These are intrinsics for supporting kadd builtins in clang. These builtins are already in gcc to implement intrinsics from icc. Though they are missing from the Intel Intrinsics Guide.
This instruction adds two mask registers together as if they were scalar rather than a vXi1. We might be able to get away with a bitcast to scalar and a normal add instruction, but that would require DAG combine smarts in the backend to recoqnize add+bitcast. For now I'd prefer to go with the easiest implementation so we can get these builtins in to clang with good codegen.
Differential Revision: https://reviews.llvm.org/D51370
llvm-svn: 340869
These instructions were added on the PentiumPro along with CMOV.
This was already comprehended by the lowering process which should emit an alternate sequence using FCOM and FNSTW. This just makes it an explicit error if that doesn't work for some reason.
llvm-svn: 340844
This patch creates the shift mask and actual shift using the vXi16 vector shift ops.
Differential Revision: https://reviews.llvm.org/D51263
llvm-svn: 340813
We're using a 256-bit PACKUS to do the truncation, but that instruction operates on 128-bit lanes. So previously we shuffled first to rearrange the lanes. But that requires 2 shuffles. Instead we can shuffle after the PACKUS using a single VPERMQ. This matches what our normal LowerTRUNCATE code does when it uses PACKUS.
Differential Revision: https://reviews.llvm.org/D51284
llvm-svn: 340757
InstCombine mucks these up a bit. So we need to do some additional pattern matching to fix it. There are a still a few special cases not handled, but this covers the general case.
Differential Revision: https://reviews.llvm.org/D50952
llvm-svn: 340756
vXi32 support was recently moved from LowerMUL_LOHI to LowerMULH.
This commit shares the getOperand calls, switches both to use common IsSigned flag, and hoists the NumElems/NumElts variable.
llvm-svn: 340720
Summary: This was inheriting the cost from the AVX table, but should be legal under AVX512.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51267
llvm-svn: 340708
Summary:
Previously most CPUs inherited cmov support through Feature64Bit(or FeatureCMPXCHG16HB implying Feature64Bit) or FeatureSSE1.
This has the surprising side effect that -mattr=-cmov causes an assert to fire in 64-bit mode because it clears the Feature64Bit. Or in 32-bit mode, -mattr=-cmov disables any sse/avx features which seems surprising.
This patch removes the implication and instead updates hasCMOV in X86Subtarget to check SSE1 or is64Bit in addition to the regular cmov flag. This should keep most things working the way they did before. I don't believe there is a way to specific "-cmov" directly from clang so this should only effect our lower level tools.
This does stop -mattr=cx16(cmpxchg16b) from implying cmov is enabled via the 64bit flag as you can see from one of the changed tests. But that was a 32-bit test so I don't know why it enabled cx16 anyway.
For the other test I had to add -sse to override the new sse check in hasCMOV.
Reviewers: RKSimon, DavidKreitzer, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D51228
llvm-svn: 340707
Summary: This matches gcc and one cpuid dump I found online. Given that these are considered 7th generation x86 CPU it seems likely they support cmov since cmov was added by Intel in their 6th generation.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51264
llvm-svn: 340706
I noticed this along with the patterns in D51125, but when the index is variable,
we don't convert insertelement into a build_vector.
For x86, that means these get expanded at legalization time into the loading/spilling
code that we see in the tests. I think it's always better to avoid going to memory on
these, and we get the optimal 'broadcast' if it's available.
I suspect other targets may want to look at enabling the hook. AArch64 and AMDGPU have
regression tests that would be affected (although I did not check what would happen in
those cases). In the most basic cases shown here, AArch64 would probably do much
better with a splat.
Differential Revision: https://reviews.llvm.org/D51186
llvm-svn: 340705
Summary:
The only time vector SMUL_LOHI/UMUL_LOHI nodes are created is during division/remainder lowering. If its created before op legalization, generic DAGCombine immediately turns that SMUL_LOHI/UMUL_LOHI into a MULHS/MULHU since only the upper half is used. That node will stick around through vector op legalization and will be turned back into UMUL_LOHI/SMUL_LOHI during op legalization. It will then be custom lowered by the X86 backend. Due to this two step lowering the vector shuffles created by the custom lowering get legalized after their inputs rather than before. This prevents the shuffles from being combined with any build_vector of constants.
This patch uses changes vXi32 to use MULHS/MULHU instead. This is what the later DAG combine did anyway. But by skipping the change back to UMUL_LOHI/SMUL_LOHI we lower it before any constant BUILD_VECTORS. This allows the vector_shuffle creation to constant fold with the build_vectors. This accounts for the test changes here.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51254
llvm-svn: 340690
Summary:
Previously the value being stored is the last operand in SDNode. This causes the type legalizer to visit the mask operand before the value operand. The type legalizer was more complicated because of this since we want the type of the value to drive the decisions.
This patch moves the value to be the first operand so we visit it first during type legalization. It also simplifies the type legalization code accordingly.
X86 is currently the only in tree target that uses this SDNode. Not sure if there are any users out of tree.
Reviewers: RKSimon, delena, hfinkel, eli.friedman
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50402
llvm-svn: 340689
This is a preliminary step for a preliminary step for D50992.
I noticed that x86 often misses chances to load a scalar directly
into a vector register.
So this patch is just allowing more of those cases to match a
broadcast op in lowerBuildVectorAsBroadcast(). The old code comment
said it doesn't make sense to use a broadcast when we're loading a
single element and everything else is undef, but I think that's the
best case in the improved tests in insert-loaded-scalar.ll. We avoid
scalar-to-vector-register move and/or less efficient shuffling.
Note that there are some existing types that were already producing
a broadcast, but that happens semi-accidentally. Ie, it's not
happening as part of lowerBuildVectorAsBroadcast(). The build vector
gets expanded into load + shuffle, and then shuffle lowering produces
the broadcast.
Description of the other test diffs:
1. avx-basic.ll - replacing load+shufle is a win.
2. sse3-avx-addsub-2.ll - vmovddup vs. vbroadcastss is neutral
3. sse41.ll - don't care - we convert that intrinsic to generic IR now, so this test is deprecated
4. vector-shuffle-128-v8.ll / vector-shuffle-256-v16.ll - pshufb alternatives with an extra instruction are not obviously bad
Differential Revision: https://reviews.llvm.org/D51125
llvm-svn: 340685
This adds a new method to ELFObjectFileBase that returns the symbols and addresses of PLT entries.
This design was suggested by pcc and eugenis in https://reviews.llvm.org/D49383.
Differential Revision: https://reviews.llvm.org/D50203
llvm-svn: 340610
The commit that added this functionality:
rL322957
may be causing/exposing a miscompile in PR38648:
https://bugs.llvm.org/show_bug.cgi?id=38648
so allow enabling/disabling to make debugging easier.
llvm-svn: 340540
subtarget features for indirect calls and indirect branches.
This is in preparation for enabling *only* the call retpolines when
using speculative load hardening.
I've continued to use subtarget features for now as they continue to
seem the best fit given the lack of other retpoline like constructs so
far.
The LLVM side is pretty simple. I'd like to eventually get rid of the
old feature, but not sure what backwards compatibility issues that will
cause.
This does remove the "implies" from requesting an external thunk. This
always seemed somewhat questionable and is now clearly not desirable --
you specify a thunk the same way no matter which set of things are
getting retpolines.
I really want to keep this nicely isolated from end users and just an
LLVM implementation detail, so I've moved the `-mretpoline` flag in
Clang to no longer rely on a specific subtarget feature by that name and
instead to be directly handled. In some ways this is simpler, but in
order to preserve existing behavior I've had to add some fallback code
so that users who relied on merely passing -mretpoline-external-thunk
continue to get the same behavior. We should eventually remove this
I suspect (we have never tested that it works!) but I've not done that
in this patch.
