Summary:
Adds the option for the printing of summary information about functions
considered but rejected for importing during the thin link.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D50881
llvm-svn: 340047
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
Summary:
Currently, in LICM, we use the alias set tracker to identify if the
instruction (we're interested in hoisting) aliases with instruction that
modifies that memory location.
This patch adds an LICM alias analysis diagnostic tool that checks the
mod ref info of the instruction we are interested in hoisting/sinking,
with every instruction in the loop. Because of O(N^2) complexity this
is now only a diagnostic tool to show the limitation we have with the
alias set tracker and is OFF by default.
Test cases show the difference with the diagnostic analysis tool, where
we're able to hoist out loads and readonly + argmemonly calls from the
loop, where the alias set tracker analysis is not able to hoist these
instructions out.
Reviewers: reames, mkazantsev, fedor.sergeev, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50854
llvm-svn: 340026
This commit fixes a (gcc 7.3.0) [-Wunused-function] warning caused by the
presence of unused method FaddCombine::createFDiv().
The last use of that method was removed at r339519.
llvm-svn: 340014
This is a follow-up suggested with rL339604.
For tan(), we don't have a corresponding LLVM
intrinsic -- unlike sin/cos -- so this is the
only way/place that we can do this fold currently.
llvm-svn: 339958
Thread sanitizer instrumentation fails to skip all loads and stores to
profile counters. This can happen if profile counter updates are merged:
%.sink = phi i64* ...
%pgocount5 = load i64, i64* %.sink
%27 = add i64 %pgocount5, 1
%28 = bitcast i64* %.sink to i8*
call void @__tsan_write8(i8* %28)
store i64 %27, i64* %.sink
To suppress TSan diagnostics about racy counter updates, make the
counter updates atomic when TSan is enabled. If there's general interest
in this mode it can be surfaced as a clang/swift driver option.
Testing: check-{llvm,clang,profile}
rdar://40477803
Differential Revision: https://reviews.llvm.org/D50867
llvm-svn: 339955
Main value is just simplifying code. I'll further simply the argument handling case in a bit, but that involved a slightly orthogonal change so I went with the mildy ugly intermediate for this patch.
Note that the isSized check in the old LICM code was not carried across. It turns out that check was dead. a) no test exercised it, and b) langref and verifier had been updated to disallow unsized types used in loads.
llvm-svn: 339930
Expand the number of cases when `pow(x, 0.5)` is simplified into `sqrt(x)`
by considering the math semantics with more granularity.
Differential revision: https://reviews.llvm.org/D50036
llvm-svn: 339887
Summary:
Previously, `eraseFromParent()` calls `delete` which invalidates the value of the pointer. Copying the value of the pointer later is undefined behavior in C++11 and implementation-defined (which may cause a segfault on implementations having strict pointer safety) in C++14.
This patch removes the BasicBlock pointer from related SmallPtrSet before `delete` invalidates it in the SimplifyCFG pass.
Reviewers: kuhar, dmgreen, davide, trentxintong
Reviewed By: kuhar, dmgreen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50717
llvm-svn: 339773
Summary:
Without this metadata LLD strips unused PC table entries
but won't strip unused guards. This metadata also seems
to influence the linker to change the ordering in the PC
guard section to match that of the PC table section.
The libFuzzer runtime library depends on the ordering
of the PC table and PC guard sections being the same. This
is not generally guaranteed, so we may need to redesign
PC tables/guards/counters in the future.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: kcc, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50483
llvm-svn: 339733
Summary:
This patch teaches the loop vectorizer to vectorize loops with non
header phis that have have outside uses. This is because the iteration
dependence distance for these phis can be widened upto VF (similar to
how we do for induction/reduction) if they do not have a cyclic
dependence with header phis. When identifying reduction/induction/first
order recurrence header phis, we already identify if there are any cyclic
dependencies that prevents vectorization.
The vectorizer is taught to extract the last element from the vectorized
phi and update the scalar loop exit block phi to contain this extracted
element from the vector loop.
This patch can be extended to vectorize loops where instructions other
than phis have outside uses.
Reviewers: Ayal, mkuper, mssimpso, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50579
llvm-svn: 339703
Summary:
When WPD is performed in a ThinLTO backend, the function may be created
if it isn't already in that module. Module::getOrInsertFunction may
add a bitcast, in which case the returned Constant is not a Function and
doesn't have a name. Invoke stripPointerCasts() on the returned value
where we access its name.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49959
llvm-svn: 339640
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
The transform itself ended up being rather horrible, even though i omitted some cases.
Surely there is some infrastructure that can help clean this up that i missed?
https://rise4fun.com/Alive/3Ou
The initial commit (rL339610)
was reverted, since the first assert was being triggered.
The @positive_with_extra_and test now has coverage for that case.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339621
Even though this code is below a function called optimizeFloatingPointLibCall(),
we apparently can't guarantee that we're dealing with FPMathOperators, so bail
out immediately if that's not true.
llvm-svn: 339618
At least one buildbot was able to actually trigger that assert
on the top of the function. Will investigate.
This reverts commit r339610.
llvm-svn: 339612
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
https://rise4fun.com/Alive/3Ou
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339610
This is a very partial fix for the reported problem. I suspect
we do not get this fold in most motivating cases because most of
the time, the libcall would have been replaced by an intrinsic,
and that optimization is handled elsewhere...but maybe it should
be handled here?
llvm-svn: 339604
This is a second part of D49974 that handles widening of conditional branches that
have very likely `false` branch.
Differential Revision: https://reviews.llvm.org/D50040
Reviewed By: reames
llvm-svn: 339537
Summary: computeKnownBits is expensive. The cases that would be detected by the computeKnownBits portion of haveNoCommonBitsSet were already handled by the earlier call to SimplifyDemandedInstructionBits.
Reviewers: spatel, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50604
llvm-svn: 339531
Try to improve the computed counts when it has been explicitly set by a pragma
or command line option. This moves the code around, so that first call to
computeUnrollCount to get a sensible count and override that if explicit unroll
and jam counts are specified.
Also added some extra debug messages for when unroll and jamming is disabled.
Differential Revision: https://reviews.llvm.org/D50075
llvm-svn: 339501
Pulled out a separate function for some code that calculates
if an inner loop iteration count is invariant to it's outer
loop.
Differential Revision: https://reviews.llvm.org/D50063
llvm-svn: 339500
My previous change moved some code upwards which caused an assert in debug mode
because the global value didn't necessarily have an initializer. Don't do that.
llvm-svn: 339485
If we have an assume which is known to execute and whose operand is invariant, we can lift that into the pre-header. So long as we don't change which paths the assume executes on, this is a legal transformation. It's likely to be a useful canonicalization as other transforms only look for dominating assumes.
Differential Revision: https://reviews.llvm.org/D50364
llvm-svn: 339481
This is a retry of rL339439 with a fix for the problem that
caused the original commit to be reverted at rL339446.
That problem was that the compare can be integer while
the binop is FP or vice-versa, so we need to use the binop
type when we ask for the identity constant.
A test to guard against the problem was added at rL339453.
llvm-svn: 339469
Summary: Similar to asan's flag, it can be used to disable the use of ifunc to access hwasan shadow address.
Reviewers: vitalybuka, kcc
Subscribers: srhines, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50544
llvm-svn: 339447
If code is compiled for X86 without SSE support, the register save area
doesn't contain FPU registers, so `AMD64FpEndOffset` should be equal to
`AMD64GpEndOffset`.
llvm-svn: 339414
This makes the code easier to read and will make an upcoming patch I have easier to review because that patch needed this refactoring to reuse some of the functions.
llvm-svn: 339391
The motivating case is an otherwise dead loop with a fence in it. At the moment, this goes all the way through the optimizer and we end up emitting an entirely pointless loop on x86. This case may seem a bit contrived, but we've seen it in real code as the result of otherwise reasonable lowering strategies combined w/thread local memory optimizations (such as escape analysis).
To handle this simple case, we can teach LICM to hoist must execute fences when there is no other memory operation within the loop.
Differential Revision: https://reviews.llvm.org/D50489
llvm-svn: 339378
Summary:
LoopSimplifyCFG should update ScEv for all loops after a block is deleted.
If the deleted block "Succ" is part of L, then it is part of all parent loops, so forget topmost loop.
Reviewers: greened, mkazantsev, sanjoy
Subscribers: jlebar, javed.absar, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D50422
llvm-svn: 339363
The inalloca parameter has to be the only parameter passed in memory.
Changing the convention to fastcc can break that.
At some point we should teach global opt how to optimize ABI attributes
like inalloca and maybe byval. These attributes are mainly used to match
C ABIs. They are harder for LLVM to optimize and they don't always
generate the best code.
Fixes PR38487
llvm-svn: 339360
Summary: DenseMap's operator[] performs an insertion if the entry isn't found. The second phase of ConstantMerge isn't trying to insert anything: it's just looking to see if the first phased performed an insertion. Use find instead, avoiding insertion of every single global initializer in the map of constants. This has the side-effect of making all entries in CMap non-null (because only global declarations would have null initializers, and that would be a bug).
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D50476
llvm-svn: 339309
This accounts for the missing IR fold noted in D50195. We don't need any fast-math to enable the negation transform.
