some gymnastics to make it available for C code. Remove the names
from the disassembler tables, making them relocation free.
llvm-svn: 150303
Now that the clang driver passes the CPU and feature information to
the backend when processing assembly files (150273), this isn't necessary.
llvm-svn: 150274
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
llvm-svn: 150226
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
llvm-svn: 150100
Creating the isPredicated TSFlag enables the code
to use the property defined in the instruction format
instead of using a large switch statement.
llvm-svn: 150078
This CL delays reading of function bodies from initial parse until
materialization, allowing overlap of compilation with bitcode download.
llvm-svn: 149918
convert at least one client over to use them. Subsequent patches both to
LLVM and Clang will try to convert more people over to a common set of
predicates.
This round of predicates is focused on OS-categorization predicates.
llvm-svn: 149815
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
llvm-svn: 149800
Passes prior to instructon selection are now split into separate configurable stages.
Header dependencies are simplified.
The bulk of this diff is simply removal of the silly DisableVerify flags.
Sorry for the target header churn. Attempting to stabilize them.
llvm-svn: 149754
Allows command line overrides to be centralized in LLVMTargetMachine.cpp.
LLVMTargetMachine can intercept common passes and give precedence to command line overrides.
Allows adding "internal" target configuration options without touching TargetOptions.
Encapsulates the PassManager.
Provides a good point to initialize all CodeGen passes so that Pass ID's can be used in APIs.
Allows modifying the target configuration hooks without rebuilding the world.
llvm-svn: 149672
needed to emit a 64-bit gp-relative relocation entry. Make changes necessary
for emitting jump tables which have entries with directive .gpdword. This patch
does not implement the parts needed for direct object emission or JIT.
llvm-svn: 149668
NEON loads and stores accept single and double spaced pairs, triples,
and quads of D registers. This patch adds new register classes to
accurately model those constraints:
Dn, Dn+1 Dn, Dn+2
----------------------
DPair DPairSpc
DTriple DTripleSpc
DQuad DQuadSpc
Also extend the existing QQ and QQQQ register classes to contains all Q
pairs and quads instead of just the aligned ones.
These new register classes will make it possible to accurately model
constraints on NEON loads and stores, and we can get rid of all the NEON
pseudo-instructions. The late scheduler will be able to accurately
model instruction dependencies from the explicit operands.
This more than doubles the number of ARM registers, but the backend
passes are quite good at handling this. The llc -O0 compile time only
regresses by 1.5%. Future work on register mask operands will recover
this regression.
llvm-svn: 149640
Adds an instruction itinerary to all x86 instructions, giving each a default latency of 1, using the InstrItinClass IIC_DEFAULT.
Sets specific latencies for Atom for the instructions in files X86InstrCMovSetCC.td, X86InstrArithmetic.td, X86InstrControl.td, and X86InstrShiftRotate.td. The Atom latencies for the remainder of the x86 instructions will be set in subsequent patches.
Adds a test to verify that the scheduler is working.
Also changes the scheduling preference to "Hybrid" for i386 Atom, while leaving x86_64 as ILP.
Patch by Preston Gurd!
llvm-svn: 149558
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling.
Patch by Sergei Larin!
llvm-svn: 149547
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
Adjust an example MachObjectWriter diagnostic to use the information
to issue a better message.
Before:
LLVM ERROR: unknown ARM fixup kind!
After:
x.s:6:5: error: unsupported relocation on symbol
beq bar
^
rdar://9800182
llvm-svn: 149093
The Win64 calling convention has xmm6-15 as callee-saved while still
clobbering all ymm registers.
Add a YMM_HI_6_15 pseudo-register that aliases the clobbered part of the
ymm registers, and mark that as call-clobbered. This allows live xmm
registers across calls.
This hack wouldn't be necessary with RegisterMask operands representing
the call clobbers, but they are not quite operational yet.
llvm-svn: 149088
This enables the linker to match concrete relocation types (absolute or relative) with whatever library or C++ support code is being linked against.
llvm-svn: 149057
. "fptosi" and "fptoui" IR instructions are defined with round-to-zero rounding mode.
. Currently for AVX mode for <4xdouble> and <8xdouble> the "VCVTPD2DQ.128" and "VCVTPD2DQ.256" instructions are selected (for .fp_to_sint. DAG node operation ) by AVX codegen. However they use round-to-nearest-even rounding mode.
. Consequently, the conversion produces incorrect numbers.
The fix is to replace selection of VCVTPD2DQ instructions with VCVTTPD2DQ instructions. The latter use truncate (i.e. round-to-zero) rounding mode.
As .fp_to_sint. DAG node operation is used only for lowering of "fptosi" and "fptoui" IR instructions, the fix in X86InstrSSE.td definition file doesn.t have an impact on other LLVM flows.
The patch includes changes in the .td file, LIT test for the changes and a fix in a legacy LIT test (which produced asm code conflicting with LLVN IR spec).
llvm-svn: 149056
"Although a Thumb2 instruction, the IT mnemonic shall be permitted in
ARM mode, and the condition verified to match the condition code(s)
on the following instruction(s)."
PR11853
llvm-svn: 148969
- Use MipsAnalyzeImmediate to expand immediates that do not fit in 16-bit.
- Change the types of variables so that they are sufficiently large to handle
64-bit pointers.
- Emit instructions to set register $28 in a function prologue after
instructions which store callee-saved registers have been emitted.
llvm-svn: 148917
expand offsets that do not fit in the 16-bit immediate field of load and store
instructions. Also change the types of variables so that they are sufficiently
large to handle 64-bit pointers.
llvm-svn: 148916
violation -- MC cannot depend on CodeGen.
Specifically, the MCTargetDesc component of each target is actually
a subcomponent of the MC library. As such, it cannot depend on the
target-independent code generator, because MC itself cannot depend on
the target-independent code generator. This change moved a flag from the
ARM MCTargetDesc file ARMMCAsmInfo.cpp to the CodeGen layer in
ARMException.cpp, leaving behind an 'extern' to refer back to it. That
layering order isn't viable givin the constraints outlined above.
Commandline flags are designed to be static specifically to avoid these
types of bugs.
Fixing this is likely going to require some non-trivial refactoring.
llvm-svn: 148759
This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
llvm-svn: 148686