- FCOPYSIGN nodes that have operands of different types were not handled.
- Different code was generated depending on the endianness of the target.
Additionally, code is added that emits INS and EXT instructions, if they are
supported by target (they are R2 instructions).
llvm-svn: 154540
While there is an encoding for it in VUZP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11222366
llvm-svn: 154511
While there is an encoding for it in VZIP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11221911
llvm-svn: 154505
Original message:
Modify the code that lowers shuffles to blends from using blendvXX to vblendXX.
blendV uses a register for the selection while Vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154483
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
llvm-svn: 154480
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
We were incorrectly conflating some add variants which don't have a
cc_out operand with the mirroring sub encodings, which do. Part of the
awesome non-orthogonality legacy of thumb1. Similarly, handling of
add/sub of an immediate was sometimes incorrectly removing the cc_out
operand for add/sub register variants.
rdar://11216577
llvm-svn: 154411
blendv uses a register for the selection while vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154396
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
llvm-svn: 154370
in-register, such that we can use a single vector store rather then a
series of scalar stores.
For func_4_8 the generated code
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vmov.u16 r0, d16[3]
strb r0, [r2, #3]
vmov.u16 r0, d16[2]
strb r0, [r2, #2]
vmov.u16 r0, d16[1]
strb r0, [r2, #1]
vmov.u16 r0, d16[0]
strb r0, [r2]
bx lr
becomes
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vuzp.8 d16, d17
vst1.32 {d16[0]}, [r2, :32]
bx lr
I'm not fond of how this combine pessimizes 2012-03-13-DAGCombineBug.ll,
but I couldn't think of a way to judiciously apply this combine.
This
ldrh r0, [r0, #4]
strh r0, [r1]
becomes
vldr d16, [r0]
vmov.u16 r0, d16[2]
vmov.32 d16[0], r0
vuzp.16 d16, d17
vst1.32 {d16[0]}, [r1, :32]
PR11158
rdar://10703339
llvm-svn: 154340
A couple of cases where we were accidentally creating constant conditions by
something like "x == a || b" instead of "x == a || x == b". In one case a
conditional & then unreachable was used - I transformed this into a direct
assert instead.
llvm-svn: 154324
x86 addressing modes. This allows PIE-based TLS offsets to fit directly
into an addressing mode immediate offset, which is the last remaining
code quality issue from PR12380. With this patch, that PR is completely
fixed.
To understand why this patch is correct to match these offsets into
addressing mode immediates, break it down by cases:
1) 32-bit is trivially correct, and unmodified here.
2) 64-bit non-small mode is unchanged and never matches.
3) 64-bit small PIC code which is RIP-relative is handled specially in
the match to try to fit RIP into the base register. If it fails, it
now early exits. This behavior is unchanged by the patch.
4) 64-bit small non-PIC code which is not RIP-relative continues to work
as it did before. The reason these immediates are safe is because the
ABI ensures they fit in small mode. This behavior is unchanged.
5) 64-bit small PIC code which is *not* using RIP-relative addressing.
This is the only case changed by the patch, and the primary place you
see it is in TLS, either the win64 section offset TLS or Linux
local-exec TLS model in a PIC compilation. Here the ABI again ensures
that the immediates fit because we are in small mode, and any other
operations required due to the PIC relocation model have been handled
externally to the Wrapper node (extra loads etc are made around the
wrapper node in ISelLowering).
I've tested this as much as I can comparing it with GCC's output, and
everything appears safe. I discussed this with Anton and it made sense
to him at least at face value. That said, if there are issues with PIC
code after this patch, yell and we can revert it.
llvm-svn: 154304
optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
llvm-svn: 154294
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
llvm-svn: 154292
Previously we used three instructions to broadcast an immediate value into a
vector register.
On Sandybridge we continue to load the broadcasted value from the constant pool.
llvm-svn: 154284
The tLDRr instruction with the last register operand set to the zero register
prints in assembly as if no register was specified, and the assembler encodes
it as a tLDRi instruction with a zero immediate. With the integrated assembler,
that zero register gets emitted as "r0", so we get "ldr rx, [ry, r0]" which
is broken. Emit the instruction as tLDRi with a zero immediate. I don't
know if there's a good way to write a testcase for this. Suggestions welcome.
Opportunities for follow-up work:
1) The asm printer should complain if a non-optional register operand is set
to the zero register, instead of silently dropping it.
2) The integrated assembler should complain in the same situation, instead of
silently emitting the operand as "r0".
llvm-svn: 154261
Cygwin-1.7 supports dw2. Some recent mingw distros support one, too.
I have confirmed test-suite/SingleSource/Benchmarks/Shootout-C++/except.cpp can pass on Cygwin.
llvm-svn: 154247
by default.
This is a behaviour configurable in the MCAsmInfo. I've decided to turn
it on by default in (possibly optimistic) hopes that most assemblers are
reasonably sane. If this proves a problem, switching to default seems
reasonable.
I'm not sure if this is the opportune place to test, but it seemed good
to make sure it was tested somewhere.
llvm-svn: 154235
After register masks were introdruced to represent the call clobbers, it
is no longer necessary to have duplicate instruction for iOS.
llvm-svn: 154209
We had special instructions for iOS because r9 is call-clobbered, but
that is represented dynamically by the register mask operands now, so
there is no need for the pseudo-instructions.
llvm-svn: 154144
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
llvm-svn: 154141
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
llvm-svn: 154123
A MOVCCr instruction can be commuted by inverting the condition. This
can help reduce register pressure and remove unnecessary copies in some
cases.
<rdar://problem/11182914>
llvm-svn: 154033
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
This patch allows llvm to recognize that a 64 bit object file is being produced
and that the subsequently generated ELF header has the correct information.
The test case checks for both big and little endian flavors.
Patch by Jack Carter.
llvm-svn: 153889
Post-RA scheduling gives a significant performance improvement on
the embedded cores, so turn it on. Using full anti-dep. breaking is
important for FP-intensive blocks, so turn it on (just on the
embedded cores for now; this should also be good on the 970s because
post-ra scheduling is all that we have for now, but that should have
more testing first).
llvm-svn: 153843
This adds a full itinerary for IBM's PPC64 A2 embedded core. These
cores form the basis for the CPUs in the new IBM BG/Q supercomputer.
llvm-svn: 153842
Loads and stores can have different pipeline behavior, especially on
embedded chips. This change allows those differences to be expressed.
Except for the 440 scheduler, there are no functionality changes.