FP negation can always be folded into an fmul/fdiv constant to eliminate the fneg.
I've limited this to one-use to ensure that we are eliminating an instruction rather than replacing fneg by a
potentially expensive fdiv or fmul.
Differential Revision: https://reviews.llvm.org/D50417
llvm-svn: 339248
Summary:
https://rise4fun.com/Alive/IT3
Comes up in the [most ugliest] `signed int` -> `signed char` case of
`-fsanitize=implicit-conversion` (https://reviews.llvm.org/D50250)
Previously, we were stuck with `not`: {F6867736}
But now we are able to completely get rid of it: {F6867737}
(FIXME: why are we loosing the metadata? that seems wrong/strange.)
Here, we only want to do that it we will be able to completely
get rid of that 'not'.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: vsk, erichkeane, llvm-commits
Differential Revision: https://reviews.llvm.org/D50301
llvm-svn: 339243
Summary:
Reworked the previously committed patch to insert shuffles for reused
extract element instructions in the correct position. Previous logic was
incorrect, and might lead to the crash with PHIs and EH instructions.
Reviewers: efriedma, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50143
llvm-svn: 339166
In combineMetadata, we should be able to preserve K's nonnull metadata,
if K does not move. This condition should hold for all replacements by
NewGVN/GVN, but I added a bunch of assertions to verify that.
Fixes PR35038.
There probably are additional kinds of metadata that could be preserved
using similar reasoning. This is follow-up work.
Reviewers: dberlin, davide, efriedma, nlopes
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47339
llvm-svn: 339149
This function is shared between both implementations. I am not sure if
Utils/Local.h is the best place though.
Reviewers: davide, dberlin, efriedma, xbolva00
Reviewed By: efriedma, xbolva00
Differential Revision: https://reviews.llvm.org/D47337
llvm-svn: 339138
Logic for tracking implicit control flow instructions was added to GVN to
perform PRE optimizations correctly. It appears that GVN is not the only
optimization that sometimes does PRE, so this logic is required in other
places (such as Jump Threading).
This is an NFC patch that encapsulates all ICF-related logic in a dedicated
utility class separated from GVN.
Differential Revision: https://reviews.llvm.org/D40293
llvm-svn: 339086
Properly shrink `pow()` to `powf()` as a binary function and, when no other
simplification applies, do not discard it.
Differential revision: https://reviews.llvm.org/D50113
llvm-svn: 339046
If there is a frequently taken branch dominated by a guard, and its condition is available
at the point of the guard, we can widen guard with condition of this branch and convert
the branch into unconditional:
guard(cond1)
if (cond2) {
// taken in 99.9% cases
// do something
} else {
// do something else
}
Converts to
guard(cond1 && cond2)
// do something
Differential Revision: https://reviews.llvm.org/D49974
Reviewed By: reames
llvm-svn: 338988
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
Summary:
Previously, in the NewPM pipeline, TailCallElim recalculates the DomTree when it modifies any instruction in the Function.
For example,
```
CallInst *CI = dyn_cast<CallInst>(&I);
...
CI->setTailCall();
Modified = true;
...
if (!Modified || ...)
return PreservedAnalyses::all();
```
After applying this patch, the DomTree only recalculates if needed (plus an extra insertEdge() + an extra deleteEdge() call).
When optimizing SQLite with `-passes="default<O3>"` pipeline of the newPM, the number of DomTree recalculation decreases by 6.2%, the number of nodes visited by DFS decreases by 2.9%. The time used by DomTree will decrease approximately 1%~2.5% after applying the patch.
Statistics:
```
Before the patch:
23010 dom-tree-stats - Number of DomTree recalculations
489264 dom-tree-stats - Number of nodes visited by DFS -- DomTree
After the patch:
21581 dom-tree-stats - Number of DomTree recalculations
475088 dom-tree-stats - Number of nodes visited by DFS -- DomTree
```
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49982
llvm-svn: 338954
Merge the helper functions for shrinking unary and binary functions into a
single one, while keeping all their functionality. Otherwise, NFC.
llvm-svn: 338905
In r337830 I added SCEV checks to enable us to insert fewer bounds checks. Unfortunately, this sometimes crashes when multiple bounds checks are added due to SCEV caching issues. This patch splits the bounds checking pass into two phases, one that computes all the conditions (using SCEV checks) and the other that adds the new instructions.
Differential Revision: https://reviews.llvm.org/D49946
llvm-svn: 338902
Summary:
Previously, `removeUnreachableBlocks` still returns true (which indicates the CFG is changed) even when all the unreachable blocks found is awaiting deletion in the DDT class.
This makes code pattern like
```
// Code modified from lib/Transforms/Scalar/SimplifyCFGPass.cpp
bool EverChanged = removeUnreachableBlocks(F, nullptr, DDT);
...
do {
EverChanged = someMightHappenModifications();
EverChanged |= removeUnreachableBlocks(F, nullptr, DDT);
} while (EverChanged);
```
become a dead loop.
Fix this by detecting whether a BasicBlock is already awaiting deletion.
Reviewers: kuhar, brzycki, dmgreen, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49738
llvm-svn: 338882
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
This one requires a bit of explaination. It's not every day you simply delete code to implement an optimization. :)
The transform in question is sinking an instruction from a loop to the uses in loop exiting blocks. We know (from LCSSA) that all of the uses outside the loop must be phi nodes, and after predecessor splitting, we know all phi users must have a single operand. Since the use must be strictly dominated by the def, we know from the definition of dominance/ssa that the exit block must execute along a (non-strict) subset of paths which reach the def. As a result, duplicating a potentially faulting instruction can not *introduce* a fault that didn't previously exist in the program.
The full story is that this patch builds on "rL338671: [LICM] Factor out fault legality from canHoistOrSinkInst [NFC]" which pulled this logic out of a common helper routine. As best I can tell, this check was originally added to the helper function for hoisting legality, later an incorrect fastpath for loads/calls was added, and then the bug was fixed by duplicating the fault safety check in the hoist path. This left the redundant check in the common code to pessimize sinking for no reason. I split it out in an NFC, and am not removing the unneccessary check. I wanted there to be something easy to revert in case I missed something.
Reviewed by: Anna Thomas (in person)
llvm-svn: 338794
Adds some cleaned up debug messages from back when I was writing this.
Hopefully useful to others (and myself) as to why unroll and jam is not
transforming as expected.
Differential Revision: https://reviews.llvm.org/D50062
llvm-svn: 338676
This method has three callers, each of which wanted distinct handling:
1) Sinking into a loop is moving an instruction known to execute before a loop into the loop. We don't need to worry about introducing a fault at all in this case.
2) Hoisting from a loop into a preheader already duplicated the check in the caller.
3) Sinking from the loop into an exit block was the only true user of the code within the routine. For the moment, this has just been lifted into the caller, but up next is examining the logic more carefully. Whitelisting of loads and calls - while consistent with the previous code - is rather suspicious. Either way, a behavior change is worthy of it's own patch.
llvm-svn: 338671
Originally, this was part of a larger refactoring I'd planned, but had to abandoned. I figured the minor improvement in readability was worthwhile.
llvm-svn: 338663
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
This patch just extract code into a separate function to remove some
duplication between the old and new pass manager pipeline. Due to the
different CGSCC iterators used, not all code duplication was eliminated.
llvm-svn: 338585
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
Workaround bug where the InstCombine pass was asserting on the IR added in lit
test, where we have a bitcast instruction after a GEP from an addrspace cast.
The second bitcast in the test was getting combined into
`bitcast <16 x i32>* %0 to <16 x i32> addrspace(3)*`, which looks like it should
be an addrspace cast instruction instead. Otherwise if control flow is allowed
to continue as it is now we create a GEP instruction
`<badref> = getelementptr inbounds <16 x i32>, <16 x i32>* %0, i32 0`. However
because the type of this instruction doesn't match the address space we hit an
assert when replacing the bitcast with that GEP.
```
void llvm::Value::doRAUW(llvm::Value*, bool): Assertion `New->getType() == getType() && "replaceAllUses of value with new value of different type!"' failed.
```
Differential Revision: https://reviews.llvm.org/D50058
llvm-svn: 338395
Summary:
When inserting lcssa Phi Nodes in the exit block
mak sure to preserve the original instructions DL.
Reviewers: vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D50009
llvm-svn: 338391
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338387
Summary:
If the ExtractElement instructions can be optimized out during the
vectorization and we need to reshuffle the parent vector, this
ShuffleInstruction may be inserted in the wrong place causing compiler
to produce incorrect code.
Reviewers: spatel, RKSimon, mkuper, hfinkel, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49928
llvm-svn: 338380
This fold was written in an odd way and tried to avoid
an endless loop by bailing out on all constants instead
of the supposedly problematic case of -1. But (X & -1)
should always be simplified before we reach here, so I'm
not sure how that is a problem.
There were no tests for the commuted patterns, so I added
those at rL338364.
llvm-svn: 338367
The patch introduces loop analysis (VPLoopInfo/VPLoop) for VPBlockBases.