Differential Revision: https://reviews.llvm.org/D51150
llvm-svn: 340515
Previously we asumed a vector reduction add is part of a loop and one of the input is a phi. But the code in SelectionDAGBuilder that sets vector reduction flag handles more cases than that. It just requires that the use chain ends in a horizontal reduction. And there are no other uses. This means it can handle unrolled reduction loops.
If the initial value of the reduction was 0, an unrolled loop would begin with a vector reduction add that has two sad inputs. Previously we would only transform one side of the add, but for this case we need to transform both sides.
I've created a lambda to reuse some of the code for both sides. And fixed the variables names to remove reference to "phi".
Differential Revision: https://reviews.llvm.org/D50817
llvm-svn: 340478
Inspired by what AArch64 does for shifts, this patch attempts to replace shift amounts with neg if we can.
This is done directly as part of isel so its as late as possible to avoid breaking some BZHI patterns since those patterns need an unmasked (32-n) to be correct.
To avoid manual load folding and custom instruction selection for the negate. I've inserted new nodes in the DAG above the shift node in topological order.
Differential Revision: https://reviews.llvm.org/D48789
llvm-svn: 340441
When the key is not already in the map, the access operator[] creates an empty value and grows the map.
Resizing a map is very slow, so this needs to be avoided.
Found with csmith + asserts.
May help with
https://bugs.llvm.org/show_bug.cgi?id=25843
Patch by Tom Rix.
Differential Revision: https://reviews.llvm.org/D50780
llvm-svn: 340434
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
Summary:
So far, `isReturn` property is used to mean both a return instruction
from a functon and the end of an EH scope, a scope that starts with a EH
scope entry BB and ends with a catchret or a cleanupret instruction.
Because WinEH uses funclets, all EH-scope-ending instructions are also
real return instruction from a function. But for wasm, they only serve
as the end marker of an EH scope but not a return instruction that
exits a function. This mismatch caused incorrect prolog and epilog
generation in wasm EH scopes. This patch fixes this.
This patch is in the same vein with rL333045, which splits
`MachineBasicBlock::isEHFuncletEntry` into `isEHFuncletEntry` and
`isEHScopeEntry`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50653
llvm-svn: 340325
Most of these shifts are extended to vXi16 so we don't gain anything from forcing another round of generic shift lowering - we know these extended cases are legal constant splat shifts.
llvm-svn: 340307
Due to some splat handling code in getVectorShuffle, its possible for NewV1/NewV2 to have their mask modified from what is requested. This can lead to cycles being created in the DAG.
This patch examines the returned mask and makes sure its different. Long term we may need to look closer at that splat code in getVectorShuffle, or add more splat awareness to getVectorShuffle.
Fixes PR38639
Differential Revision: https://reviews.llvm.org/D50981
llvm-svn: 340214
We can safely avoid interfering with the subus combine if both inputs are freely truncatable. Either both extends, or an extend and a constant vector.
Differential Revision: https://reviews.llvm.org/D50878
llvm-svn: 340212
We were basically assuming only one operand of the compare could be an ADD node and using that to swap operands. But we can have a normal add followed by a saturing add.
This rewrites the canonicalization to just be based on the condition code.
llvm-svn: 340134
The code already support 128 and 256 and even knows to split 256 for AVX1. So we really just needed to stop looking for specific VTs and subtarget features and just look for legal VTs with i8/i16 elements.
While there, add some curly braces around outer if statement bodies that contain only another if. It makes all the closing curly braces look more regular.
llvm-svn: 340128
Extending the concept introduced in D49562, this patch lowers constant vXi8 ISD::SRL/ISD::SRA by zero/sign extending to vXi16 and using PMULLW and then truncating the high 8 bits of the result.
Differential Revision: https://reviews.llvm.org/D50781
llvm-svn: 340062
isOnlyUserOf is a little heavier because it allows the node to be used multiple times by the other node. In this case we are looking at a truncate which only has one operand so we know it can only use it once. Thus hasOneUse is better.
llvm-svn: 340059
test/CodeGen/X86/shadow-stack.ll has the following machine verifier
errors:
```
*** Bad machine code: Using a killed virtual register ***
- function: bar
- basic block: %bb.6 entry (0x7fdc81857818)
- instruction: %3:gr64 = MOV64rm killed %2:gr64, 1, $noreg, 8, $noreg
- operand 1: killed %2:gr64
*** Bad machine code: Using a killed virtual register ***
- function: bar
- basic block: %bb.6 entry (0x7fdc81857818)
- instruction: $rsp = MOV64rm killed %2:gr64, 1, $noreg, 16, $noreg
- operand 1: killed %2:gr64
*** Bad machine code: Virtual register killed in block, but needed live out. ***
- function: bar
- basic block: %bb.2 entry (0x7fdc818574f8)
Virtual register %2 is used after the block.
```
The fix here is to only copy the machine operand's register without the
kill flags for all the instructions except the very last one of the
sequence.
I had to insert dummy PHIs in the test case to force the NoPHI function
property to be set to false. More on this here: https://llvm.org/PR38439
Differential Revision: https://reviews.llvm.org/D50260
llvm-svn: 340033
Normally the peephole pass converts EXTRACT_SUBREG to COPY instructions. But we're after peephole so we can't rely on it to clean these up.
To fix this, the eflags pass now emits a COPY with a subreg input.
I also noticed that in 32-bit mode we need to constrain the input to the copy to ensure the subreg is valid. Otherwise we'll fail verify-machineinstrs
Differential Revision: https://reviews.llvm.org/D50656
llvm-svn: 339945
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.
I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.
I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.
Reviewers: zturner, JDevlieghere
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50851
llvm-svn: 339907
Allow the comparison of x86 registers in the evaluation of assembler
directives. This generalizes and simplifies the extension from r334022
to catch another case found in the Linux kernel.
Reviewers: rnk, void
Reviewed By: rnk
Subscribers: hiraditya, nickdesaulniers, llvm-commits
Differential Revision: https://reviews.llvm.org/D50795
llvm-svn: 339895
When compiling with /arch:AVX512 and optimizations turned on,
we could crash while emitting debug info because we did not
have CodeView register constants for the AVX 512 register
set defined. This patch defines them.
Differential Revision: https://reviews.llvm.org/D50819
llvm-svn: 339893
a shorter name ('x86-slh') for the internal flags and pass name.
Without this, you can't use the -stop-after or -stop-before
infrastructure. I seem to have just missed this when originally adding
the pass.
The shorter name solves two problems. First, the flag names were ...
really long and hard to type/manage. Second, the pass name can't be the
exact same as the flag name used to enable this, and there are already
some users of that flag name so I'm avoiding changing it unnecessarily.
llvm-svn: 339836
To lower this we now create a new V1 containing the low half of both sources and a new V2 containing the upper half of both sources. Then we created a repeated lane shuffle of those new sources to create the final result.
This fixes PR35833
Differential Revison: https://reviews.llvm.org/D41794
llvm-svn: 339818
AVX512 added new versions of these intrinsics that take a rounding mode. If the rounding mode is 4 the new intrinsics are equivalent to the old intrinsics.
The AVX512 intrinsics were being lowered to ISD opcodes, but the legacy SSE intrinsics were left as intrinsics. This resulted in the AVX512 instructions needing separate patterns for the ISD opcodes and the legacy SSE intrinsics.
Now we convert SSE intrinsics and AVX512 intrinsics with rounding mode 4 to the same ISD opcode so we can share the isel patterns.
llvm-svn: 339749
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
This patch removes redundant template argument `TargetName` from TIIPredicate.
Tablegen can always infer the target name from the context. So we don't need to
force users of TIIPredicate to always specify it.
This allows us to better modularize the tablegen class hierarchy for the
so-called "function predicates". class FunctionPredicateBase has been added; it
is currently used as a building block for TIIPredicates. However, I plan to
reuse that class to model other function predicate classes too (i.e. not just
TIIPredicates). For example, this can be a first step towards implementing
proper support for dependency breaking instructions in tablegen.