On the 440, the latency adjustment is only by one cycle, and so this
probably does not affect much. Nevertheless, it will make a larger
difference in the future and this removes a FIXME from the 440 itin.
llvm-svn: 153821
Dynamic linking on PPC64 has had problems since we had to move the top-down
hazard-detection logic post-ra. For dynamic linking to work there needs to be
a nop placed after every call. It turns out that it is really hard to guarantee
that nothing will be placed in between the call (bl) and the nop during post-ra
scheduling. Previous attempts at fixing this by placing logic inside the
hazard detector only partially worked.
This is now fixed in a different way: call+nop codegen-only instructions. As far
as CodeGen is concerned the pair is now a single instruction and cannot be split.
This solution works much better than previous attempts.
The scoreboard hazard detector is also renamed to be more generic, there is currently
no cpu-specific logic in it.
llvm-svn: 153816
ARMConstantIslandPass still has bugs where jump table compression can
cause constant pool entries to go out of range.
Add a safety margin of 2 bytes when placing constant islands, but use
the real max displacement for verification.
<rdar://problem/11156595>
llvm-svn: 153789
When an immediate is both a value [t2_]so_imm and a [t2_]so_imm_neg,
we want to use the non-negated form to make sure we prefer the normal
encoding, not the aliased encoding via the negation of, e.g., 'cmp.w'.
llvm-svn: 153770
For 'adds r2, r2, #56' outside of an IT block, the 16-bit encoding T2
can be used for this syntax. Prefer the narrow encoding when possible.
rdar://11156277
llvm-svn: 153759
This pass splits basic blocks to insert constant islands, and it
doesn't recompute the live-in lists. No later passes depend on accurate
liveness information.
This fixes PR12410 where the machine code verifier was complaining.
llvm-svn: 153700
We are sometimes allocatinog from the DPair register class which
contains odd-even pairs in addition to the Q registers.
Place the Q registers first in the DPair allocation order as they can be
copied with a single instruction. The odd-even pairs should only be
allocated as a last resort.
llvm-svn: 153699
ARM recently gained DPair, DTriple, and DQuad register classes.
Update copyPhysReg() to handle copies in these register classes.
No test case, it is difficult to make the register allocator emit the
odd copies reliably. The missing DPair copy caused a failure on
partialsums in the nightly test suite.
<rdar://problem/11147997>
llvm-svn: 153686
This is a code change to add support for changing instruction sequences of the form:
load
inc/dec of 8/16/32/64 bits
store
into the appropriate X86 inc/dec through memory instruction:
inc[qlwb] / dec[qlwb]
The checks that were in X86DAGToDAGISel::Select(SDNode *Node)>>ISD::STORE have been extracted to isLoadIncOrDecStore and reworked to use the better
named wrappers for getOperand(unsigned) (e.g. getOffset()) and replaced Chain.getNode() with LoadNode. The comments have also been expanded.
llvm-svn: 153635
This is a code change to add support for changing instruction sequences of the form:
load
inc/dec of 8/16/32/64 bits
store
into the appropriate X86 inc/dec through memory instruction:
inc[qlwb] / dec[qlwb]
The checks that were in X86DAGToDAGISel::Select(SDNode *Node)>>ISD::STORE have been extracted to isLoadIncOrDecStore and reworked to use the better
named wrappers for getOperand(unsigned) (e.g. getOffset()) and replaced Chain.getNode() with LoadNode. The comments have also been expanded.
llvm-svn: 153617
Some targets still mess up the liveness information, but that isn't
verified after MRI->invalidateLiveness().
The verifier can still check other useful things like register classes
and CFG, so it should be enabled after all passes.
llvm-svn: 153615
When an strd instruction doesn't get the registers it wants, it can be
expanded into two str instructions. Make sure the first str doesn't kill
the base register in the case where the base and data registers are
identical:
t2STRi12 %R0<kill>, %R0, 4, pred:14, pred:%noreg
t2STRi12 %R2<kill>, %R0, 8, pred:14, pred:%noreg
<rdar://problem/11101911>
llvm-svn: 153611
When a number of sub-register VLRDS instructions are combined into a
VLDM, preserve any super-register implicit defs. This is required to
keep the register scavenger and machine code verifier happy.
Enable machine code verification after ARMLoadStoreOptimizer.
ARM/2012-01-26-CopyPropKills.ll was failing because of this.
llvm-svn: 153610
The arm_neon intrinsics can create virtual registers from the DPair
register class which allows both even-odd and odd-even D-register pairs.
This fixes PR12389.
llvm-svn: 153603
Revert r153519: "ARMLoadStoreOptimizer invalidates register liveness."
These patches caused miscompilations in povray by turning off branch
folding's updating of live-in lists.
It turns out the the late scheduler depends on the live-in lists, even
if it doesn't need correct kill flags.
<rdar://problem/11139228>
llvm-svn: 153593
them as machine instructions. Directives ".set noat" and ".set at" are now
emitted only at the beginning and end of a function except in the case where
they are emitted to enclose .cpload with an immediate operand that doesn't fit
in 16-bit field or unaligned load/stores.
Also, make the following changes:
- Remove function isUnalignedLoadStore and use a switch-case statement to
determine whether an instruction is an unaligned load or store.
- Define helper function CreateMCInst which generates an instance of an MCInst
from an opcode and a list of operands.
llvm-svn: 153552
This pass tries to update kill flags, but there are still many bugs.
Passes after the load/store optimizer don't need accurate liveness, so
don't even try.
<rdar://problem/11101911>
llvm-svn: 153519
MachinePointerInfo when getStore is called to create a node that stores an
argument passed in register to the stack. Without this change, the post RA
scheduler will fail to discover the dependencies between the stores
instructions and the instructions that load from a structure passed by value.