This analysis will be necessary to perform some H-CFG transformations and
detect and introduce regions representing a loop in the H-CFG.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48816
llvm-svn: 338346
The patch introduces dominator analysis for VPBlockBases and extend
VPlan's GraphTraits specialization with the required interfaces. Dominator
analysis will be necessary to perform some H-CFG transformations and
to introduce VPLoopInfo (LoopInfo analysis on top of the VPlan representation).
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48815
llvm-svn: 338310
These are reassociated versions of the same pattern and
similar transforms as in rL338200 and rL338118.
The motivation is identical to those commits:
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338221
https://rise4fun.com/Alive/jDd
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338200
We now, from clang, can turn arrays of
static short g_data[] = {16, 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0};
into structs of the form
@g_data = internal global <{ [8 x i16], [8 x i16] }> ...
GlobalOpt will incorrectly SROA it, not realising that the access to the first
element may overflow into the second. This fixes it by checking geps more
thoroughly.
I believe this makes the globalsra-partial.ll test case invalid as the %i value
could be out of bounds. I've re-purposed it as a negative test for this case.
Differential Revision: https://reviews.llvm.org/D49816
llvm-svn: 338192
Summary:
Fixing 2 issues with the DT update in trivial branch switching, though I don't have a case where DT update fails.
1. After splitting ParentBB->UnswitchedBB edge, new edges become: ParentBB->LoopExitBB->UnswitchedBB, so remove ParentBB->LoopExitBB edge.
2. AFAIU, for multiple CFG changes, DT should be updated using batch updates, vs consecutive addEdge and removeEdge calls.
Reviewers: chandlerc, kuhar
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49925
llvm-svn: 338180
The tests with constants show a missing optimization.
Analysis for adds is better than subs, so this can also
help with other transforms. And codegen is better with
adds for targets like x86 (destructive ops, no sub-from).
https://rise4fun.com/Alive/llK
llvm-svn: 338118
This is a follow-up for the patch rL335020. When we replace compares against
trunc with compares against wide IV, we can also replace signed predicates with
unsigned where it is legal.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D48763
llvm-svn: 338115
LowerDbgDeclare inserts a dbg.value before each use of an address
described by a dbg.declare. When inserting a dbg.value before a CallInst
use, however, it fails to append DW_OP_deref to the DIExpression.
The DW_OP_deref is needed to reflect the fact that a dbg.value describes
a source variable directly (as opposed to a dbg.declare, which relies on
pointer indirection).
This patch adds in the DW_OP_deref where needed. This results in the
correct values being shown during a debug session for a program compiled
with ASan and optimizations (see https://reviews.llvm.org/D49520). Note
that ConvertDebugDeclareToDebugValue is already correct -- no changes
there were needed.
One complication is that SelectionDAG is unable to distinguish between
direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also
fixes this long-standing issue in order to not regress integration tests
relying on the incorrect assumption that all frame-index SDDbgValues are
indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot
be lowered properly otherwise. Basically the fix prevents a direct
SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice
by a debugger. There were a handful of tests relying on this incorrect
"FRAMEIX => indirect" assumption which actually had incorrect
DW_AT_locations: these are all fixed up in this patch.
Testing:
- check-llvm, and an end-to-end test using lldb to debug an optimized
program.
- Existing unit tests for DIExpression::appendToStack fully cover the
new DIExpression::append utility.
- check-debuginfo (the debug info integration tests)
Differential Revision: https://reviews.llvm.org/D49454
llvm-svn: 338069
Create a processHeaderPhiOperands for analysing the instructions
in the aft blocks that must be moved before the loop.
Differential Revision: https://reviews.llvm.org/D49061
llvm-svn: 338033
In some cases LSV sees (load/store _ (select _ <pointer expression>
<pointer expression>)) patterns in input IR, often due to sinking and
other forms of CFG simplification, sometimes interspersed with
bitcasts and all-constant-indices GEPs. With this
patch`areConsecutivePointers` method would attempt to handle select
instructions. This leads to an increased number of successful
vectorizations.
Technically, select instructions could appear in index arithmetic as
well, however, we don't see those in our test suites / benchmarks.
Also, there is a lot more freedom in IR shapes computing integral
indices in general than in what's common in pointer computations, and
it appears that it's quite unreliable to do anything short of making
select instructions first class citizens of Scalar Evolution, which
for the purposes of this patch is most definitely an overkill.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49428
llvm-svn: 337965
r337828 resolves a PredicateInfo issue with unnamed types.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 337904
This ports the profiling runtime on Fuchsia and enables the
instrumentation. Unlike on other platforms, Fuchsia doesn't use
files to dump the instrumentation data since on Fuchsia, filesystem
may not be accessible to the instrumented process. We instead use
the data sink to pass the profiling data to the system the same
sanitizer runtimes do.
Differential Revision: https://reviews.llvm.org/D47208
llvm-svn: 337881
Summary: truncateToMinimalBitWidths() doesn't handle all Instructions and the worst case is compiler crash via llvm_unreachable(). Fix is to add a case to handle PHINode and changed the worst case to NO-OP (from compiler crash).
Reviewers: sbaranga, mssimpso, hsaito
Reviewed By: hsaito
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49461
llvm-svn: 337861
This patch uses SCEV to avoid inserting some bounds checks when they are not needed. This slightly improves the performance of code compiled with the bounds check sanitizer.
Differential Revision: https://reviews.llvm.org/D49602
llvm-svn: 337830
This is a workaround and it would be better to fix this generally, but
doing it generally is quite tricky. See D48541 and PR38117.
Doing it in PredicateInfo directly allows us to use the type address to
differentiate different unnamed types, because neither the created
declarations nor the ssa_copy calls should be visible after
PredicateInfo got destroyed.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D49126
llvm-svn: 337828
Summary:
Without this change, the WholeProgramDevirt pass, which requires the
TargetLibraryInfo, will construct one from the default triple.
Fixes PR38139.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49278
llvm-svn: 337750
This patch makes debug counters keep track of the total number of times
we've called `shouldExecute` for each counter, so it's easier to build
automated tooling on top of these.
A patch to print these counts is coming soon.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D49560
llvm-svn: 337748
In ConstructSSAForLoadSet if an available value is actually the load that we're
doing SSA construction to eliminate, then we can omit it as SSAUpdate will add
in the value for the phi that will be replacing it anyway. This can result in
simpler IR which can allow further optimisation.
Differential Revision: https://reviews.llvm.org/D44160
llvm-svn: 337686
Bug fix for PR36787. When reasoning if it's safe to hoist a load we
want to make sure that the defining memory access dominates the new
insertion point of the hoisted instruction. safeToHoistLdSt calls
firstInBB(InsertionPoint,DefiningAccess) which returns false if
InsertionPoint == DefiningAccess, and therefore it falsely thinks
it's safe to hoist.
Differential Revision: https://reviews.llvm.org/D49555
llvm-svn: 337674
We tested different cap values with a recent commit of Chromium. Our results show that the 32-byte cap yields the smallest binary and all the caps yield similar performance.
Based on the results, we propose to change the cap value to 32-byte.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D49405
llvm-svn: 337622
This reapplies commit r337489 reverted by r337541
Additionally, this commit contains a speculative fix to the issue reported in r337541
(the report does not contain an actionable reproducer, just a stack trace)
llvm-svn: 337606
When pointer checking is enabled, it's important that every pointer is
checked before its value is used.
For stores MSan used to generate code that calculates shadow/origin
addresses from a pointer before checking it.
For userspace this isn't a problem, because the shadow calculation code
is quite simple and compiler is able to move it after the check on -O2.
But for KMSAN getShadowOriginPtr() creates a runtime call, so we want the
check to be performed strictly before that call.
Swapping materializeChecks() and materializeStores() resolves the issue:
both functions insert code before the given IR location, so the new
insertion order guarantees that the code calculating shadow address is
between the address check and the memory access.
llvm-svn: 337571
This version contains a fix to add values for which the state in ParamState change
to the worklist if the state in ValueState did not change. To avoid adding the
same value multiple times, mergeInValue returns true, if it added the value to
the worklist. The value is added to the worklist depending on its state in
ValueState.
Original message:
For comparisons with parameters, we can use the ParamState lattice
elements which also provide constant range information. This improves
the code for PR33253 further and gets us closer to use
ValueLatticeElement for all values.
Also, as we are using the range information in the solver directly, we
do not need tryToReplaceWithConstantRange afterwards anymore.
Reviewers: dberlin, mssimpso, davide, efriedma
Reviewed By: mssimpso
Differential Revision: https://reviews.llvm.org/D43762
llvm-svn: 337548
It's more aggressive than we need to be, and leads to strange
workarounds in other places like call return value inference. Instead,
just directly mark an edge viable.
Tests by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D49408
llvm-svn: 337507
This is mostly a preparation work for adding a limited support for
select instructions. It proved to be difficult to do due to size and
irregularity of Vectorizer::isConsecutiveAccess, this is fixed here I
believe.
It also turned out that these changes make it simpler to finish one of
the TODOs and fix a number of other small issues, namely:
1. Looking through bitcasts to a type of a different size (requires
careful tracking of the original load/store size and some math
converting sizes in bytes to expected differences in indices of GEPs).