This patch also adds a verification step on TIIPredicates in tablegen.
We cannot have multiple TIIPredicates with the same name. Otherwise, this will
cause build errors later on, when tablegen'd .inc files are included by cpp
files and then compiled.
Differential Revision: https://reviews.llvm.org/D50708
llvm-svn: 339706
rL339686 added the case where a faux shuffle might have repeated shuffle inputs coming from either side of the OR().
This patch improves the insertion of the inputs into the source ops lists to account for this, as well as making it trivial to add support for shuffles with more than 2 inputs in the future.
llvm-svn: 339696
Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits
Differential Revision: https://reviews.llvm.org/D46179
llvm-svn: 339650
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
Unlike the other arithmetic instructions the mem-reg form of compare is just a load and not a RMW operation. According to the Intel optimization manual, this form is also supported by macro fusion.
llvm-svn: 339498
Now we switch to the subregister in expandPostRAPseudos where we already switched the opcode.
This simplifies a few isel patterns that used the pseudo directly. And magically seems to have improved our ability to CSE it in the undef-label.ll test.
llvm-svn: 339496
This patch introduces tablegen class MCStatement.
Currently, an MCStatement can be either a return statement, or a switch
statement.
```
MCStatement:
MCReturnStatement
MCOpcodeSwitchStatement
```
A MCReturnStatement expands to a return statement, and the boolean expression
associated with the return statement is described by a MCInstPredicate.
An MCOpcodeSwitchStatement is a switch statement where the condition is a check
on the machine opcode. It allows the definition of multiple checks, as well as a
default case. More details on the grammar implemented by these two new
constructs can be found in the diff for TargetInstrPredicates.td.
This patch makes it easier to read the body of auto-generated TargetInstrInfo
predicates.
In future, I plan to reuse/extend the MCStatement grammar to describe more
complex target hooks. For now, this is just a first step (mostly a minor
cosmetic change to polish the new predicates framework).
Differential Revision: https://reviews.llvm.org/D50457
llvm-svn: 339352
As discussed on D41794, we have many cases where we fail to combine shuffles as the input operands have other uses.
This patch permits these shuffles to be combined as long as they don't introduce additional variable shuffle masks, which should reduce instruction dependencies and allow the total number of shuffles to still drop without increasing the constant pool.
However, this may mean that some memory folds may no longer occur, and on pre-AVX require the occasional extra register move.
This also exposes some poor PMULDQ/PMULUDQ codegen which was doing unnecessary upper/lower calculations which will in fact fold to zero/undef - the fix will be added in a followup commit.
Differential Revision: https://reviews.llvm.org/D50328
llvm-svn: 339335
Src0 doesn't really convey any meaning to what the operand is. Passthru matches what's used in the documentation for the intrinsic this comes from.
llvm-svn: 339101
Summary:
Expand isFNEG so that we generate the appropriate F(N)M(ADD|SUB)
instructions in more cases. For example, the following sequence
a = _mm256_broadcast_ss(f)
d = _mm256_fnmadd_ps(a, b, c)
generates an fsub and fma without this patch and an fnma with this
change.
Reviewers: craig.topper
Subscribers: llvm-commits, davidxl, wmi
Differential Revision: https://reviews.llvm.org/D48467
llvm-svn: 339043
If the store is volatile this might be a memory mapped IO access. In that case we shouldn't generate a load that didn't exist in the source
Differential Revision: https://reviews.llvm.org/D50270
llvm-svn: 339041
At one point in time acquire implied mayLoad and mayStore as did release. Thus we needed separate pseudos that also carried that property. This appears to no longer be the case. I believe it was changed in 2012 with a comment saying that atomic memory accesses are marked volatile which preserves the ordering.
So from what I can tell we shouldn't need additional pseudos since they aren't carry any flags that are different from the normal instructions. The only thing I can think of is that we may consider them for load folding candidates in the peephole pass now where we didn't before. If that's important hopefully there's something in the memory operand we can check to prevent the folding without relying on pseudo instructions.
Differential Revision: https://reviews.llvm.org/D50212
llvm-svn: 338925
Clang uses "ctpop & 1" to implement __builtin_parity. If the popcnt instruction isn't supported this generates a large amount of code to calculate the population count. Instead we can bisect the data down to a single byte using xor and then check the parity flag.
Even when popcnt is supported, its still a good idea to split 64-bit data on 32-bit targets using an xor in front of a single popcnt. Otherwise we get two popcnts and an add before the and.
I've specifically targeted this at the sizes supported by clang builtins, but we could generalize this if we think that's useful.
Differential Revision: https://reviews.llvm.org/D50165
llvm-svn: 338907
There are a lot of permutations of types here generating a lot of patterns in the isel table. It's more efficient to just ReplaceUses and RemoveDeadNode from the Select function.
The test changes are because we have a some shuffle patterns that have a bitcast as their root node. But the behavior is identical to another instruction whose pattern doesn't start with a bitcast. So this isn't a functional change.
llvm-svn: 338824
Move all the patterns to X86InstrVecCompiler.td so we can keep SSE/AVX/AVX512 all in one place.
To save some patterns we'll use an existing DAG combine to convert f128 fand/for/fxor to integer when sse2 is enabled. This allows use to reuse all the existing patterns for v2i64.
I believe this now makes SHA instructions the only case where VEX/EVEX and legacy encoded instructions could be generated simultaneously.
llvm-svn: 338821
If the producing instruction is legacy encoded it doesn't implicitly zero the upper bits. This is important for the SHA instructions which don't have a VEX encoded version. We might also be able to hit this with the incomplete f128 support that hasn't been ported to VEX.
llvm-svn: 338812
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.
llvm-svn: 338806
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.
Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.
Differential Revision: https://reviews.llvm.org/D50157
llvm-svn: 338735
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).
Differential Revision: https://reviews.llvm.org/D50083
llvm-svn: 338586
It's not strictly required by the transform of the cmov and the add, but it makes sure we restrict it to the cases we know we want to match.
While there canonicalize the operand order of the cmov to simplify the matching and emitting code.
llvm-svn: 338492
EFLAGS copy lowering.
If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.
Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).
The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...
It isn't though....
This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.
The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D
llvm-svn: 338481
Don't declare them as X86SchedWritePair when the folded class will never be used.
Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
As was done for vector rotations, we can efficiently use ISD::MULHU for vXi8/vXi16 ISD::SRL lowering.
Shift-by-zero cases are still problematic (mainly on v32i8 due to extra AND/ANDN/OR or VPBLENDVB blend masks but v8i16/v16i16 aren't great either if PBLENDW fails) so I've limited this first patch to known non-zero cases if we can't easily use PBLENDW.
Differential Revision: https://reviews.llvm.org/D49562
llvm-svn: 338407
Summary:
Similar to D49636, but for PMADDUBSW. This instruction has the additional complexity that the addition of the two products saturates to 16-bits rather than wrapping around. And one operand is treated as signed and the other as unsigned.
A C example that triggers this pattern
```
static const int N = 128;
int8_t A[2*N];
uint8_t B[2*N];
int16_t C[N];
void foo() {
for (int i = 0; i != N; ++i)
C[i] = MIN(MAX((int16_t)A[2*i]*(int16_t)B[2*i] + (int16_t)A[2*i+1]*(int16_t)B[2*i+1], -32768), 32767);
}
```
Reviewers: RKSimon, spatel, zvi
Reviewed By: RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49829
llvm-svn: 338402
This commit fixes two issues with the liveness information after the
call:
1) The code always spills RCX and RDX if InProlog == true, which results
in an use of undefined phys reg.
2) FinalReg, JoinReg, RoundedReg, SizeReg are not added as live-ins to
the basic blocks that use them, therefore they are seen undefined.
https://llvm.org/PR38376
Differential Revision: https://reviews.llvm.org/D50020
llvm-svn: 338400
This patch teaches llvm-mca how to identify dependency breaking instructions on
btver2.