The link to the related discussion is here:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-March/048055.html
llvm-svn: 153499
produces a 32-bit immediate which is consumed by the use. It tries to
fold the immediate by breaking it into two parts and fold them into the
immmediate fields of two uses. e.g
movw r2, #40885
movt r3, #46540
add r0, r0, r3
=>
add.w r0, r0, #3019898880
add.w r0, r0, #30146560
;
However, this transformation is incorrect if the user produces a flag. e.g.
movw r2, #40885
movt r3, #46540
adds r0, r0, r3
=>
add.w r0, r0, #3019898880
adds.w r0, r0, #30146560
Note the adds.w may not set the carry flag even if the original sequence
would.
rdar://11116189
llvm-svn: 153484
The PPC64 SVR4 ABI requires integer stack arguments, and thus the var. args., that
are smaller than 64 bits be zero extended to 64 bits.
llvm-svn: 153373
Code such as:
%vreg100 = setcc %vreg10, -1, SETNE
brcond %vreg10, %tgt
was being incorrectly morphed into
%vreg100 = and %vreg10, 1
brcond %vreg10, %tgt
where the 'and' instruction could be eliminated since
such logic is on 1-bit types in the PTX back-end, leaving
us with just:
brcond %vreg10, %tgt
which essentially gives us inverted branch conditions.
llvm-svn: 153364
These changes allow us to compile big endian from the command line for 32 bit
Mips targets. This patch will result in code and data actually being produced
in the correct endianess.
llvm-svn: 153153
ARMBaseRegisterInfo::canRealignStack was checking for variable-sized objects
but not for stack adjustments around calls. Use hasReservedCallFrame() to
check for both. The hasBasePointer function was already correctly checking
both conditions, so the effect of this was that a base pointer would be used
without checking whether the base pointer register could be reserved. I don't
have a small testcase for this.
<rdar://problem/11075906>
llvm-svn: 153110
This results in things such as
vmovups 16(%rdi), %xmm0
vinsertf128 $1, %xmm0, %ymm0, %ymm0
to be combined to
vinsertf128 $1, 16(%rdi), %ymm0, %ymm0
rdar://11076953
llvm-svn: 153092
X86InstrCompiler.td.
It also adds –mcpu-generic to the legalize-shift-64.ll test so the test
will pass if run on an Intel Atom CPU, which would otherwise
produce an instruction schedule which differs from that which the test expects.
llvm-svn: 153033
fast-isel before emitting code. If the program bails after code was emitted,
then it could lead to the stack being adjusted more than once (two
CALLSEQ_BEGINs emitted) but being adjuste back only once after the call. This
leads to general badness and gnashing of teeth.
<rdar://problem/11050630>
llvm-svn: 152959
It's not a good style idea, as the registers will be laid down in memory in
numerical order, not the order they're in the list, but it's legal. vldm/vstm
are stricter.
rdar://11064740
llvm-svn: 152943
This results in things such as
vmovaps -96(%rbx), %xmm1
vinsertf128 $1, %xmm1, %ymm0, %ymm0
to be combined to
vinsertf128 $1, -96(%rbx), %ymm0, %ymm0
rdar://10643481
llvm-svn: 152762
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
llvm-svn: 152532
Original commit message from r147481:
DAGCombine for transforming 128->256 casts into a vmovaps, rather
then a vxorps + vinsertf128 pair if the original vector came from a load.
Fix:
Unaligned loads need to generate a vmovups.
rdar://10974078
llvm-svn: 152366
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
For example, this pattern
(select (setcc lhs, rhs, cc), true, 0)
is transformed to this one:
(select (setcc lhs, rhs, inverse(cc)), 0, true)
This enables MipsDAGToDAGISel::ReplaceUsesWithZeroReg (added in r152280) to
replace 0 with $zero.
llvm-svn: 152285
For example, the first instruction in the code below can be eliminated if the
use of $vr0 is replaced with $zero:
addiu $vr0, $zero, 0
add $vr2, $vr1, $vr0
add $vr2, $vr1, $zero
llvm-svn: 152280
The ARM code generator makes aggressive assumptions about the encodings
being selected for branches which MCRelaxAll invalidates.
rdar://11006355
llvm-svn: 152268
When an instruction only writes sub-registers, it is still necessary to
add an <imp-def> operand for the super-register. When reloading into a
virtual register, rewriting will add the operand, but when loading
directly into a virtual register, the <imp-def> operand is still
necessary.
llvm-svn: 152095
The fpscr register contains both flags (set by FP operations/comparisons) and
control bits. The control bits (FPSCR) should be reserved, since they're always
available and needn't be defined before use. The flag bits (FPSCR_NZCV) should
like to be unreserved so they can be hoisted by MachineCSE. This fixes PR12165.
llvm-svn: 152076
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
llvm-svn: 152045
Specifically, remove the magic number when checking to see if the copy has a
glue operand and simplify the checking logic.
rdar://10930395
llvm-svn: 152041
In this update:
- I assumed neon2 does not imply vfpv4, but neon and vfpv4 imply neon2.
- I kept setting .fpu=neon-vfpv4 code attribute because that is what the
assembler understands.
Patch by Ana Pazos <apazos@codeaurora.org>
llvm-svn: 152036
MachineOperands that define part of a virtual register must have an
<undef> flag if they are not intended as read-modify-write operands.
The old trick of adding an <imp-def> operand doesn't work any longer.
Fixes PR12177.
llvm-svn: 152008
In this instance we are generating the tail-call during legalizeDAG. The 2nd
floor call can't be a tail call because it clobbers %xmm1, which is defined by
the first floor call. The first floor call can't be a tail-call because it's
not in the tail position. The only reasonable way I could think to fix this
in a target-independent manner was to check for glue logic on the copy reg.
rdar://10930395
llvm-svn: 151877
floating point equality comparisons into integer ones with -ffast-math. The
issue is the optimization causes +0.0 != -0.0.
Now the optimization is only done when one side is known to be 0.0. The other
side's sign bit is masked off for the comparison.
rdar://10964603
llvm-svn: 151861
This function could have r12 live across a function call when compiling
thumb1 code.
The test case for this is not included because it is very long. It must
provoke emergency spilling near a function call. The behavior is
provoked by MultiSource/Applications/JM/lencod, and it triggers an
assertion in the scavenger.
<rdar://problem/10963642>
llvm-svn: 151855
and stores was added.
- SelectAddr should return false if Parent is an unaligned f32 load or store.
- Only aligned load and store nodes should be matched to select reg+imm
floating point instructions.
- MIPS does not have support for f64 unaligned load or store instructions.
llvm-svn: 151843
This allows us to make TRC non-polymorphic and value-initializable, eliminating a huge static
initializer and a ton of cruft from the generated code.
Shrinks ARMBaseRegisterInfo.o by ~100k.
llvm-svn: 151806
Without this hook, functions w/ a completely empty body (including no
epilogue) will cause an MCEmitter assertion failure.
For example,
define internal fastcc void @empty_function() {
unreachable
}
rdar://10947471
llvm-svn: 151673
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
llvm-svn: 151623
When an outgoing call takes more than 2k of arguments on the stack, we
don't allocate that call frame in the prolog, but adjust the stack
pointer immediately before the call instead.