2. Reusing partial analysis of pointers done by first attempt in proving
them consecutive instead of starting from scratch. This added limited
support for nested GEPs co-existing with difficult sext/zext
instructions. This also required a careful handling of negative
differences between constant parts of offsets.
3. Handing a case where the first pointer index is not an add, but
something else (a function parameter for instance).
I observe an increased number of successful vectorizations on a large
set of shader programs. Only few shaders are affected, but those that
are affected sport >5% less loads and stores than before the patch.
Reviewed By: rampitec
Differential-Revision: https://reviews.llvm.org/D49342
llvm-svn: 337489
Summary: Currently, isConsecutiveAccess() detects two pointers(PtrA and PtrB) as consecutive by
comparing PtrB with BaseDelta+PtrA. This works when both pointers are factorized or
both of them are not factorized. But isConsecutiveAccess() fails if one of the
pointers is factorized but the other one is not.
Here is an example:
PtrA = 4 * (A + B)
PtrB = 4 + 4A + 4B
This patch uses getMinusSCEV() to compute the distance between two pointers.
getMinusSCEV() allows combining the expressions and computing the simplified distance.
Author: FarhanaAleen
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49516
llvm-svn: 337471
Summary:
Enable these passes for CFI and WPD in ThinLTO and LTO with the new pass
manager. Add a couple of tests for both PMs based on the clang tests
tools/clang/test/CodeGen/thinlto-distributed-cfi*.ll, but just test
through llvm-lto2 and not with distributed ThinLTO.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49429
llvm-svn: 337461
This prevents gold from printing a warning when trying to export
these symbols via the asan dynamic list after ThinLTO promotes them
from private symbols to external symbols with hidden visibility.
Differential Revision: https://reviews.llvm.org/D49498
llvm-svn: 337428
Summary:
The optimizer is 10%+ slower with vs without debuginfo. I started checking where
the difference is coming from.
I compiled sqlite3.c with and without debug info from CTMark and compare the time difference.
I use Xcode Instrument to find where time is spent. This brings about 20ms, out of ~20s.
Reviewers: davide, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D49337
llvm-svn: 337416
Pulled out from D49225, we have a lot of repeated scalar cost calculations, often with arguments that don't look the same but turn out to be.
llvm-svn: 337390
InstCombine has a cast transform that matches a cast-of-select:
Orig = cast (Src = select Cond TV FV)
And tries to replace it with a select which has the cast folded in:
NewSel = select Cond (cast TV) (cast FV)
The combiner does RAUW(Orig, NewSel), so any debug values for Orig would
survive the transform. But debug values for Src would be lost.
This patch teaches InstCombine to replace all debug uses of Src with
NewSel (taking care of doing any necessary DIExpression rewriting).
Differential Revision: https://reviews.llvm.org/D49270
llvm-svn: 337310
Once we resolved an undef in a function we can run Solve, which could
lead to finding a constant return value for the function, which in turn
could turn undefs into constants in other functions that call it, before
resolving undefs there.
Computationally the amount of work we are doing stays the same, just the
order we process things is slightly different and potentially there are
a few less undefs to resolve.
We are still relying on the order of functions in the IR, which means
depending on the order, we are able to resolve the optimal undef first
or not. For example, if @test1 comes before @testf, we find the constant
return value of @testf too late and we cannot use it while solving
@test1.
This on its own does not lead to more constants removed in the
test-suite, probably because currently we have to be very lucky to visit
applicable functions in the right order.
Maybe we manage to come up with a better way of resolving undefs in more
'profitable' functions first.
Reviewers: efriedma, mssimpso, davide
Reviewed By: efriedma, davide
Differential Revision: https://reviews.llvm.org/D49385
llvm-svn: 337283
TTI::getMinMaxReductionCost typically can't handle pointer types - until this is changed its better to limit horizontal reduction to integer/float vector types only.
llvm-svn: 337280
Similarly to rL336736, at least one more C API function does not
properly get declared as extern "C" due to a missing header, causing
name mangling and linking errors.
This patch fixes calls to LLVMAddAggressiveInstCombinerPass().
Differential Revision: https://reviews.llvm.org/D49416
Reviewed By: whitequark
llvm-svn: 337264
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
Proofs for this transform: https://rise4fun.com/Alive/mgu
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: JDevlieghere, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337190
This reverts commit r337081, therefore restoring r337050 (and fix in
r337059), with test fix for bot failure described after the original
description below.
In order to always import the same copy of a linkonce function,
even when encountering it with different thresholds (a higher one then a
lower one), keep track of the summary we decided to import.
This ensures that the backend only gets a single definition to import
for each GUID, so that it doesn't need to choose one.
Move the largest threshold the GUID was considered for import into the
current module out of the ImportMap (which is part of a larger map
maintained across the whole index), and into a new map just maintained
for the current module we are computing imports for. This saves some
memory since we no longer have the thresholds maintained across the
whole index (and throughout the in-process backends when doing a normal
non-distributed ThinLTO build), at the cost of some additional
information being maintained for each invocation of ComputeImportForModule
(the selected summary pointer for each import).
There is an additional map lookup for each callee being considered for
importing, however, this was able to subsume a map lookup in the
Worklist iteration that invokes computeImportForFunction. We also are
able to avoid calling selectCallee if we already failed to import at the
same or higher threshold.
I compared the run time and peak memory for the SPEC2006 471.omnetpp
benchmark (running in-process ThinLTO backends), as well as for a large
internal benchmark with a distributed ThinLTO build (so just looking at
the thin link time/memory). Across a number of runs with and without
this change there was no significant change in the time and memory.
(I tried a few other variations of the change but they also didn't
improve time or peak memory).
The new commit removes a test that no longer makes sense
(Transforms/FunctionImport/hotness_based_import2.ll), as exposed by the
reverse-iteration bot. The test depends on the order of processing the
summary call edges, and actually depended on the old problematic
behavior of selecting more than one summary for a given GUID when
encountered with different thresholds. There was no guarantee even
before that we would eventually pick the linkonce copy with the hottest
call edges, it just happened to work with the test and the old code, and
there was no guarantee that we would end up importing the selected
version of the copy that had the hottest call edges (since the backend
would effectively import only one of the selected copies).
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D48670
llvm-svn: 337184
This patch introduces createUserspaceApi() that creates function/global
declarations for symbols used by MSan in the userspace.
This is a step towards the upcoming KMSAN implementation patch.
Reviewed at https://reviews.llvm.org/D49292
llvm-svn: 337155
The actual code seems to be correct, but the comments were misleading.
Patch by Aaron Puchert!
Differential Revision: https://reviews.llvm.org/D49276
llvm-svn: 337131
All predicates are handled.
There does not seem to be any other possible folds here.
There are some more folds possible with inverted mask though.
llvm-svn: 337112
Summary:
By looking at the callers of getUse(), we can see that even though
IVUsers may offer uses, but they may not be interesting to
LSR. It's possible that none of them is interesting.
Reviewers: sanjoy
Subscribers: jlebar, hiraditya, bixia, llvm-commits
Differential Revision: https://reviews.llvm.org/D49049
llvm-svn: 337072
In order to always import the same copy of a linkonce function,
even when encountering it with different thresholds (a higher one then a
lower one), keep track of the summary we decided to import.
This ensures that the backend only gets a single definition to import
for each GUID, so that it doesn't need to choose one.
Move the largest threshold the GUID was considered for import into the
current module out of the ImportMap (which is part of a larger map
maintained across the whole index), and into a new map just maintained
for the current module we are computing imports for. This saves some
memory since we no longer have the thresholds maintained across the
whole index (and throughout the in-process backends when doing a normal
non-distributed ThinLTO build), at the cost of some additional
information being maintained for each invocation of ComputeImportForModule
(the selected summary pointer for each import).
There is an additional map lookup for each callee being considered for
importing, however, this was able to subsume a map lookup in the
Worklist iteration that invokes computeImportForFunction. We also are
able to avoid calling selectCallee if we already failed to import at the
same or higher threshold.
I compared the run time and peak memory for the SPEC2006 471.omnetpp
benchmark (running in-process ThinLTO backends), as well as for a large
internal benchmark with a distributed ThinLTO build (so just looking at
the thin link time/memory). Across a number of runs with and without
this change there was no significant change in the time and memory.
(I tried a few other variations of the change but they also didn't
improve time or peak memory).
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D48670
llvm-svn: 337050
Summary:
Currently LowerTypeTests emits jumptable entries for all live external
and address-taken functions; however, we could limit the number of
functions that we emit entries for significantly.
For Cross-DSO CFI, we continue to emit jumptable entries for all
exported definitions. In the non-Cross-DSO CFI case, we only need to
emit jumptable entries for live functions that are address-taken in live
functions. This ignores exported functions and functions that are only
address taken in dead functions. This change uses ThinLTO summary data
(now emitted for all modules during ThinLTO builds) to determine
address-taken and liveness info.
The logic for emitting jumptable entries is more conservative in the
regular LTO case because we don't have summary data in the case of
monolithic LTO builds; however, once summaries are emitted for all LTO
builds we can unify the Thin/monolithic LTO logic to only use summaries
to determine the liveness of address taking functions.