An example of dependency breaking instructions is the zero-idiom XOR (example:
`XOR %eax, %eax`), which always generates zero regardless of the actual value of
the input register operands.
Dependency breaking instructions don't have to wait on their input register
operands before executing. This is because the computation is not dependent on
the inputs.
Not all dependency breaking idioms are also zero-latency instructions. For
example, `CMPEQ %xmm1, %xmm1` is independent on
the value of XMM1, and it generates a vector of all-ones.
That instruction is not eliminated at register renaming stage, and its opcode is
issued to a pipeline for execution. So, the latency is not zero.
This patch adds a new method named isDependencyBreaking() to the MCInstrAnalysis
interface. That method takes as input an instruction (i.e. MCInst) and a
MCSubtargetInfo.
The default implementation of isDependencyBreaking() conservatively returns
false for all instructions. Targets may override the default behavior for
specific CPUs, and return a value which better matches the subtarget behavior.
In future, we should teach to Tablegen how to automatically generate the body of
isDependencyBreaking from scheduling predicate definitions. This would allow us
to expose the knowledge about dependency breaking instructions to the machine
schedulers (and, potentially, other codegen passes).
Differential Revision: https://reviews.llvm.org/D49310
llvm-svn: 338372
isFNEG was duplicating much of what was done by getTargetConstantBitsFromNode in its own calls to getTargetConstantFromNode.
Noticed while reviewing D48467.
llvm-svn: 338358
In one place we checked X86Subtarget.slowLEA() to decide if the pass should run. But to decide what the pass should we only check isSLM. This resulted in Goldmont going down the Bonnell path.
llvm-svn: 338342
The machine verifier asserts with:
Assertion failed: (isMBB() && "Wrong MachineOperand accessor"), function getMBB, file ../include/llvm/CodeGen/MachineOperand.h, line 542.
It calls analyzeBranch which tries to call getMBB if the opcode is
JMP_1, but in this case we do:
JMP_1 @OUTLINED_FUNCTION
I believe we have to use TAILJMPd64 instead of JMP_1 since JMP_1 is used
with brtarget8.
Differential Revision: https://reviews.llvm.org/D49299
llvm-svn: 338237
X86 normally requires immediates to be a signed 32-bit value which would exclude i64 0x80000000. But for add/sub we can negate the constant and use the opposite instruction.
llvm-svn: 338204
Not sure why they were being explicitly excluded, but I believe all the math inside the if works. I changed the absolute value to be uint64_t instead of int64_t so INT64_MIN+1 wouldn't be signed wrap.
llvm-svn: 338101
Summary:
This is the pattern you get from the loop vectorizer for something like this
int16_t A[1024];
int16_t B[1024];
int32_t C[512];
void pmaddwd() {
for (int i = 0; i != 512; ++i)
C[i] = (A[2*i]*B[2*i]) + (A[2*i+1]*B[2*i+1]);
}
In this case we will have (add (mul (build_vector), (build_vector)), (mul (build_vector), (build_vector))). This is different than the pattern we currently match which has the build_vectors between an add and a single multiply. I'm not sure what C code would get you that pattern.
Reviewers: RKSimon, spatel, zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49636
llvm-svn: 338097
If this happens the operands aren't updated and the existing node is returned. Make sure we pass this existing node up to the DAG combiner so that a proper replacement happens. Otherwise we get stuck in an infinite loop with an unoptimized node.
llvm-svn: 338090
a helper function with a nice overview comment. NFC.
This is a preperatory refactoring to implementing another component of
mitigation here that was descibed in the design document but hadn't been
implemented yet.
llvm-svn: 338016
I'm not sure if this was trying to avoid optimizing the new nodes further or what. Or maybe to prevent a cycle if something tried to reform the multiply? But I don't think its a reliable way to do that. If the user of the expanded multiply is visited by the DAGCombiner after this conversion happens, the DAGCombiner will check its operands, see that they haven't been visited by the DAGCombiner before and it will then add the first node to the worklist. This process will repeat until all the new nodes are visited.
So this seems like an unreliable prevention at best. So this patch just returns the new nodes like any other combine. If this starts causing problems we can try to add target specific nodes or something to more directly prevent optimizations.
Now that we handle the combine normally, we can combine any negates the mul expansion creates into their users since those will be visited now.
llvm-svn: 338007
These calls were making sure some newly created nodes were added to worklist, but the DAGCombiner has internal support for ensuring it has visited all nodes. Any time it visits a node it ensures the operands have been queued to be visited as well. This means if we only need to return the last new node. The DAGCombiner will take care of adding its inputs thus walking backwards through all the new nodes.
llvm-svn: 337996
- Avoid duplication of regmask size calculation.
- Simplify allocateRegisterMask() call.
- Rename allocateRegisterMask() to allocateRegMask() to be consistent
with naming in MachineOperand.
llvm-svn: 337986
In SVN r334523, the first half of comdat constant pool handling was
hoisted from X86WindowsTargetObjectFile (which despite the name only
was used for msvc targets) into the arch independent
TargetLoweringObjectFileCOFF, but the other half of the handling was
left behind in X86AsmPrinter::GetCPISymbol.
With only half of the handling in place, inconsistent comdat
sections/symbols are created, causing issues with both GNU binutils
(avoided for X86 in SVN r335918) and with the MS linker, which
would complain like this:
fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0x4
Differential Revision: https://reviews.llvm.org/D49644
llvm-svn: 337950
code.
This consolidates all our hardening calls, and simplifies the code
a bit. It seems much more clear to handle all of these together.
No functionality changed here.
llvm-svn: 337895
This function actually does two things: it traces the predicate state
through each of the basic blocks in the function (as that isn't directly
handled by the SSA updater) *and* it hardens everything necessary in the
block as it goes. These need to be done together so that we have the
currently active predicate state to use at each point of the hardening.
However, this also made obvious that the flag to disable actual
hardening of loads was flawed -- it also disabled tracing the predicate
state across function calls within the body of each block. So this patch
sinks this debugging flag test to correctly guard just the hardening of
loads.
Unless load hardening was disabled, no functionality should change with
tis patch.
llvm-svn: 337894
against v1.2 BCBS attacks directly.
Attacks using spectre v1.2 (a subset of BCBS) are described in the paper
here:
https://people.csail.mit.edu/vlk/spectre11.pdf
The core idea is to speculatively store over the address in a vtable,
jumptable, or other target of indirect control flow that will be
subsequently loaded. Speculative execution after such a store can
forward the stored value to subsequent loads, and if called or jumped
to, the speculative execution will be steered to this potentially
attacker controlled address.
Up until now, this could be mitigated by enableing retpolines. However,
that is a relatively expensive technique to mitigate this particular
flavor. Especially because in most cases SLH will have already mitigated
this. To fully mitigate this with SLH, we need to do two core things:
1) Unfold loads from calls and jumps, allowing the loads to be post-load
hardened.
2) Force hardening of incoming registers even if we didn't end up
needing to harden the load itself.
The reason we need to do these two things is because hardening calls and
jumps from this particular variant is importantly different from
hardening against leak of secret data. Because the "bad" data here isn't
a secret, but in fact speculatively stored by the attacker, it may be
loaded from any address, regardless of whether it is read-only memory,
mapped memory, or a "hardened" address. The only 100% effective way to
harden these instructions is to harden the their operand itself. But to
the extent possible, we'd like to take advantage of all the other
hardening going on, we just need a fallback in case none of that
happened to cover the particular input to the control transfer
instruction.
For users of SLH, currently they are paing 2% to 6% performance overhead
for retpolines, but this mechanism is expected to be substantially
cheaper. However, it is worth reminding folks that this does not
mitigate all of the things retpolines do -- most notably, variant #2 is
not in *any way* mitigated by this technique. So users of SLH may still
want to enable retpolines, and the implementation is carefuly designed to
gracefully leverage retpolines to avoid the need for further hardening
here when they are enabled.