This causes problems with the emergency spill slot because PEI can't
track stack pointer adjustments on the second pass, and if the outgoing
arguments are too big, SP can't be used to reach the emergency spill
slot at all.
Work around these problems by ensuring there is a base or frame pointer
that can be used to access the emergency spill slot.
<rdar://problem/10917166>
llvm-svn: 151604
We on the linker to resolve calls to the appropriate BL/BLX instruction
to make interworking function correctly. It uses the symbol in the
relocation to do that, so we need to be careful about being too clever.
To enable this for ARM mode, split the BL/BLX fixup kind off from the
unconditional-branch fixups.
rdar://10927209
llvm-svn: 151571
Reverting this because it breaks static linking on ppc64. Specifically, it may be linkonce_odr functions that are the problem.
With this patch, if you link statically, calls to some functions end up calling their descriptor addresses instead
of calling to their entry points. This causes the execution to fail with SIGILL (b/c the descriptor address just
has some pointers, not code).
llvm-svn: 151433
[Joe Groff] Hi everyone. My previous patch applied as r151382 had a few problems:
Clang raised a warning, and X86 LowerOperation would assert out for
fptoui f64 to i32 because it improperly lowered to an illegal
BUILD_PAIR. Here's a patch that addresses these issues. Let me know if
any other changes are necessary. Thanks.
llvm-svn: 151432
reserving a physical register ($gp or $28) for that purpose.
This will completely eliminate loads that restore the value of $gp after every
function call, if the register allocator assigns a callee-saved register, or
eliminate unnecessary loads if it assigns a temporary register.
example:
.cpload $25 // set $gp.
...
.cprestore 16 // store $gp to stack slot 16($sp).
...
jalr $25 // function call. clobbers $gp.
lw $gp, 16($sp) // not emitted if callee-saved reg is chosen.
...
lw $2, 4($gp)
...
jalr $25 // function call.
lw $gp, 16($sp) // not emitted if $gp is not live after this instruction.
...
llvm-svn: 151402
I'll let the buildbots determine the compile time improvements from this
change, but 464.h264ref has 5% faster codegen at -O2.
This patch does cause some assembly changes. Branch folding can make
different decisions about calls with dead return values.
CriticalAntiDepBreaker may choose different registers because its
liveness tracking is affected. MachineCopyPropagation may sometimes
leave a dead copy behind.
llvm-svn: 151331
The tied source operand of tMUL is the second source operand, not the
first like every other two-address thumb instruction. Special case it
in the size reduction pass to make sure we create the tMUL instruction
properly.
llvm-svn: 151315
rdar://10873652
As part of this I updated the llvm-mc disassembler C API to always call the
SymbolLookUp call back even if there is no getOpInfo call back. If there is a
getOpInfo call back that is tried first and then if that gets no information
then the SymbolLookUp is called. I also made the code more robust by
memset(3)'ing to zero the LLVMOpInfo1 struct before then setting
SymbolicOp.Value before for the call to getOpInfo. And also don't use any
values from the LLVMOpInfo1 struct if getOpInfo returns 0. And also don't
use any of the ReferenceType or ReferenceName values from SymbolLookUp if it
returns NULL. rdar://10873563 and rdar://10873683
For the X86 target also fixed bugs so the annotations get printed.
Also fixed a few places in the ARM target that was not producing symbolic
operands for some instructions. rdar://10878166
llvm-svn: 151267
value is zero. Instead of a cmov + op, issue an conditional op instead. e.g.
cmp r9, r4
mov r4, #0
moveq r4, #1
orr lr, lr, r4
should be:
cmp r9, r4
orreq lr, lr, #1
That is, optimize (or x, (cmov 0, y, cond)) to (or.cond x, y). Similarly extend
this to xor as well as (and x, (cmov -1, y, cond)) => (and.cond x, y).
It's possible to extend this to ADD and SUB but I don't think they are common.
rdar://8659097
llvm-svn: 151224
The standard function epilog includes a .size directive, but ppc64 uses
an alternate local symbol to tag the actual start of each function.
Until recently, binutils accepted the .size directive as:
.size test1, .Ltmp0-test1
however, using this directive with recent binutils will result in the error:
.size expression for XXX does not evaluate to a constant
so we must use the label which actually tags the start of the function.
llvm-svn: 151200
Passes after RegAlloc should be able to rely on MRI->getNumVirtRegs() == 0.
This makes sharing code for pre/postRA passes more robust.
Now, to check if a pass is running before the RA pipeline begins, use MRI->isSSA().
To check if a pass is running after the RA pipeline ends, use !MRI->getNumVirtRegs().
PEI resets virtual regs when it's done scavenging.
PTX will either have to provide its own PEI pass or assign physregs.
llvm-svn: 151032
Call clobbers are now represented with register mask operands. The
regmask can easily represent the fact that xmm6 is call-preserved while
ymm6 isn't. This is automatically computed by TableGen from the
CalleeSavedRegs containing xmm6.
llvm-svn: 150709
Call instructions no longer have a list of 43 call-clobbered registers.
Instead, they get a single register mask operand with a bit vector of
call-preserved registers.
This saves a lot of memory, 42 x 32 bytes = 1344 bytes per call
instruction, and it speeds up building call instructions because those
43 imp-def operands no longer need to be added to use-def lists. (And
removed and shifted and re-added for every explicit call operand).
Passes like LiveVariables, LiveIntervals, RAGreedy, PEI, and
BranchFolding are significantly faster because they can deal with call
clobbers in bulk.
Overall, clang -O2 is between 0% and 8% faster, uniformly distributed
depending on call density in the compiled code. Debug builds using
clang -O0 are 0% - 3% faster.
I have verified that this patch doesn't change the assembly generated
for the LLVM nightly test suite when building with -disable-copyprop
and -disable-branch-fold.
Branch folding behaves slightly differently in a few cases because call
instructions have different hash values now.
Copy propagation flushes its data structures when it crosses a register
mask operand. This causes it to leave a few dead copies behind, on the
order of 20 instruction across the entire nightly test suite, including
SPEC. Fixing this properly would require the pass to use different data
structures.
llvm-svn: 150638
The c'tor list is stored as a list of 'void ()*'s, so all of the functions are
bitcast to that. However, the dyn_cast doesn't automagically look through
bitcasts. Do that for it.