This change is a partial fix for PR37474. It reduces the build size for
nacl_helper by ~2-3%, the reduction is due to nacl_helper compiling in
lots of unused code and unused functions that are address taken in dead
functions no longer being being considered live due to emitted jumptable
references. The reduction for chromium is ~0.1-0.2%.
Reviewers: pcc, eugenis, javed.absar
Reviewed By: pcc
Subscribers: aheejin, dexonsmith, dschuff, mehdi_amini, eraman, steven_wu, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D47652
llvm-svn: 337038
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Reapplied with fix to only accept 2 different casts if they come from the same source type (PR38154).
Differential Revision: https://reviews.llvm.org/D49135
llvm-svn: 336989
This bug was created by rL335258 because we used to always call instsimplify
after trying the associative folds. After that change it became possible
for subsequent folds to encounter unsimplified code (and potentially assert
because of it).
Instead of carrying changed state through instcombine, we can just return
immediately. This allows instsimplify to run, so we can continue assuming
that easy folds have already occurred.
llvm-svn: 336965
Summary:
This patch is crucial for proving equality laundered/stripped
pointers. eg:
bool foo(A *a) {
return a == std::launder(a);
}
Clang with -fstrict-vtable-pointers will emit something like:
define dso_local zeroext i1 @_Z3fooP1A(%struct.A* %a) {
entry:
%c = bitcast %struct.A* %a to i8*
%call = tail call i8* @llvm.launder.invariant.group.p0i8(i8* %c)
%0 = bitcast %struct.A* %a to i8*
%1 = tail call i8* @llvm.strip.invariant.group.p0i8(i8* %0)
%2 = tail call i8* @llvm.strip.invariant.group.p0i8(i8* %call)
%cmp = icmp eq i8* %1, %2
ret i1 %cmp
}
and because %2 can be replaced with @llvm.strip.invariant.group(%0)
and that %2 and %1 will produce the same value (because strip is readnone)
we can replace compare with true.
Reviewers: rsmith, hfinkel, majnemer, amharc, kuhar
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D47423
llvm-svn: 336963
Summary:
This allows counters associated with unused functions to be
dead-stripped along with their functions. This approach is the same one
we used for PC tables.
Fixes an issue where LLD removes an unused PC table but leaves the 8-bit
counter.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: llvm-commits, hiraditya, kcc
Differential Revision: https://reviews.llvm.org/D49264
llvm-svn: 336941
We no longer care about the order of blocks in these collections,
so can change to SmallPtrSets, making contains checks quicker.
Differential revision: https://reviews.llvm.org/D49060
llvm-svn: 336897
This converts them to what clang is now using for codegen. Unfortunately, there seem to be a few kinks to work out still. I'll try to address with follow up patches.
llvm-svn: 336871
This commit suppresses turning loops like this into "(bitwidth - ctlz(input))".
unsigned foo(unsigned input) {
unsigned num = 0;
do {
++num;
input >>= 1;
} while (input != 0);
return num;
}
The loop version returns a value of 1 for both an input of 0 and an input of 1. Converting to a naive ctlz does not preserve that.
Theoretically we could do better if we checked isKnownNonZero or we could insert a select to handle the divergence. But until we have motivating cases for that, this is the easiest solution.
llvm-svn: 336864
Summary:
https://bugs.llvm.org/show_bug.cgi?id=38123
This pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in unsigned case, therefore it is probably a good idea to improve it.
https://rise4fun.com/Alive/Rny
^ there are more opportunities for folds, i will follow up with them afterwards.
Caveat: this somehow exposes a missing opportunities
in `test/Transforms/InstCombine/icmp-logical.ll`
It seems, the problem is in `foldLogOpOfMaskedICmps()` in `InstCombineAndOrXor.cpp`.
But i'm not quite sure what is wrong, because it calls `getMaskedTypeForICmpPair()`,
which calls `decomposeBitTestICmp()` which should already work for these cases...
As @spatel notes in https://reviews.llvm.org/D49179#1158760,
that code is a rather complex mess, so we'll let it slide.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: yamauchi, majnemer, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D49179
llvm-svn: 336834
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Reapplied with fix to only accept 2 different casts if they come from the same source type.
Differential Revision: https://reviews.llvm.org/D49135
llvm-svn: 336812
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Differential Revision: https://reviews.llvm.org/D49135
llvm-svn: 336804
If we don't include Initialization.h,
`LLVMInitializeAggressiveInstCombiner` won't see its `extern "C"` decl.
This causes sadness, name mangling, and linker errors.
Reported on the mailing lists by Vladimir Vissoultchev. Thanks!
llvm-svn: 336736
Summary:
I noticed that the .imports files emitted for distributed ThinLTO
backends do not have consistent ordering. This is because StringMap
iteration order is not guaranteed to be deterministic. Since we already
have a std::map with this information, used when emitting the individual
index files (ModuleToSummariesForIndex), use it for the imports files as
well.
This issue is likely causing some unnecessary rebuilds of the ThinLTO
backends in our distributed build system as the imports files are inputs
to those backends.
Reviewers: pcc, steven_wu, mehdi_amini
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48783
llvm-svn: 336721
The llvm_gcov_... routines in compiler-rt are regular C functions that
need to be called using the proper C ABI for the target. The current
code simply calls them using plain LLVM IR types. Since the type are
mostly simple, this happens to just work on certain targets. But other
targets still need special handling; in particular, it may be necessary
to sign- or zero-extended sub-word values to comply with the ABI. This
caused gcov failures on SystemZ in particular.
Now the very same problem was already fixed for the llvm_profile_ calls
here: https://reviews.llvm.org/D21736
This patch uses the same method to fix the llvm_gcov_ calls, in
particular calls to llvm_gcda_start_file, llvm_gcda_emit_function, and
llvm_gcda_emit_arcs.
Reviewed By: marco-c
Differential Revision: https://reviews.llvm.org/D49134
llvm-svn: 336692
This was originally intended with D48893, but as discussed there, we
have to make the folds safe from producing extra poison. This should
give the single binop folds the same capabilities as the existing
folds for 2-binops+shuffle.
LLVM binary opcode review: there are a total of 18 binops. There are 7
commutative binops (add, mul, and, or, xor, fadd, fmul) which we already
fold. We're able to fold 6 more opcodes with this patch (shl, lshr, ashr,
fdiv, udiv, sdiv). There are no folds for srem/urem/frem AFAIK. We don't
bother with sub/fsub with constant operand 1 because those are
canonicalized to add/fadd. 7 + 6 + 3 + 2 = 18.
llvm-svn: 336684
The case with 2 variables is more complicated than the case where
we eliminate the shuffle entirely because a shuffle with an undef
mask element creates an undef result.
I'm not aware of any current analysis/transform that recognizes that
undef propagating to a div/rem/shift, but we have to guard against
the possibility.
llvm-svn: 336668
Summary:
Fixed two cases of where PHI nodes need to be updated by lowerswitch.
When lowerswitch find out that the switch default branch is not
reachable it remove the old default and replace it with the most
popular block from the cases, but it forget to update the PHI
nodes in the default block.
The PHI nodes also need to be updated when the switch is replaced
with a single branch.
Reviewers: hans, reames, arsenm
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D47203
llvm-svn: 336659
switch unswitching.
The core problem was that the way we handled unswitching trivial exit
edges through the default successor of a switch. For some reason
I thought the right way to do this was to add a block containing
unreachable and point the default successor at this block. In
retrospect, this has an amazing number of problems.
The first issue is the one that this pass has always worked around -- we
have to *detect* such edges and avoid unswitching them again. This
seemed pretty easy really. You juts look for an edge to a block
containing unreachable. However, this pattern is woefully unsound. So
many things can break it. The amazing thing is that I found a test case
where *simple-loop-unswitch itself* breaks this! When we do
a *non-trivial* unswitch of a switch we will end up splitting this exit
edge. The result will be a default successor that is an exit and
terminates in ... a perfectly normal branch. So the first test case that
I started trying to fix is added to the nontrivial test cases. This is
a ridiculous example that did just amazing things previously. With just
unswitch, it would create 10+ copies of this stuff stamped out. But if
you combine it *just right* with a bunch of other passes (like
simplify-cfg, loop rotate, and some LICM) you can get it to do this
infinitely. Or at least, I never got it to finish. =[
This, in turn, uncovered another related issue. When we are manipulating
these switches after doing a trivial unswitch we never correctly updated
PHI nodes to reflect our edits. As soon as I started changing how these
edges were managed, it became obvious there were more issues that
I couldn't realistically leave unaddressed, so I wrote more test cases
around PHI updates here and ensured all of that works now.
And this, in turn, required some adjustment to how we collect and manage
the exit successor when it is the default successor. That showed a clear
bug where we failed to include it in our search for the outer-most loop
reached by an unswitched exit edge. This was actually already tested and
the test case didn't work. I (wrongly) thought that was due to SCEV
failing to analyze the switch. In fact, it was just a simple bug in the
code that skipped the default successor. While changing this, I handled
it correctly and have updated the test to reflect that we now get
precise SCEV analysis of trip counts for the outer loop in one of these
cases.
llvm-svn: 336646
getSafeVectorConstantForBinop() was calling getBinOpIdentity() assuming
that the constant we wanted was operand 1 (RHS). That's wrong, but I
don't think we could expose a bug or even a suboptimal fold from that
because the callers have other guards for any binop that would have
been affected.
llvm-svn: 336617
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
As discussed in D49047 / D48987, shift-by-undef produces poison,
so we can't use undef vector elements in that case..