Differential Revision: https://reviews.llvm.org/D49663
llvm-svn: 337878
We generated a subtract for the power of 2 minus one then negated the result. The negate can be optimized away by swapping the subtract operands, but DAG combine doesn't know how to do that and we don't add any of the new nodes to the worklist anyway.
This patch makes use explicitly emit the swapped subtract.
llvm-svn: 337858
Use a left shift and 2 subtracts like we do for 30. Move this out from behind the slow lea check since it doesn't even use an LEA.
Use this for multiply by 14 as well.
llvm-svn: 337856
Just some gardening here.
Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.
Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.
llvm-svn: 337848
Summary:
Enabling this fully exposes a latent bug in the instruction folding: we
never update the register constraints for the register operands when
fusing a load into another operation. The fused form could, in theory,
have different register constraints on its operands. And in fact,
TCRETURNm* needs its memory operands to use tailcall compatible
registers.
I've updated the folding code to re-constrain all the registers after
they are mapped onto their new instruction.
However, we still can't enable folding in the general case from
TCRETURNr* to TCRETURNm* because doing so may require more registers to
be available during the tail call. If the call itself uses all but one
register, and the folded load would require both a base and index
register, there will not be enough registers to allocate the tail call.
It would be better, IMO, to teach the register allocator to *unfold*
TCRETURNm* when it runs out of registers (or specifically check the
number of registers available during the TCRETURNr*) but I'm not going
to try and solve that for now. Instead, I've just blocked the forward
folding from r -> m, leaving LLVM free to unfold from m -> r as that
doesn't introduce new register pressure constraints.
The down side is that I don't have anything that will directly exercise
this. Instead, I will be immediately using this it my SLH patch. =/
Still worse, without allowing the TCRETURNr* -> TCRETURNm* fold, I don't
have any tests that demonstrate the failure to update the memory operand
register constraints. This patch still seems correct, but I'm nervous
about the degree of testing due to this.
Suggestions?
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49717
llvm-svn: 337845
Before this, TCI contained all the call information for each Candidate.
This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.
A follow-up patch for the AArch64 outliner will demonstrate this.
llvm-svn: 337840
helper and restructure the post-load hardening to use this.
This isn't as trivial as I would have liked because the post-load
hardening used a trick that only works for it where it swapped in
a temporary register to the load rather than replacing anything.
However, there is a simple way to do this without that trick that allows
this to easily reuse a friendly API for hardening a value in a register.
That API will in turn be usable in subsequent patcehs.
This also techincally changes the position at which we insert the subreg
extraction for the predicate state, but that never resulted in an actual
instruction and so tests don't change at all.
llvm-svn: 337825
This code was really nasty, had several bugs in it originally, and
wasn't carrying its weight. While on Zen we have all 4 ports available
for SHRX, on all of the Intel parts with Agner's tables, SHRX can only
execute on 2 ports, giving it 1/2 the throughput of OR.
Worse, all too often this pattern required two SHRX instructions in
a chain, hurting the critical path by a lot.
Even if we end up needing to safe/restore EFLAGS, that is no longer so
bad. We pay for a uop to save the flag, but we very likely get fusion
when it is used by forming a test/jCC pair or something similar. In
practice, I don't expect the SHRX to be a significant savings here, so
I'd like to avoid the complex code required. We can always resurrect
this if/when someone has a specific performance issue addressed by it.
llvm-svn: 337781
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.
llvm-svn: 337740
Summary:
Pretty mechanical follow-up for D49196.
As microarchitecture.pdf notes, "20 AMD Ryzen pipeline",
"20.8 Register renaming and out-of-order schedulers":
The integer register file has 168 physical registers of 64 bits each.
The floating point register file has 160 registers of 128 bits each.
"20.14 Partial register access":
The processor always keeps the different parts of an integer register together.
...
An instruction that writes to part of a register will therefore have a false dependence
on any previous write to the same register or any part of it.
Reviewers: andreadb, courbet, RKSimon, craig.topper, GGanesh
Reviewed By: GGanesh
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D49393
llvm-svn: 337676
a call, and then again as a return.
Also added a comment to try and explain better why we would be doing
what we're doing when hardening the (non-call) returns.
llvm-svn: 337673
This provides an overview of the algorithm used to harden specific
loads. It also brings this our terminology further in line with
hardening rather than checking.
Differential Revision: https://reviews.llvm.org/D49583
llvm-svn: 337667
This seems to be a net improvement. There's still an issue under avx512f where we have a 512-bit vpaddd, but not vpmaddwd so we end up doing two 256-bit vpmaddwds and inserting the results before a 512-bit vpaddd. It might be better to do two 512-bits paddds with zeros in the upper half. Same number of instructions, but breaks a dependency.
llvm-svn: 337656
Ideally our ISD node types going into the isel table would have types consistent with their instruction domain. This prevents us having to duplicate patterns with different types for the same instruction.
Unfortunately, it seems our shuffle combining is currently relying on this a little remove some bitcasts. This seems to enable some switching between shufps and shufd. Hopefully there's some way we can address this in the combining.
Differential Revision: https://reviews.llvm.org/D49280
llvm-svn: 337590
CombineTo is most useful when you need to replace multiple results, avoid the worklist management, or you need to something else after the combine, etc. Otherwise you should be able to just return the new node and let DAGCombiner go through its usual worklist code.
All of the places changed in this patch look to be standard cases where we should be able to use the more stand behavior of just returning the new node.
Differential Revision: https://reviews.llvm.org/D49569
llvm-svn: 337589
We can safely use getConstant here as we're still lowering, which allows constant folding to kick in and simplify the vector shift codegen.
Noticed while working on D49562.
llvm-svn: 337578
This is an early step towards using SimplifyDemandedVectorElts for target shuffle combining - this merely moves the existing X86ISD::VBROADCAST simplification code to use the SimplifyDemandedVectorElts mechanism.
Adds X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode to handle X86ISD::VBROADCAST - in time we can support all target shuffles (and other ops) here.
llvm-svn: 337547
remove dead declaration of a call instruction handling helper.
This moves to the 'harden' terminology that I've been trying to settle
on for returns. It also adds a really detailed comment explaining what
all we're trying to accomplish with return instructions and why.
Hopefully this makes it much more clear what exactly is being
"hardened".
Differential Revision: https://reviews.llvm.org/D49571
llvm-svn: 337510
We have a number of cases where we fail to reduce vector op widths, performing the op in a larger vector and then extracting a subvector. This is often because by default it would create illegal types.
This peephole patch attempts to handle a few common cases detailed in PR36761, which typically involved extension+conversion to vX2f64 types.
Differential Revision: https://reviews.llvm.org/D49556
llvm-svn: 337500
Returning SDValue() means nothing was changed. Returning the result of CombineTo returns the first argument of CombineTo. This is specially detected by DAGCombiner as meaning that something changed, but worklist management was already taken care of.
I think the only real effect of this change is that we now properly update the Statistic the counts the number of combines performed. That's the only thing between the check for null and the check for N in the DAGCombiner.
llvm-svn: 337491
This patch fixes the latency/throughput of LEA instructions in the BtVer2
scheduling model.
On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of
1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA
with a "Scale" operand is also slow, and it has the same latency profile as the
3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e.
RThrouhgput of 2.0).
This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td.