<rdar://problem/10813350>
llvm-svn: 150572
- Use unsigned literals when the desired result is unsigned. This mostly allows unsigned/signed mismatch warnings to be less noisy even if they aren't on by default.
- Remove misplaced llvm_unreachable.
- Add static to a declaration of a function on MSVC x86 only.
- Change some instances of calling a static function through a variable to simply calling that function while removing the unused variable.
llvm-svn: 150364
If the DEC node had more than one user, it was doing this lowering but
leaving the original DEC node around and so decrementing twice.
Fixes PR11964.
llvm-svn: 150356
This requires some gymnastics to make it available for C code. Remove the names
from the disassembler tables, making them relocation free.
llvm-svn: 150303
Now that the clang driver passes the CPU and feature information to
the backend when processing assembly files (150273), this isn't necessary.
llvm-svn: 150274
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
llvm-svn: 150226
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
llvm-svn: 150100
Creating the isPredicated TSFlag enables the code
to use the property defined in the instruction format
instead of using a large switch statement.
llvm-svn: 150078
This CL delays reading of function bodies from initial parse until
materialization, allowing overlap of compilation with bitcode download.
llvm-svn: 149918
convert at least one client over to use them. Subsequent patches both to
LLVM and Clang will try to convert more people over to a common set of
predicates.
This round of predicates is focused on OS-categorization predicates.
llvm-svn: 149815
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
llvm-svn: 149800
Passes prior to instructon selection are now split into separate configurable stages.
Header dependencies are simplified.
The bulk of this diff is simply removal of the silly DisableVerify flags.
Sorry for the target header churn. Attempting to stabilize them.
llvm-svn: 149754
Allows command line overrides to be centralized in LLVMTargetMachine.cpp.
LLVMTargetMachine can intercept common passes and give precedence to command line overrides.
Allows adding "internal" target configuration options without touching TargetOptions.
Encapsulates the PassManager.
Provides a good point to initialize all CodeGen passes so that Pass ID's can be used in APIs.
Allows modifying the target configuration hooks without rebuilding the world.
llvm-svn: 149672
needed to emit a 64-bit gp-relative relocation entry. Make changes necessary
for emitting jump tables which have entries with directive .gpdword. This patch
does not implement the parts needed for direct object emission or JIT.
llvm-svn: 149668
NEON loads and stores accept single and double spaced pairs, triples,
and quads of D registers. This patch adds new register classes to
accurately model those constraints:
Dn, Dn+1 Dn, Dn+2
----------------------
DPair DPairSpc
DTriple DTripleSpc
DQuad DQuadSpc
Also extend the existing QQ and QQQQ register classes to contains all Q
pairs and quads instead of just the aligned ones.
These new register classes will make it possible to accurately model
constraints on NEON loads and stores, and we can get rid of all the NEON
pseudo-instructions. The late scheduler will be able to accurately
model instruction dependencies from the explicit operands.
This more than doubles the number of ARM registers, but the backend
passes are quite good at handling this. The llc -O0 compile time only
regresses by 1.5%. Future work on register mask operands will recover
this regression.
llvm-svn: 149640
Adds an instruction itinerary to all x86 instructions, giving each a default latency of 1, using the InstrItinClass IIC_DEFAULT.
Sets specific latencies for Atom for the instructions in files X86InstrCMovSetCC.td, X86InstrArithmetic.td, X86InstrControl.td, and X86InstrShiftRotate.td. The Atom latencies for the remainder of the x86 instructions will be set in subsequent patches.
Adds a test to verify that the scheduler is working.
Also changes the scheduling preference to "Hybrid" for i386 Atom, while leaving x86_64 as ILP.
Patch by Preston Gurd!
llvm-svn: 149558
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling.
Patch by Sergei Larin!
llvm-svn: 149547
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
Adjust an example MachObjectWriter diagnostic to use the information
to issue a better message.
Before:
LLVM ERROR: unknown ARM fixup kind!
After:
x.s:6:5: error: unsupported relocation on symbol
beq bar
^
rdar://9800182
llvm-svn: 149093
The Win64 calling convention has xmm6-15 as callee-saved while still
clobbering all ymm registers.
Add a YMM_HI_6_15 pseudo-register that aliases the clobbered part of the
ymm registers, and mark that as call-clobbered. This allows live xmm
registers across calls.
This hack wouldn't be necessary with RegisterMask operands representing
the call clobbers, but they are not quite operational yet.
llvm-svn: 149088
This enables the linker to match concrete relocation types (absolute or relative) with whatever library or C++ support code is being linked against.
llvm-svn: 149057
. "fptosi" and "fptoui" IR instructions are defined with round-to-zero rounding mode.
. Currently for AVX mode for <4xdouble> and <8xdouble> the "VCVTPD2DQ.128" and "VCVTPD2DQ.256" instructions are selected (for .fp_to_sint. DAG node operation ) by AVX codegen. However they use round-to-nearest-even rounding mode.
. Consequently, the conversion produces incorrect numbers.
The fix is to replace selection of VCVTPD2DQ instructions with VCVTTPD2DQ instructions. The latter use truncate (i.e. round-to-zero) rounding mode.
As .fp_to_sint. DAG node operation is used only for lowering of "fptosi" and "fptoui" IR instructions, the fix in X86InstrSSE.td definition file doesn.t have an impact on other LLVM flows.
The patch includes changes in the .td file, LIT test for the changes and a fix in a legacy LIT test (which produced asm code conflicting with LLVN IR spec).
llvm-svn: 149056
"Although a Thumb2 instruction, the IT mnemonic shall be permitted in
ARM mode, and the condition verified to match the condition code(s)
on the following instruction(s)."
PR11853
llvm-svn: 148969
- Use MipsAnalyzeImmediate to expand immediates that do not fit in 16-bit.
- Change the types of variables so that they are sufficiently large to handle
64-bit pointers.
- Emit instructions to set register $28 in a function prologue after
instructions which store callee-saved registers have been emitted.
llvm-svn: 148917
expand offsets that do not fit in the 16-bit immediate field of load and store
instructions. Also change the types of variables so that they are sufficiently
large to handle 64-bit pointers.
llvm-svn: 148916
violation -- MC cannot depend on CodeGen.
Specifically, the MCTargetDesc component of each target is actually
a subcomponent of the MC library. As such, it cannot depend on the
target-independent code generator, because MC itself cannot depend on
the target-independent code generator. This change moved a flag from the
ARM MCTargetDesc file ARMMCAsmInfo.cpp to the CodeGen layer in
ARMException.cpp, leaving behind an 'extern' to refer back to it. That
layering order isn't viable givin the constraints outlined above.