Note that we need to extend this for poison-generating flags,
and there's a proposal to create poison from FMF in D47963,
llvm-svn: 336562
This is almost NFC, but there could be some case where the original
code had undefs in the constants (rather than just the shuffle mask),
and we'll use safe constants rather than undefs now.
The FIXME noted in foldShuffledBinop() is already visible in existing
tests, so correcting that is the next step.
llvm-svn: 336558
This patch introduces a VPValue in VPBlockBase to represent the condition
bit that is used as successor selector when a block has multiple successors.
This information wasn't necessary until now, when we are about to introduce
outer loop vectorization support in VPlan code gen.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48814
llvm-svn: 336554
As noted in D48987, there are many different ways for this transform to go wrong.
In particular, the poison potential for shifts means we have to more careful with those ops.
I added tests to make that behavior visible for all of the different cases that I could find.
This is a partial fix. To make this review easier, I did not make changes for the single binop
pattern (handled in foldSelectShuffleWith1Binop()). I also left out some potential optimizations
noted with TODO comments. I'll follow-up once we're confident that things are correct here.
The goal is to correct all marked FIXME tests to either avoid the shuffle transform or do it safely.
Note that distinguishing when the shuffle mask contains undefs and using getBinOpIdentity() allows
for some improvements to div/rem patterns, so there are wins along with the missed opportunities
and fixes.
Differential Revision: https://reviews.llvm.org/D49047
llvm-svn: 336546
r335553 with the non-trivial unswitching of switches.
The code correctly updated most aspects of the CFG and analyses, but
missed some crucial aspects:
1) When multiple cases have the same successor, we unswitch that
a single time and replace the switch with a direct branch. The CFG
here is correct, but the target of this direct branch may have had
a PHI node with multiple entries in it.
2) When we still have to clone a successor of the switch into an
unswitched copy of the loop, we'll delete potentially multiple edges
entering this successor, not just one.
3) We also have to delete multiple edges entering the successors in the
original loop when they have to be retained.
4) When the "retained successor" *also* occurs as a case successor, we
just assert failed everywhere. This doesn't happen very easily
because its always valid to simply drop the case -- the retained
successor for switches is always the default successor. However, it
is likely possible through some contrivance of different loop passes,
unrolling, and simplifying for this to occur in practice and
certainly there is nothing "invalid" about the IR so this pass needs
to handle it.
5) In the case of #4, we also will replace these multiple edges with
a direct branch much like in #1 and need to collapse the entries in
any PHI nodes to a single enrty.
All of this stems from the delightful fact that the same successor can
show up in multiple parts of the switch terminator, and each of these
are considered a distinct edge for the purpose of PHI nodes (and
iterating the successors and predecessors) but not for unswitching
itself, the dominator tree, or many other things. For the record,
I intensely dislike this "feature" of the IR in large part because of
the complexity it causes in passes like this. We already have a ton of
logic building sets and handling duplicates, and we just had to add
a bunch more.
I've added a complex test case that covers all five of the above failure
modes. I've also added a variation on it where #4 and #5 occur in loop
exit, adding fun where we have an LCSSA PHI node with "multiple entries"
despite have dedicated exits. There were no additional issues found by
this, but it seems a useful corner case to cover with testing.
One thing that working on all of this code has made painfully clear for
me as well is how amazingly inefficient our PHI node representation is
(in terms of the in-memory data structures and the APIs used to update
them). This code has truly marvelous complexity bounds because every
time we remove an entry from a PHI node we do a linear scan to find it
and then a linear update to the data structure to remove it. We could in
theory batch all of the PHI node updates into a single linear walk of
the operands making this much more efficient, but the APIs fight hard
against this and the fact that we have to handle duplicates in the
peculiar manner we do (removing all but one in some cases) makes even
implementing that very tedious and annoying. Anyways, none of this is
new here or specific to loop unswitching. All code in LLVM that updates
PHI node operands suffers from these problems.
llvm-svn: 336536
Summary:
PGOMemOPSize only modifies CFG in a couple of places; thus we can preserve the DominatorTree with little effort.
When optimizing SQLite with -O3, this patch can decrease 3.8% of the numbers of nodes traversed by DFS and 5.7% of the times DominatorTreeBase::recalculation is called.
Reviewers: kuhar, davide, dmgreen
Reviewed By: dmgreen
Subscribers: mzolotukhin, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D48914
llvm-svn: 336522
In the 'detectCTLZIdiom' function support for loops that use LSHR instruction instead of ASHR has been added.
This supports creating ctlz from the following code.
int lzcnt(int x) {
int count = 0;
while (x > 0) {
count++;
x = x >> 1;
}
return count;
}
Patch by Olga Moldovanova
Differential Revision: https://reviews.llvm.org/D48354
llvm-svn: 336509
after trivial unswitching.
This PR illustrates that a fundamental analysis update was not performed
with the new loop unswitch. This update is also somewhat fundamental to
the core idea of the new loop unswitch -- we actually *update* the CFG
based on the unswitching. In order to do that, we need to update the
loop nest in addition to the domtree.
For some reason, when writing trivial unswitching, I thought that the
loop nest structure cannot be changed by the transformation. But the PR
helps illustrate that it clearly can. I've expanded this to a number of
different test cases that try to cover the different cases of this. When
we unswitch, we move an exit edge of a loop out of the loop. If this
exit edge changes which loop reached by an exit is the innermost loop,
it changes the parent of the loop. Essentially, this transformation may
hoist the inner loop up the nest. I've added the simple logic to handle
this reliably in the trivial unswitching case. This just requires
updating LoopInfo and rebuilding LCSSA on the impacted loops. In the
trivial case, we don't even need to handle dedicated exits because we're
only hoisting the one loop and we just split its preheader.
I've also ported all of these tests to non-trivial unswitching and
verified that the logic already there correctly handles the loop nest
updates necessary.
Differential Revision: https://reviews.llvm.org/D48851
llvm-svn: 336477
It's a bit neater to write T.isIntOrPtrTy() over `T.isIntegerTy() ||
T.isPointerTy()`.
I used Python's re.sub with this regex to update users:
r'([\w.\->()]+)isIntegerTy\(\)\s*\|\|\s*\1isPointerTy\(\)'
llvm-svn: 336462
The replaceAllDbgUsesWith utility helps passes preserve debug info when
replacing one value with another.
This improves upon the existing insertReplacementDbgValues API by:
- Updating debug intrinsics in-place, while preventing use-before-def of
the replacement value.
- Falling back to salvageDebugInfo when a replacement can't be made.
- Moving the responsibiliy for rewriting llvm.dbg.* DIExpressions into
common utility code.
Along with the API change, this teaches replaceAllDbgUsesWith how to
create DIExpressions for three basic integer and pointer conversions:
- The no-op conversion. Applies when the values have the same width, or
have bit-for-bit compatible pointer representations.
- Truncation. Applies when the new value is wider than the old one.
- Zero/sign extension. Applies when the new value is narrower than the
old one.
Testing:
- check-llvm, check-clang, a stage2 `-g -O3` build of clang,
regression/unit testing.
- This resolves a number of mis-sized dbg.value diagnostics from
Debugify.
Differential Revision: https://reviews.llvm.org/D48676
llvm-svn: 336451
LoopBlockNumber is a DenseMap<BasicBlock*, int>, comparing the result of
find() will compare a pair<BasicBlock*, int>. That's of course depending
on pointer ordering which varies from run to run. Reverse iteration
doesn't find this because we're copying to a vector first.
This bug has been there since 2016 but only recently showed up on clang
selfhost with FDO and ThinLTO, which is also why I didn't manage to get
a reasonable test case for this. Add an assert that would've caught
this.
llvm-svn: 336439
Better NaN handling for AMDGCN fmed3.
All operands are checked for NaN now. The checks
were moved before the canonicalization to provide
a better mapping from fclamp. Changed the behaviour
of fmed3(x,y,NaN) to return max(x,y) instead of
min(x,y) in light of this. Updated tests as a result
and added some new cases to cover the fix.
Patch by Alan Baker
llvm-svn: 336375
This is an early step towards matching Instructions by attributes other than the opcode. This will be necessary for cast/call alternates which share the same opcode but have different types/intrinsicIDs etc. - which we could vectorize as long as we split them using the alternate mechanism.
Differential Revision: https://reviews.llvm.org/D48945
llvm-svn: 336344
We have bailout hacks based on min/max in various places in instcombine
that shouldn't be necessary. The affected test was added for:
D48930
...which is a consequence of the improvement in:
D48584 (https://reviews.llvm.org/rL336172)
I'm assuming the visitTrunc bailout in this patch was added specifically
to avoid a change from SimplifyDemandedBits, so I'm just moving that
below the EvaluateInDifferentType optimization. A narrow min/max is still
a min/max.
llvm-svn: 336293
When creating `phi` instructions to resume at the scalar part of the loop,
copy the DebugLoc from the original phi over to the new one.