The tablegen backend (for instruction-info) expands that definition into this
(file X86GenInstrInfo.inc):
```
static bool isThreeOperandsLEA(const MachineInstr &MI) {
return (
(
MI.getOpcode() == X86::LEA32r
|| MI.getOpcode() == X86::LEA64r
|| MI.getOpcode() == X86::LEA64_32r
|| MI.getOpcode() == X86::LEA16r
)
&& MI.getOperand(1).isReg()
&& MI.getOperand(1).getReg() != 0
&& MI.getOperand(3).isReg()
&& MI.getOperand(3).getReg() != 0
&& (
(
MI.getOperand(4).isImm()
&& MI.getOperand(4).getImm() != 0
)
|| (MI.getOperand(4).isGlobal())
)
);
}
```
A similar method is generated in the X86_MC namespace, and included into
X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h).
Back to the BtVer2 scheduling model:
A new scheduling predicate named JSlowLEAPredicate now checks if either the
instruction is a three-operands LEA, or it is an LEA with a Scale value
different than 1.
A variant scheduling class uses that new predicate to correctly select the
appropriate latency profile.
Differential Revision: https://reviews.llvm.org/D49436
llvm-svn: 337469
changes that are intertwined here:
1) Extracting the tracing of predicate state through the CFG to its own
function.
2) Creating a struct to manage the predicate state used throughout the
pass.
Doing #1 necessitates and motivates the particular approach for #2 as
now the predicate management is spread across different functions
focused on different aspects of it. A number of simplifications then
fell out as a direct consequence.
I went with an Optional to make it more natural to construct the
MachineSSAUpdater object.
This is probably the single largest outstanding refactoring step I have.
Things get a bit more surgical from here. My current goal, beyond
generally making this maintainable long-term, is to implement several
improvements to how we do interprocedural tracking of predicate state.
But I don't want to do that until the predicate state management and
tracing is in reasonably clear state.
Differential Revision: https://reviews.llvm.org/D49427
llvm-svn: 337446
As discussed on PR38197, this canonicalizes MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))
This returns the scalar-fp codegen lost by rL336971.
Additionally it handles the OP(N1, N0)) case for commutable (FADD/FMUL) ops.
Differential Revision: https://reviews.llvm.org/D49474
llvm-svn: 337419
When rL336971 removed the scalar-fp isel patterns, we lost the need for this canonicalization - commutation/folding can handle everything else.
llvm-svn: 337387
The X86ISD::MOVLHPS/MOVHLPS should now only be emitted in SSE1 only. This means that the v2i64/v2f64 types would be illegal thus we don't need these patterns.
llvm-svn: 337349
I'm trying to restrict the MOVLHPS/MOVHLPS ISD nodes to SSE1 only. With SSE2 we can use unpcks. I believe this will allow some patterns to be cleaned up to require fewer bitcasts.
I've put in an odd isel hack to still select MOVHLPS instruction from the unpckh node to avoid changing tests and because movhlps is a shorter encoding. Ideally we'd do execution domain switching on this, but the operands are in the wrong order and are tied. We might be able to try a commute in the domain switching using custom code.
We already support domain switching for UNPCKLPD and MOVLHPS.
llvm-svn: 337348
Summary:
The only thing he suggested that I've skipped here is the double-wide
multiply instructions. Multiply is an area I'm nervous about there being
some hidden data-dependent behavior, and it doesn't seem important for
any benchmarks I have, so skipping it and sticking with the minimal
multiply support that matches what I know is widely used in existing
crypto libraries. We can always add double-wide multiply when we have
clarity from vendors about its behavior and guarantees.
I've tried to at least cover the fundamentals here with tests, although
I've not tried to cover every width or permutation. I can add more tests
where folks think it would be helpful.
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49413
llvm-svn: 337308
Previously we passed 'null_frag' into the instruction definition. The multiclass is shared with MOVHPD which doesn't use null_frag. It turns out by passing X86Movsd it produces patterns equivalent to some standalone patterns.
llvm-svn: 337299
This amounts to pretty ridiculous number of patterns. Ideally we'd canonicalize the X86ISD::VRNDSCALE earlier to reuse those patterns. I briefly looked into doing that, but some strict FP operations could still get converted to rint and nearbyint during isel. It's probably still worthwhile to look into. This patch is meant as a starting point to work from.
llvm-svn: 337234
This allows us to use 231 form to fold an insertelement on the add input to the fma. There is technically no software intrinsic that can use this until AVX512F, but it can be manually built up from other intrinsics.
llvm-svn: 337223
invariant instructions to be both more correct and much more powerful.
While testing, I continued to find issues with sinking post-load
hardening. Unfortunately, it was amazingly hard to create any useful
tests of this because we were mostly sinking across copies and other
loading instructions. The fact that we couldn't sink past normal
arithmetic was really a big oversight.
So first, I've ported roughly the same set of instructions from the data
invariant loads to also have their non-loading varieties understood to
be data invariant. I've also added a few instructions that came up so
often it again made testing complicated: inc, dec, and lea.
With this, I was able to shake out a few nasty bugs in the validity
checking. We need to restrict to hardening single-def instructions with
defined registers that match a particular form: GPRs that don't have
a NOREX constraint directly attached to their register class.
The (tiny!) test case included catches all of the issues I was seeing
(once we can sink the hardening at all) except for the NOREX issue. The
only test I have there is horrible. It is large, inexplicable, and
doesn't even produce an error unless you try to emit encodings. I can
keep looking for a way to test it, but I'm out of ideas really.
Thanks to Ben for giving me at least a sanity-check review. I'll follow
up with Craig to go over this more thoroughly post-commit, but without
it SLH crashes everywhere so landing it for now.
Differential Revision: https://reviews.llvm.org/D49378
llvm-svn: 337177
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
But the IR-optimal patter does not lower efficiently, so we want to undo it..
This handles the simple pattern.
There is a second pattern with predicate and constants inverted.
NOTE: we do not check uses here. we always do the transform.
Reviewers: spatel, craig.topper, RKSimon, javed.absar
Reviewed By: spatel
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49266
llvm-svn: 337166
Found cases that hit the assert I added. This patch factors the validity
checking into a nice helper routine and calls it when deciding to harden
post-load, and asserts it when doing so later.
I've added tests for the various ways of loading a floating point type,
as well as loading all vector permutations. Even though many of these go
to identical instructions, it seems good to somewhat comprehensively
test them.
I'm confident there will be more fixes needed here, I'll try to add
tests each time as I get this predicate adjusted.
llvm-svn: 337160
This unfortunately requires a bunch of bitcasts to be added added to SUBREG_TO_REG, COPY_TO_REGCLASS, and instructions in output patterns. Otherwise tablegen seems to default to picking f128 and then we fail when something tries to get the register class for f128 which isn't always valid.
The test changes are because we were previously mixing fr128 and vr128 due to contrainRegClass finding FR128 first and passes like live range shrinking weren't handling that well.
llvm-svn: 337147
indices used by AVX2 and AVX-512 gather instructions.
The index vector is hardened by broadcasting the predicate state
into a vector register and then or-ing. We don't even have to worry
about EFLAGS here.
I've added a test for all of the gather intrinsics to make sure that we
don't miss one. A particularly interesting creation is the gather
prefetch, which needs to be marked as potentially "loading" to get the
correct behavior. It's a memory access in many ways, and is actually
relevant for SLH. Based on discussion with Craig in review, I've moved
it to be `mayLoad` and `mayStore` rather than generic side effects. This
matches how we model other prefetch instructions.
Many thanks to Craig for the review here.
Differential Revision: https://reviews.llvm.org/D49336
llvm-svn: 337144
AVX512F only has integer domain logic instructions. AVX512DQ added FP domain logic instructions.
Execution domain fixing runs before EVEX->VEX. So if we have AVX512F and not AVX512DQ we fail to do execution domain switching of the logic operations. This leads to mismatches in execution domain and more test differences.
This patch adds custom domain fixing that switches EVEX integer logic operations to VEX fp logic operations if XMM16-31 are not used.
llvm-svn: 337137
128-bit ops implicitly zero the upper bits. This should address the comment about domain crossing for the integer version without AVX2 since we can use a 128-bit VBLENDW without AVX2.