Commandline flags are designed to be static specifically to avoid these
types of bugs.
Fixing this is likely going to require some non-trivial refactoring.
llvm-svn: 148759
This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
llvm-svn: 148686
We have patterns for vector sext and zext operations but were missing
anyext. Without those patterns, codegen will fail when the selection DAG
has any_extend nodes.
llvm-svn: 148568
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
llvm-svn: 148556
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
llvm-svn: 148444
It adds register mask operands to x86 call instructions. Once all the
backend passes support register mask operands, this will be permanently
enabled.
llvm-svn: 148438
Load/store instructions w/ a fixup to be relative a function marked as thumb
don't use the low bit to specify thumb vs. non-thumb like interworking
branches do, so don't set it when dealing with those fixups.
rdar://10348687.
llvm-svn: 148366
When set, this bit indicates that a register is completely defined by
the value of its sub-registers.
Use the CoveredBySubRegs property to infer which super-registers are
call-preserved given a list of callee-saved registers. For example, the
ARM registers D8-D15 are callee-saved. This now automatically implies
that Q4-Q7 are call-preserved.
Conversely, Win64 callees save XMM6-XMM15, but the corresponding
YMM6-YMM15 registers are not call-preserved because they are not fully
defined by their sub-registers.
llvm-svn: 148363
In CanXFormVExtractWithShuffleIntoLoad we assumed that EXTRACT_VECTOR_ELT can be later handled by the DAGCombiner.
However, in some cases on AVX, the EXTRACT_VECTOR_ELT is legalized to EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which
currently is not handled by the DAGCombiner. In this patch I added a check that we only extract from the XMM part.
llvm-svn: 148298
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
llvm-svn: 148262
We know that the blend instructions only use the MSB, so if the mask is
sign-extended then we can convert it into a SHL instruction. This is a
common pattern because the type-legalizer sign-extends the i1 type which
is used by the LLVM-IR for the condition.
Added a new optimization in SimplifyDemandedBits for SIGN_EXTEND_INREG -> SHL.
llvm-svn: 148225
live across BBs before register allocation. This miscompiled 197.parser
when a cmp + b are optimized to a cbnz instruction even though the CPSR def
is live-in a successor.
cbnz r6, LBB89_12
...
LBB89_12:
ble LBB89_1
The fix consists of two parts. 1) Teach LiveVariables that some unallocatable
registers might be liveouts so don't mark their last use as kill if they are.
2) ARM constantpool island pass shouldn't form cbz / cbnz if the conditional
branch does not kill CPSR.
rdar://10676853
llvm-svn: 148168
The QQ and QQQQ registers are not 'real', they are pseudo-registers used
to model some vld and vst instructions.
This makes the call clobber lists longer, but I intend to get rid of
those soon.
llvm-svn: 148151
The registers are placed into the saved registers list in the reverse order,
which is why the original loop was written to loop backwards.
llvm-svn: 148064
lc: X86ISelLowering.cpp:6480: llvm::SDValue llvm::X86TargetLowering::LowerVECTOR_SHUFFLE(llvm::SDValue, llvm::SelectionDAG&) const: Assertion `V1.getOpcode() != ISD::UNDEF&& "Op 1 of shuffle should not be undef"' failed.
Added a test.
llvm-svn: 148044
Restore the (obviously wrong) behavior from before r147938 without relying on
undefined behavior. Add a fat FIXME note.
This should fix nightly tester failures.
llvm-svn: 148030
In att style asm syntax memory operand size is derived from suffix attached with mnemonic. In intel style asm syntax it is part of memory operand hence predicate method check is required to select appropriate instruction.
llvm-svn: 148006
same pattern. We already had this pattern is a few places, but others
tried to make a rough approximation of an actual DAG structure. As not
everywhere went to this trouble, nothing could rely on this being done.
In fact, I've checked all references to these node Ids, and the ones
that are using the topo-sort properties are actually satisfied with
a strict-weak-ordering. The requirement appears to be that Use >= Def.
I've added a big blurb of comments to this bit of the transform to
clarify why the order is so important for the next reader of the code.
I'm starting with this change as it is very small, and trivially
reverted if something breaks or the >= above really does need to be >.
If that proves the case, we can hide the problem by reverting this
patch, but the problem exists elsewhere as well, and so a more
comprehensive solution will be needed.
llvm-svn: 148001
hoped this would revive one of the llvm-gcc selfhost build bots, but it
didn't so it doesn't appear that my transform is the culprit.
If anyone else is seeing failures, please let me know!
llvm-svn: 147957
strange build bot failures that look like a miscompile into an infloop.
I'll investigate this tomorrow, but I'd both like to know whether my
patch is the culprit, and get the bots back to green.
llvm-svn: 147945
mask+shift pairs at the beginning of the ISD::AND case block, and then
hoist the final pattern into a helper function, simplifying and
reflowing it appropriately. This should have no observable behavior
change, but several simplifications fell out of this such as directly
computing the new mask constant, etc.
llvm-svn: 147939
extracts and scaled addressing modes into its own helper function. No
functionality changed here, just hoisting and layout fixes falling out
of that hoisting.
llvm-svn: 147937
detect a pattern which can be implemented with a small 'shl' embedded in
the addressing mode scale. This happens in real code as follows:
unsigned x = my_accelerator_table[input >> 11];
Here we have some lookup table that we look into using the high bits of
'input'. Each entity in the table is 4-bytes, which means this
implicitly gets turned into (once lowered out of a GEP):
*(unsigned*)((char*)my_accelerator_table + ((input >> 11) << 2));
The shift right followed by a shift left is canonicalized to a smaller
shift right and masking off the low bits. That hides the shift right
which x86 has an addressing mode designed to support. We now detect
masks of this form, and produce the longer shift right followed by the
proper addressing mode. In addition to saving a (rather large)
instruction, this also reduces stalls in Intel chips on benchmarks I've
measured.
In order for all of this to work, one part of the DAG needs to be
canonicalized *still further* than it currently is. This involves
removing pointless 'trunc' nodes between a zextload and a zext. Without
that, we end up generating spurious masks and hiding the pattern.
llvm-svn: 147936
Allow LDRD to be formed from pairs with different LDR encodings. This was the original intention of the pass. Somewhere along the way, the LDR opcodes were refined which broke the optimization. We really don't care what the original opcodes are as long as they both map to the same LDRD and the immediate still fits.