Differential Revision: https://reviews.llvm.org/D48769
llvm-svn: 336256
When zext is EvaluatedInDifferentType, InstCombine
drops the dbg.value intrinsic. This patch tries to
preserve said DI, by inserting the zext's old DI in the
resulting instruction. (Only for integer type for now)
Differential Revision: https://reviews.llvm.org/D48331
llvm-svn: 336254
This is the last significant change suggested in PR37806:
https://bugs.llvm.org/show_bug.cgi?id=37806#c5
...though there are several follow-ups noted in the code comments
in this patch to complete this transform.
It's possible that a binop feeding a select-shuffle has been eliminated
by earlier transforms (or the code was just written like this in the 1st
place), so we'll fail to match the patterns that have 2 binops from:
D48401,
D48678,
D48662,
D48485.
In that case, we can try to materialize identity constants for the remaining
binop to fill in the "ghost" lanes of the vector (where we just want to pass
through the original values of the source operand).
I added comments to ConstantExpr::getBinOpIdentity() to show planned follow-ups.
For now, we only handle the 5 commutative integer binops (add/mul/and/or/xor).
Differential Revision: https://reviews.llvm.org/D48830
llvm-svn: 336196
Summary:
When salvaging a dbg.declare/dbg.addr we should not add
DW_OP_stack_value to the DIExpression
(see test/Transforms/InstCombine/salvage-dbg-declare.ll).
Consider this example
%vla = alloca i32, i64 2
call void @llvm.dbg.declare(metadata i32* %vla, metadata !1, metadata !DIExpression())
Instcombine will turn it into
%vla1 = alloca [2 x i32]
%vla1.sub = getelementptr inbounds [2 x i32], [2 x i32]* %vla, i64 0, i64 0
call void @llvm.dbg.declare(metadata [2 x i32]* %vla1.sub, metadata !19, metadata !DIExpression())
If the GEP can be eliminated, then the dbg.declare will be salvaged
and we should get
%vla1 = alloca [2 x i32]
call void @llvm.dbg.declare(metadata [2 x i32]* %vla1, metadata !19, metadata !DIExpression())
The problem was that salvageDebugInfo did not recognize dbg.declare
as being indirect (%vla1 points to the value, it does not hold the
value), so we incorrectly got
call void @llvm.dbg.declare(metadata [2 x i32]* %vla1, metadata !19, metadata !DIExpression(DW_OP_stack_value))
I also made sure that llvm::salvageDebugInfo and
DIExpression::prependOpcodes do not add DW_OP_stack_value to
the DIExpression in case no new operands are added to the
DIExpression. That way we avoid to, unneccessarily, turn a
register location expression into an implicit location expression
in some situations (see test11 in test/Transforms/LICM/sinking.ll).
Reviewers: aprantl, vsk
Reviewed By: aprantl, vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48837
llvm-svn: 336191
unswitching loops.
Original patch trying to address this was sent in D47624, but that
didn't quite handle things correctly. There are two key principles used
to select whether and how to invalidate SCEV-cached information about
loops:
1) We must invalidate any info SCEV has cached before unswitching as we
may change (or destroy) the loop structure by the act of unswitching,
and make it hard to recover everything we want to invalidate within
SCEV.
2) We need to invalidate all of the loops whose CFGs are mutated by the
unswitching. Notably, this isn't the *entire* loop nest, this is
every loop contained by the outermost loop reached by an exit block
relevant to the unswitch.
And we need to do this even when doing trivial unswitching.
I've added more focused tests that directly check that SCEV starts off
with imprecise information and after unswitching (and simplifying
instructions) re-querying SCEV will produce precise information. These
tests also specifically work to check that an *outer* loop's information
becomes precise.
However, the testing here is still a bit imperfect. Crafting test cases
that reliably fail to be analyzed by SCEV before unswitching and succeed
afterward proved ... very, very hard. It took me several hours and
careful work to build these, and I'm not optimistic about necessarily
coming up with more to cover more elaborate possibilities. Fortunately,
the code pattern we are testing here in the pass is really
straightforward and reliable.
Thanks to Max Kazantsev for the initial work on this as well as the
review, and to Hal Finkel for helping me talk through approaches to test
this stuff even if it didn't come to much.
Differential Revision: https://reviews.llvm.org/D47624
llvm-svn: 336183
This patch changes order of transform in InstCombineCompares to avoid
performing transforms based on ranges which produce complex bit arithmetics
before more simple things (like folding with constants) are done. See PR37636
for the motivating example.
Differential Revision: https://reviews.llvm.org/D48584
Reviewed By: spatel, lebedev.ri
llvm-svn: 336172
Summary: It is common to have the following min/max pattern during the intermediate stages of SLP since we only optimize at the end. This patch tries to catch such patterns and allow more vectorization.
%1 = extractelement <2 x i32> %a, i32 0
%2 = extractelement <2 x i32> %a, i32 1
%cond = icmp sgt i32 %1, %2
%3 = extractelement <2 x i32> %a, i32 0
%4 = extractelement <2 x i32> %a, i32 1
%select = select i1 %cond, i32 %3, i32 %4
Author: FarhanaAleen
Reviewed By: ABataev, RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D47608
llvm-svn: 336130
This extends D48485 to allow another pair of binops (add/or) to be combined either
with or without a leading shuffle:
or X, C --> add X, C (when X and C have no common bits set)
Here, we need value tracking to determine that the 'or' can be reversed into an 'add',
and we've added general infrastructure to allow extending to other opcodes or moving
to where other passes could use that functionality.
Differential Revision: https://reviews.llvm.org/D48662
llvm-svn: 336128
This code is only used by alternate opcodes so the InstructionsState has already confirmed that every Value is an Instruction, plus we use cast<Instruction> which will assert on failure.
llvm-svn: 336102
This version contains a fix to add values for which the state in ParamState change
to the worklist if the state in ValueState did not change. To avoid adding the
same value multiple times, mergeInValue returns true, if it added the value to
the worklist. The value is added to the worklist depending on its state in
ValueState.
Original message:
For comparisons with parameters, we can use the ParamState lattice
elements which also provide constant range information. This improves
the code for PR33253 further and gets us closer to use
ValueLatticeElement for all values.
Also, as we are using the range information in the solver directly, we
do not need tryToReplaceWithConstantRange afterwards anymore.
Reviewers: dberlin, mssimpso, davide, efriedma
Reviewed By: mssimpso
Differential Revision: https://reviews.llvm.org/D43762
llvm-svn: 336098
We were always using the opcodes of the first 2 scalars for the costs of the alternate opcode + shuffle. This made sense when we used SK_Alternate and opcodes were guaranteed to be alternating, but this fails for the more general SK_Select case.
This fix exposes an issue demonstrated by the fmul_fdiv_v4f32_const test - the SLM model has v4f32 fdiv costs which are more than twice those of the f32 scalar cost, meaning that the cost model determines that the vectorization is not performant. Unfortunately it completely ignores the fact that the fdiv by a constant will be changed into a fmul by InstCombine for a much lower cost vectorization. But at least we're seeing this now...
llvm-svn: 336095
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder Loop
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 336062
and diretory.
Also cleans up all the associated naming to be consistent and removes
the public access to the pass ID which was unused in LLVM.
Also runs clang-format over parts that changed, which generally cleans
up a bunch of formatting.
This is in preparation for doing some internal cleanups to the pass.
Differential Revision: https://reviews.llvm.org/D47352
llvm-svn: 336028
Summary:
Retagging allocas before returning from the function might help
detecting use after return bugs, but it does not work at all in real
life, when instrumented and non-instrumented code is intermixed.
Consider the following code:
F_non_instrumented() {
T x;
F1_instrumented(&x);
...
}
{
F_instrumented();
F_non_instrumented();
}
- F_instrumented call leaves the stack below the current sp tagged
randomly for UAR detection
- F_non_instrumented allocates its own vars on that tagged stack,
not generating any tags, that is the address of x has tag 0, but the
shadow memory still contains tags left behind by F_instrumented on the
previous step
- F1_instrumented verifies &x before using it and traps on tag mismatch,
0 vs whatever tag was set by F_instrumented
Reviewers: eugenis
Subscribers: srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D48664
llvm-svn: 336011
Extends the CFGPrinter and CallPrinter with heat colors based on heuristics or
profiling information. The colors are enabled by default and can be toggled
on/off for CFGPrinter by using the option -cfg-heat-colors for both
-dot-cfg[-only] and -view-cfg[-only]. Similarly, the colors can be toggled
on/off for CallPrinter by using the option -callgraph-heat-colors for both
-dot-callgraph and -view-callgraph.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D40425
llvm-svn: 335996
This was discussed in D48401 as another improvement for:
https://bugs.llvm.org/show_bug.cgi?id=37806
If we have 2 different variable values, then we shuffle (select) those lanes,
shuffle (select) the constants, and then perform the binop. This eliminates a binop.
The new shuffle uses the same shuffle mask as the existing shuffle, so there's no
danger of creating a difficult shuffle.
All of the earlier constraints still apply, but we also check for extra uses to
avoid creating more instructions than we'll remove.
Additionally, we're disallowing the fold for div/rem because that could expose a
UB hole.