The only bad thing I see here is that we failed to reuse an vxorps in some of the tests, but I think that's already known issue.
llvm-svn: 337134
registers.
The goal of this patch is to improve the throughput analysis in llvm-mca for the
case where instructions perform partial register writes.
On x86, partial register writes are quite difficult to model, mainly because
different processors tend to implement different register merging schemes in
hardware.
When the code contains partial register writes, the IPC (instructions per
cycles) estimated by llvm-mca tends to diverge quite significantly from the
observed IPC (using perf).
Modern AMD processors (at least, from Bulldozer onwards) don't rename partial
registers. Quoting Agner Fog's microarchitecture.pdf:
" The processor always keeps the different parts of an integer register together.
For example, AL and AH are not treated as independent by the out-of-order
execution mechanism. An instruction that writes to part of a register will
therefore have a false dependence on any previous write to the same register or
any part of it."
This patch is a first important step towards improving the analysis of partial
register updates. It changes the semantic of RegisterFile descriptors in
tablegen, and teaches llvm-mca how to identify false dependences in the presence
of partial register writes (for more details: see the new code comments in
include/Target/TargetSchedule.h - class RegisterFile).
This patch doesn't address the case where a write to a part of a register is
followed by a read from the whole register. On Intel chips, high8 registers
(AH/BH/CH/DH)) can be stored in separate physical registers. However, a later
(dirty) read of the full register (example: AX/EAX) triggers a merge uOp, which
adds extra latency (and potentially affects the pipe usage).
This is a very interesting article on the subject with a very informative answer
from Peter Cordes:
https://stackoverflow.com/questions/45660139/how-exactly-do-partial-registers-on-haswell-skylake-perform-writing-al-seems-to
In future, the definition of RegisterFile can be extended with extra information
that may be used to identify delays caused by merge opcodes triggered by a dirty
read of a partial write.
Differential Revision: https://reviews.llvm.org/D49196
llvm-svn: 337123
no conditions.
This is only valid to do if we're hardening calls and rets with LFENCE
which results in an LFENCE guarding the entire entry block for us.
llvm-svn: 337089
The code tried to find the immediate by using getNumOperands() on the MachineInstr, but there might be implicit-defs after the immediate that get counted.
Instead use getNumOperands() from the instruction description which will only count the operands that are defined in the td file.
llvm-svn: 337088
AVX512 doesn't have an immediate controlled blend instruction. But blend throughput is still better than movss/sd on SKX.
This commit changes AVX512 to use the AVX blend instructions instead of MOVSS/MOVSD. This constrains the register allocation since it won't be able to use XMM16-31, but hopefully the increased throughput and reduced port 5 pressure makes up for that.
llvm-svn: 337083
Ryzen has something like an 18 cycle latency on these based on Agner's data. AMD's own xls is blank. So it seems like there might be something tricky here.
Agner's data for Intel CPUs indicates these are a single uop there.
Probably safest to remove them. We never generate them without an intrinsic so this should be ok.
Differential Revision: https://reviews.llvm.org/D49315
llvm-svn: 337067
-Drop the intrinsic versions of conversion instructions. These should be handled when we do vectors. They shouldn't show up in scalar code.
-Add the float<->double conversions which were missing.
-Add the AVX512 and AVX version of the conversion instructions including the unsigned integer conversions unique to AVX512
Differential Revision: https://reviews.llvm.org/D49313
llvm-svn: 337066
-Move BSF/BSR to the same group as TZCNT/LZCNT/POPCNT.
-Split some of the bit manipulation instructions away from TZCNT/LZCNT/POPCNT. These are things like 'x & (x - 1)' which are composed of a few simple arithmetic operations. These aren't nearly as complicated/surprising as counting bits.
-Move BEXTR/BZHI into their own group. They aren't like a simple arithmethic op or the bit manipulation instructions. They're more like a shift+and.
Differential Revision: https://reviews.llvm.org/D49312
llvm-svn: 337065
These were supposed to be integer types since we are selecting integer instructions.
Found while preparing to remove these patterns for another patch.
llvm-svn: 337057
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
llvm-svn: 337007
Spectre variant #1 for x86.
There is a lengthy, detailed RFC thread on llvm-dev which discusses the
high level issues. High level discussion is probably best there.
I've split the design document out of this patch and will land it
separately once I update it to reflect the latest edits and updates to
the Google doc used in the RFC thread.
This patch is really just an initial step. It isn't quite ready for
prime time and is only exposed via debugging flags. It has two major
limitations currently:
1) It only supports x86-64, and only certain ABIs. Many assumptions are
currently hard-coded and need to be factored out of the code here.
2) It doesn't include any options for more fine-grained control, either
of which control flow edges are significant or which loads are
important to be hardened.
3) The code is still quite rough and the testing lighter than I'd like.
However, this is enough for people to begin using. I have had numerous
requests from people to be able to experiment with this patch to
understand the trade-offs it presents and how to use it. We would also
like to encourage work to similar effect in other toolchains.
The ARM folks are actively developing a system based on this for
AArch64. We hope to merge this with their efforts when both are far
enough along. But we also don't want to block making this available on
that effort.
Many thanks to the *numerous* people who helped along the way here. For
this patch in particular, both Eric and Craig did a ton of review to
even have confidence in it as an early, rough cut at this functionality.
Differential Revision: https://reviews.llvm.org/D44824
llvm-svn: 336990
flow patterns including forks, merges, and even cyles.
This tries to cover a reasonably comprehensive set of patterns that
still don't require PHIs or PHI placement. The coverage was inspired by
the amazing variety of patterns produced when copy EFLAGS and restoring
it to implement Speculative Load Hardening. Without this patch, we
simply cannot make such complex and invasive changes to x86 instruction
sequences due to EFLAGS.
I've added "just" one test, but this test covers many different
complexities and corner cases of this approach. It is actually more
comprehensive, as far as I can tell, than anything that I have
encountered in the wild on SLH.
Because the test is so complex, I've tried to give somewhat thorough
comments and an ASCII-art diagram of the control flows to make it a bit
easier to read and maintain long-term.
Differential Revision: https://reviews.llvm.org/D49220
llvm-svn: 336985
Previously we iseled to blend, commuted to another blend, and then commuted back to movss/movsd or blend depending on optsize. Now we do it directly.
llvm-svn: 336976
This is not an optimization we should be doing in isel. This is more suitable for a DAG combine.
My main concern is a future time when we support more FPENV. Changing a packed op to a scalar op could cause us to miss some exceptions that should have occured if we had done a packed op. A DAG combine would be better able to manage this.
llvm-svn: 336971
We were accidentally connecting it to result 0 instead of result 1. This was caught by the machine verifier that noticed the flags were dead, but we were using them somehow. I'm still not clear what actually happened downstream.
llvm-svn: 336925
canWidenShuffleElements can do a better job if given a mask with ZeroableElements info. Apparently, ZeroableElements was being only used to identify AllZero candidates, but possibly we could plug it into more shuffle matchers.
Original Patch by Zvi Rackover @zvi
Differential Revision: https://reviews.llvm.org/D42044
llvm-svn: 336903
Noticed while updating D42044, lowerV2X128VectorShuffle can improve the shuffle mask with the zeroable data to create a target shuffle mask to recognise more 'zero upper 128' patterns.
NOTE: lowerV4X128VectorShuffle could benefit as well but the code needs refactoring first to discriminate between SM_SentinelUndef and SM_SentinelZero for negative shuffle indices.
Differential Revision: https://reviews.llvm.org/D49092
llvm-svn: 336900
We now use llvm.fma.f32/f64 or llvm.x86.fmadd.f32/f64 intrinsics that use scalar types rather than vector types. So we don't these special ISD nodes that operate on the lowest element of a vector.
llvm-svn: 336883
there for a long time.
The boolean tracking whether we saw a kill of the flags was supposed to
be per-block we are scanning and instead was outside that loop and never
cleared. It requires a quite contrived test case to hit this as you have
to have multiple levels of successors and interleave them with kills.