Fixes rdar://10435045 ARMLoadStoreOptimization cannot handle mixed LDRi8/LDRi12
llvm-svn: 147922
This function runs after all constant islands have been placed, and may
shrink some instructions to their 2-byte forms. This can actually cause
some constant pool entries to move out of range because of growing
alignment padding.
Treat instructions that may be shrunk the same as inline asm - they
erode the known alignment bits.
Also reinstate an old assertion in verify(). It is correct now that
basic block offsets include alignments.
Add a single large test case that will hopefully exercise many parts of
the constant island pass.
<rdar://problem/10670199>
llvm-svn: 147885
As the comment around 7746 says, it's better to use the x87 extended precision
here than SSE. And the generic code doesn't know how to do that. It also regains
the speed lost for the uint64_to_float.c testcase.
<rdar://problem/10669858>
llvm-svn: 147869
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
llvm-svn: 147861
On Thumb, the displacement computation hardware uses the address of the
current instruction rouned down to a multiple of 4. Include this
rounding in the UserOffset we compute for each instruction.
When inline asm is present, the instruction alignment may not be known.
Constrain the maximum displacement instead in that case.
This makes it possible for CreateNewWater() and OffsetIsInRange() to
agree about the valid displacements. When they disagree, infinite
looping happens.
As always, test cases for this stuff are insane.
<rdar://problem/10660175>
llvm-svn: 147825
this substraction will result in small negative numbers at worst which
become very large positive numbers on assignment and are thus caught by
the <=4 check on the next line. The >0 check clearly intended to catch
these as negative numbers.
Spotted by inspection, and impossible to trigger given the shift widths
that can be used.
llvm-svn: 147773
file error checking. Use that to error on an unfinished cfi_startproc.
The error is not nice, but is already better than a segmentation fault.
llvm-svn: 147717
This eliminates a lot of constant pool entries for -O0 builds of code
with many global variable accesses.
This speeds up -O0 codegen of consumer-typeset by 2x because the
constant island pass no longer has to look at thousands of constant pool
entries.
<rdar://problem/10629774>
llvm-svn: 147712
Testing: passed 'make check' including LIT tests for all sequences being handled (both SSE and AVX)
Reviewers: Evan Cheng, David Blaikie, Bruno Lopes, Elena Demikhovsky, Chad Rosier, Anton Korobeynikov
llvm-svn: 147601
This small bit of ASM code is sufficient to do what the old algorithm did:
movq %rax, %xmm0
punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
#ifdef __SSE3__
haddpd %xmm0, %xmm0
#else
pshufd $0x4e, %xmm0, %xmm1
addpd %xmm1, %xmm0
#endif
It's arguably faster. One caveat, the 'haddpd' instruction isn't very fast on
all processors.
<rdar://problem/7719814>
llvm-svn: 147593
Now that canRealignStack() understands frozen reserved registers, it is
safe to use it for aligned spill instructions.
It will only return true if the registers reserved at the beginning of
register allocation allow for dynamic stack realignment.
<rdar://problem/10625436>
llvm-svn: 147579
Once register allocation has started the reserved registers are frozen.
Fix the ARM canRealignStack() hook to respect the frozen register state.
Now the hook returns false if register allocation was started with frame
pointer elimination enabled.
It also returns false if register allocation started without a reserved
base pointer, and stack realignment would require a base pointer. This
bug was breaking oggenc on armv6.
No test case, an upcoming patch will use this functionality to realign
the stack for spill slots when possible.
llvm-svn: 147578
versions derive from them.
- JALR64 is not needed since N64 does not emit jal.
- Add template parameter to BranchLink that sets the rt field.
- Fix the set of temporary registers for O32 and N64.
llvm-svn: 147518
(x > y) ? x : y
=>
(x >= y) ? x : y
So for something like
(x - y) > 0 : (x - y) ? 0
It will be
(x - y) >= 0 : (x - y) ? 0
This makes is possible to test sign-bit and eliminate a comparison against
zero. e.g.
subl %esi, %edi
testl %edi, %edi
movl $0, %eax
cmovgl %edi, %eax
=>
xorl %eax, %eax
subl %esi, $edi
cmovsl %eax, %edi
rdar://10633221
llvm-svn: 147512
This patch caused a miscompilation of oggenc because a frame pointer was
suddenly needed halfway through register allocation.
<rdar://problem/10625436>
llvm-svn: 147487
If anybody has strong feelings about 'default: assert(0 && "blah")' vs
'default: llvm_unreachable("blah")', feel free to regularize the instances of
each in this file.
llvm-svn: 147459
Implement encoder methods getJumpTargetOpValue and getBranchTargetOpValue
for jmptarget and brtarget Mips tablegen operand types in the code emitter
for old-style JIT. Rename the pc relative relocation for branches - new
name is Mips::reloc_mips_pc16.
Patch by Sasa Stankovic
llvm-svn: 147382
1. The ST*UX instructions that store and update the stack pointer did not set define/kill on R1. This became a problem when I activated post-RA scheduling (and had incorrectly adjusted the Frames-large test).
2. eliminateFrameIndex did not kill its scavenged temporary register, and this could cause the scavenger to exhaust all available registers (and its emergency spill slot) when there were a lot of CR values to spill. The 2010-02-12-saveCR test has been adjusted to check for this.
llvm-svn: 147359
LZCNT instructions are available. Force promotion to i32 to get
a smaller encoding since the fix-ups necessary are just as complex for
either promoted type
We can't do standard promotion for CTLZ when lowering through BSR
because it results in poor code surrounding the 'xor' at the end of this
instruction. Essentially, if we promote the entire CTLZ node to i32, we
end up doing the xor on a 32-bit CTLZ implementation, and then
subtracting appropriately to get back to an i8 value. Instead, our
custom logic just uses the knowledge of the incoming size to compute
a perfect xor. I'd love to know of a way to fix this, but so far I'm
drawing a blank. I suspect the legalizer could be more clever and/or it
could collude with the DAG combiner, but how... ;]
llvm-svn: 147251
'bsf' instructions here.
This one is actually debatable to my eyes. It's not clear that any chip
implementing 'tzcnt' would have a slow 'bsf' for any reason, and unless
EFLAGS or a zero input matters, 'tzcnt' is just a longer encoding.
Still, this restores the old behavior with 'tzcnt' enabled for now.
llvm-svn: 147246
X86ISelLowering C++ code. Because this is lowered via an xor wrapped
around a bsr, we want the dagcombine which runs after isel lowering to
have a chance to clean things up. In particular, it is very common to
see code which looks like:
(sizeof(x)*8 - 1) ^ __builtin_clz(x)
Which is trying to compute the most significant bit of 'x'. That's
actually the value computed directly by the 'bsr' instruction, but if we
match it too late, we'll get completely redundant xor instructions.
The more naive code for the above (subtracting rather than using an xor)
still isn't handled correctly due to the dagcombine getting confused.
Also, while here fix an issue spotted by inspection: we should have been
expanding the zero-undef variants to the normal variants when there is
an 'lzcnt' instruction. Do so, and test for this. We don't want to
generate unnecessary 'bsr' instructions.
These two changes fix some regressions in encoding and decoding
benchmarks. However, there is still a *lot* to be improve on in this
type of code.
llvm-svn: 147244
ARM targets with NEON units have access to aligned vector loads and
stores that are potentially faster than unaligned operations.
Add support for spilling the callee-saved NEON registers to an aligned
stack area using 16-byte aligned NEON loads and store.
This feature is off by default, controlled by an -align-neon-spills
command line option.
llvm-svn: 147211
My change r146949 added register clobbers to the eh_sjlj_dispatchsetup pseudo
instruction, but on Thumb1 some of those registers cannot be used. This
caused massive failures on the testsuite when compiling for Thumb1. While
fixing that, I noticed that the eh_sjlj_setjmp instruction has a "nofp"
variant, and I realized that dispatchsetup needs the same thing, so I have
added that as well.
llvm-svn: 147204
The value from the operands isn't right yet, but we weren't encoding it at
all previously. The parser needs to twiddle the values when building the
instruction.
Partial for: rdar://10558523
llvm-svn: 147170
Rather than require the symbol to be explicitly an argument of the directive,
allow it to look ahead and grab the symbol from the next non-whitespace
line.
rdar://10611140
llvm-svn: 147100
instruction supported by mips32r2, and add a pattern which replaces bswap with
a ROTR and WSBH pair.
WSBW is removed since it is not an instruction the current architectures
support.
llvm-svn: 147015
Use the spill slot alignment as well as the local variable alignment to
determine when the stack needs to be realigned. This works now that the
ARM target can always realign the stack by using a base pointer.
Still respect the ARMBaseRegisterInfo::canRealignStack() function
vetoing a realigned stack. Don't use aligned spill code in that case.
llvm-svn: 146997
use the zero-undefined variants of CTTZ and CTLZ. These are just simple
patterns for now, there is more to be done to make real world code using
these constructs be optimized and codegen'ed properly on X86.
The existing tests are spiffed up to check that we no longer generate
unnecessary cmov instructions, and that we generate the very important
'xor' to transform bsr which counts the index of the most significant
one bit to the number of leading (most significant) zero bits. Also they
now check that when the variant with defined zero result is used, the
cmov is still produced.
llvm-svn: 146974
We used to rely on the *eh_sjlj_setjmp instructions to mark that a function
with setjmp/longjmp exception handling clobbers all the registers. But with
the recent reorganization of ARM EH, those eh_sjlj_setjmp instructions are
expanded away earlier, before PEI can see them to determine what registers to
save and restore. Mark the dispatchsetup instruction in the same way, since
that instruction cannot be expanded early. This also more accurately reflects
when the registers are clobbered.
llvm-svn: 146949
"mov r1, r2, lsl #0" should assemble as "mov r1, r2" even though it's
not strictly legal UAL syntax. It's a common extension and the friendly
thing to do.
rdar://10604663
llvm-svn: 146937
This change reduces the number of instructions generated.
For example,
(load (add (sub $n0, $n1), (MipsLo got(s))))
results in the following sequence of instructions:
1. sub $n2, $n0, $n1
2. lw got(s)($n2)
Previously, three instructions were needed.
1. sub $n2, $n0, $n1
2. addiu $n3, $n2, got(s)
3. lw 0($n3)
llvm-svn: 146888
Use information computed while inferring new register classes to emit
accurate, table-driven implementations of getMatchingSuperRegClass().
Delete the old manual, error-prone implementations in the targets.
llvm-svn: 146873
This adjustment is already included in the block offsets computed by
BasicBlockInfo, and adjusting again here can cause the pass to loop.
When CreateNewWater splits a basic block, OffsetIsInRange would reject
the new CPE on the next pass because of the too conservative alignment
adjustment. This caused the block to be split again, and so on.
llvm-svn: 146751
The command line option should be removed, but not until the feature has
gotten a lot of testing. The ARMConstantIslandPass tends to have subtle
bugs that only show up after a while.
llvm-svn: 146739
the compact unwind claiming that one register was saved before another, which
isn't all that great in general. Process them in the natural order. Reverse the
list only when necessary for the algorithm.
llvm-svn: 146612
An aligned constant pool entry may require extra alignment padding where
the new water is created. Take that into account when computing offset.
Also consider the alignment of other constant pool entries when
splitting a basic block. Alignment padding may make it necessary to
move the split point higher.
llvm-svn: 146609
r0 = mov #0
r0 = moveq #1
Then the second instruction has an implicit data dependency on the first
instruction. Sadly I have yet to come up with a small test case that
demonstrate the post-ra scheduler taking advantage of this.
llvm-svn: 146583
Work in progress. Parsing for non-writeback, single spaced register lists
works now. The rest have the representations better factored, but still
need more to be able to parse properly.
llvm-svn: 146579
When 'cmp rn #imm' doesn't match due to the immediate not being representable,
but 'cmn rn, #-imm' does match, use the latter in place of the former, as
it's equivalent.
rdar://10552389
llvm-svn: 146567
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
prevent IT blocks from being broken apart.
llvm-svn: 146542
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
llvm-svn: 146466
Constant pool entries with different alignment may cause more alignment
padding to be inserted. Compute the amount of padding needed, and try to
pick the location that requires the least amount of padding.
Also take the extra padding into account when the water is above the
use.
llvm-svn: 146458
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
llvm-svn: 146436
These modifiers simply select either the low or high D subregister of a Neon
Q register. I've also removed the unimplemented 'p' modifier, which turns out
to be a bit different than the comment here suggests and as far as I can tell
was only intended for internal use in Apple's version of gcc.
llvm-svn: 146417