I've included such a test case here.
This is another bug found testing SLH and extracted to its own focused
patch.
llvm-svn: 336876
multiple successors where some of the uses end up killing the EFLAGS
register.
There was a bug where rather than skipping to the next basic block
queued up with uses once we saw a kill, we stopped processing the blocks
entirely. =/
Test case produces completely nonsensical code w/o this tiny fix.
This was found testing Speculative Load Hardening and split out of that
work.
Differential Revision: https://reviews.llvm.org/D49211
llvm-svn: 336874
This converts them to what clang is now using for codegen. Unfortunately, there seem to be a few kinks to work out still. I'll try to address with follow up patches.
llvm-svn: 336871
We can instead block the load folding isProfitableToFold. Then isel will emit a register->register move for the zeroing part and a separate load. The PostProcessISelDAG should be able to remove the register->register move.
This saves us patterns and fixes the fact that we only had unaligned load patterns. The test changes show places where we should have been using an aligned load.
llvm-svn: 336828
Before revision 336728, the "mayLoad" flag for instruction (V)MOVLPSrm was
inferred directly from the "default" pattern associated with the instruction
definition.
r336728 removed special node X86Movlps, and all the patterns associated to it.
Now instruction (V)MOVLPSrm doesn't have a pattern associated to it, and the
'mayLoad/hasSideEffects' flags are left unset.
When the instruction info is emitted by tablegen, method
CodeGenDAGPatterns::InferInstructionFlags() sees that (V)MOVLPSrm doesn't have a
pattern, and flags are undefined. So, it conservatively sets the
"hasSideEffects" flag for it.
As a consequence, we were losing the 'mayLoad' flag, and we were gaining a
'hasSideEffect' flag in its place.
This patch fixes the issue (originally reported by Michael Holmen).
The mca tests show the differences in the instruction info flags. Instructions
that were affected by this problem were: MOVLPSrm/VMOVLPSrm/VMOVLPSZ128rm.
Differential Revision: https://reviews.llvm.org/D49182
llvm-svn: 336818
Summary:
These changes cover the PR#31399.
Now the ffs(x) function is lowered to (x != 0) ? llvm.cttz(x) + 1 : 0
and it corresponds to the following llvm code:
%cnt = tail call i32 @llvm.cttz.i32(i32 %v, i1 true)
%tobool = icmp eq i32 %v, 0
%.op = add nuw nsw i32 %cnt, 1
%add = select i1 %tobool, i32 0, i32 %.op
and x86 asm code:
bsfl %edi, %ecx
addl $1, %ecx
testl %edi, %edi
movl $0, %eax
cmovnel %ecx, %eax
In this case the 'test' instruction can't be eliminated because
the 'add' instruction modifies the EFLAGS, namely, ZF flag
that is set by the 'bsf' instruction when 'x' is zero.
We now produce the following code:
bsfl %edi, %ecx
movl $-1, %eax
cmovnel %ecx, %eax
addl $1, %eax
Patch by Ivan Kulagin
Reviewers: davide, craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48765
llvm-svn: 336768
These patterns looked for a MOVSS/SD followed by a scalar_to_vector. Or a scalar_to_vector followed by a load.
In both cases we emitted a MOVSS/SD for the MOVSS/SD part, a REG_CLASS for the scalar_to_vector, and a MOVSS/SD for the load.
But we have patterns that do each of those 3 things individually so there's no reason to build large patterns.
Most of the test changes are just reorderings. The one test that had a meaningful change is pr30430.ll and it appears to be a regression. But its doing -O0 so I think it missed a lot of opportunities and was just getting lucky before.
llvm-svn: 336762
Some added 20 and some added 15. Its unclear when to use which value and whether they are required at all.
This patch removes them all. If we start finding real world issues we may need to add them back with proper tests.
llvm-svn: 336735
Isel currently emits movss/movsd a lot of the time and an accidental double commute turns it into a blend.
Ideally we'd select blend directly in isel under optspeed and not rely on the double commute to create blend.
llvm-svn: 336731
These ISD nodes try to select the MOVLPS and MOVLPD instructions which are special load only instructions. They load data and merge it into the lower 64-bits of an XMM register. They are logically equivalent to our MOVSD node plus a load.
There was only one place in X86ISelLowering that used MOVLPD and no places that selected MOVLPS. The one place that selected MOVLPD had to choose between it and MOVSD based on whether there was a load. But lowering is too early to tell if the load can really be folded. So in isel we have patterns that use MOVSD for MOVLPD if we can't find a load.
We also had patterns that select the MOVLPD instruction for a MOVSD if we can find a load, but didn't choose the MOVLPD ISD opcode for some reason.
So it seems better to just standardize on MOVSD ISD opcode and manage MOVSD vs MOVLPD instruction with isel patterns.
llvm-svn: 336728
I believe isProfitableToFold will stop the load folding that this was intended to overcome.
Given an (xor load, -1), isProfitableToFold will see that the immediate can be folded with the xor using a one byte immediate since it can be sign extended. It doesn't know about NOT, but the one byte immediate check is enough to stop the fold.
llvm-svn: 336712
Now that rL336250 has landed, we should prefer 2 immediate shifts + a shuffle blend over performing a multiply. Despite the increase in instructions, this is quicker (especially for slow v4i32 multiplies), avoid loads and constant pool usage. It does mean however that we increase register pressure. The code size will go up a little but by less than what we save on the constant pool data.
This patch also adds support for v16i16 to the BLEND(SHIFT(v,c1),SHIFT(v,c2)) combine, and also prevents blending on pre-SSE41 shifts if it would introduce extra blend masks/constant pool usage.
Differential Revision: https://reviews.llvm.org/D48936
llvm-svn: 336642
We're missing the EVEX equivalents of these patterns and seem to get along fine.
I think we end up with X86vzload for the obvious IR cases that would produce this DAG.
llvm-svn: 336638
Summary:
This adds a reverse transform for the instcombine canonicalizations
that were added in D47980, D47981.
As discussed later, that was worse at least for the code size,
and potentially for the performance, too.
https://rise4fun.com/Alive/Zmpl
Reviewers: craig.topper, RKSimon, spatel
Reviewed By: spatel
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D48768
llvm-svn: 336585
These patterns mapped (v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))) to a MOVSD and an zeroing XOR. But the complexity of a pattern for (v2f64 (X86vzmovl (v2f64))) that selects MOVQ is artificially and hides this MOVSD pattern.
Weirder still, the SSE version of the pattern was explicitly blocked on SSE41, but yet we had copied it to AVX and AVX512.
llvm-svn: 336556
This replaces some asserts in lowerV2F64VectorShuffle with the similar asserts from lowerVIF64VectorShuffle which are more readable. The original asserts mentioned a blend, but there's no guarantee that it is a blend.
Also remove an if that the asserts prove is always true. Mask[0] is always less than 2 and Mask[1] is always at least 2. Therefore (Mask[0] >= 2) + (Mask[1] >= 2) == 1 must wlays be true.
llvm-svn: 336517
It only existed on SSE and AVX version. AVX512 version didn't have it.
I checked the generated table and this didn't seem necessary to creat a match preference.
llvm-svn: 336516
Summary:
{F6603964}
While there is still some discrepancies within that new group,
it is clearly separate from the other shifts.
And Agner's tables agree, these double shifts are clearly
different from the normal shifts/rotates.
I'm guessing `FeatureSlowSHLD` is related.
Indeed, a basic sched pair is *not* the /best/ match.
But keeping it in the WriteShift is /clearly/ not ideal either.
This can and likely will be fine-tuned later.
This is purely mechanical change, it does not change any numbers,
as the [lack of the change of] mca tests show.
Reviewers: craig.topper, RKSimon, andreadb
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49015
llvm-svn: 336515