Differential Revision: https://reviews.llvm.org/D48678
llvm-svn: 335974
There's no way to expose this difference currently,
but we should use the updated variable because the
original opcodes can go stale if we transform into
something new.
llvm-svn: 335920
Summary:
The InlinerFunctionImportStats will collect and dump stats regarding how
many function inlined into the module were imported by ThinLTO.
Reviewers: wmi, dexonsmith
Subscribers: mehdi_amini, inglorion, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D48729
llvm-svn: 335914
When rewriting an alloca partition copy the DL from the
old alloca over the the new one.
Differential Revision: https://reviews.llvm.org/D48640
llvm-svn: 335904
This is an enhancement to D48401 that was discussed in:
https://bugs.llvm.org/show_bug.cgi?id=37806
We can convert a shift-left-by-constant into a multiply (we canonicalize IR in the other
direction because that's generally better of course). This allows us to remove the shuffle
as we do in the regular opcodes-are-the-same cases.
This requires a small hack to make sure we don't introduce any extra poison:
https://rise4fun.com/Alive/ZGv
Other examples of opcodes where this would work are add+sub and fadd+fsub, but we already
canonicalize those subs into adds, so there's nothing to do for those cases AFAICT. There
are planned enhancements for opcode transforms such or -> add.
Note that there's a different fold needed if we've already managed to simplify away a binop
as seen in the test based on PR37806, but we manage to get that one case here because this
fold is positioned above the demanded elements fold currently.
Differential Revision: https://reviews.llvm.org/D48485
llvm-svn: 335888
SCCP does not change the CFG, so we can mark it as preserved.
Reviewers: dberlin, efriedma, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D47149
llvm-svn: 335820
If a trunc has a user in a block which is not reachable from entry,
we can safely perform trunc elimination as if this user didn't exist.
llvm-svn: 335816
=== Generating the CG Profile ===
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
```
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
```
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335794
Summary:
Rather than just print the GUID, when it is available in the index,
print the global name as well in the function import thin link debug
messages. Names will be available when the combined index is being
built by the same process, e.g. a linker or "llvm-lto2 run".
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D48612
llvm-svn: 335760
I think the intrinsics named 'avx512.mask.' should refer to the previous behavior of taking a mask argument in the intrinsic instead of using a 'select' or 'and' instruction in IR to accomplish the masking. This is more consistent with the goal that eventually we will have no intrinsics that have masking builtin. When we reach that goal, we should have no intrinsics named "avx512.mask".
llvm-svn: 335744
This prevents InstCombine from creating mis-sized dbg.values when
replacing a sequence of casts with a simpler cast. For example, in:
(fptrunc (floor (fpext X))) -> (floorf X)
We no longer emit dbg.value(X) (with a 32-bit float operand) to describe
(fpext X) (which is a 64-bit float).
This was diagnosed by the debugify check added in r335682.
llvm-svn: 335696
Summary:
When recording uses we need to rewrite after cloning a loop we need to
check if the use is not dominated by the original def. The initial
assumption was that the cloned basic block will introduce a new path and
thus the original def will only dominate the use if they are in the same
BB, but as the reproducer from PR37745 shows it's not always the case.
This fixes PR37745.
Reviewers: haicheng, Ka-Ka
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48111
llvm-svn: 335675
I'm not sure why the code here is skipping calls since
TTI does try to do something for general calls, but it
at least should allow intrinsics.
Skip intrinsics that should not be omitted as calls, which
is by far the most common case on AMDGPU.
llvm-svn: 335645
salvageDebugInfo() performs a check that allows it to exit early without
doing a DenseMap lookup. It's a bit neater and marginally more useful to
sink this early exit into the findDbg{Addr,Users,Values} helpers.
llvm-svn: 335642
Similar to other patches in this series:
https://reviews.llvm.org/rL335512https://reviews.llvm.org/rL335527https://reviews.llvm.org/rL335597https://reviews.llvm.org/rL335616
...this is filling a gap in analysis that is exposed by an unrelated select-of-constants transform.
I didn't see a way to unify the sext cases because each div/rem opcode results in a different fold.
Note that in this case, the backend might want to convert the select into math:
Name: sext urem
%e = sext i1 %x to i32
%r = urem i32 %y, %e
=>
%c = icmp eq i32 %y, -1
%z = zext i1 %c to i32
%r = add i32 %z, %y
llvm-svn: 335622
Since D46637 we are better at handling uniform/non-uniform constant Pow2 detection; this patch tweaks the SLP argument handling to support them.
As SLP works with arrays of values I don't think we can easily use the pattern match helpers here.
Differential Revision: https://reviews.llvm.org/D48214
llvm-svn: 335621
Note: I didn't add a hasOneUse() check because the existing,
related fold doesn't have that check. I suspect that the
improved analysis and codegen make these some of the rare
canonicalization cases where we allow an increase in
instructions.
llvm-svn: 335597
changeToUnreachable may remove PHI nodes from executable blocks we found values
for and we would fail to replace them. By changing dead blocks to unreachable after
we replaced constants in all executable blocks, we ensure such PHI nodes are replaced
by their known value before.
Fixes PR37780.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D48421
llvm-svn: 335588
Summary:
This is a follow-up to r334830 and r335031.
In the valueCoversEntireFragment check we now also handle
the situation when there is a variable length array (VLA)
involved, and the length of the array has been reduced to
a constant.
The ConvertDebugDeclareToDebugValue functions that are related
to PHI nodes and load instructions now avoid inserting dbg.value
intrinsics when the value does not, for certain, cover the
variable/fragment that should be described.
In r334830 we assumed that the value always covered the entire
var/fragment and we had assertions in the code to show that
assumption. However, those asserts failed when compiling code
with VLAs, so we removed the asserts in r335031. Now when we
know that the valueCoversEntireFragment check can fail also for
PHI/Load instructions we avoid to insert the faulty dbg.value
intrinsic in such situations. Compared to the Store instruction
scenario we simply drop the dbg.value here (as the variable does
not change its value due to PHI/Load, so an earlier dbg.value
describing the variable should still be valid).
Reviewers: aprantl, vsk, efriedma
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48547
llvm-svn: 335580
Turn canonicalized subtraction back into (-1 - B) and combine it with (A + 1) into (A - B).
This is similar to the folding already done for (B ^ -1) + Const into (-1 + Const) - B.
Differential Revision: https://reviews.llvm.org/D48535
llvm-svn: 335579
unswitching of switches.
This works much like trivial unswitching of switches in that it reliably
moves the switch out of the loop. Here we potentially clone the entire
loop into each successor of the switch and re-point the cases at these
clones.
Due to the complexity of actually doing nontrivial unswitching, this
patch doesn't create a dedicated routine for handling switches -- it
would duplicate far too much code. Instead, it generalizes the existing
routine to handle both branches and switches as it largely reduces to
looping in a few places instead of doing something once. This actually
improves the results in some cases with branches due to being much more
careful about how dead regions of code are managed. With branches,
because exactly one clone is created and there are exactly two edges
considered, somewhat sloppy handling of the dead regions of code was
sufficient in most cases. But with switches, there are much more
complicated patterns of dead code and so I've had to move to a more
robust model generally. We still do as much pruning of the dead code
early as possible because that allows us to avoid even cloning the code.
This also surfaced another problem with nontrivial unswitching before
which is that we weren't as precise in reconstructing loops as we could
have been. This seems to have been mostly harmless, but resulted in
pointless LCSSA PHI nodes and other unnecessary cruft. With switches, we
have to get this *right*, and everything benefits from it.
While the testing may seem a bit light here because we only have two
real cases with actual switches, they do a surprisingly good job of
exercising numerous edge cases. Also, because we share the logic with
branches, most of the changes in this patch are reasonably well covered
by existing tests.
The new unswitch now has all of the same fundamental power as the old
one with the exception of the single unsound case of *partial* switch
unswitching -- that really is just loop specialization and not
unswitching at all. It doesn't fit into the canonicalization model in
any way. We can add a loop specialization pass that runs late based on
profile data if important test cases ever come up here.
Differential Revision: https://reviews.llvm.org/D47683
llvm-svn: 335553
This removes a "UDivFoldAction" in favor of a simple constant
matcher. In theory, the existing code could do more matching,
but I don't see any evidence or need for it. I've left a TODO
about using ValueTracking in case we see any regressions.
llvm-svn: 335545
There are quite a few if statements that enumerate all these cases. It gets
even worse in our fork of LLVM where we also have a Triple::cheri (which
is mips64 + CHERI instructions) and we had to update all if statements that
check for Triple::mips64 to also handle Triple::cheri. This patch helps to
reduce our diff to upstream and should also make some checks more readable.
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D48548
llvm-svn: 335493
If a function has sample to use, but cannot use them because of no debug
information, currently a warning will be issued to inform the missing
opportunity.
This warning assumes the binary generating the profile and the binary using
the profile are similar enough. It is not always the case. Sometimes even
if the binaries are not quite similar, we may still get some benefit by
using sampleFDO. In those cases, we may still want to apply sampleFDO but
not want to see a lot of such warnings pop up.
The patch adds an option for the warning.
Differential Revision: https://reviews.llvm.org/D48510
llvm-svn: 335484
FDiv is replaced with multiplication by reciprocal and invariant
reciprocal is hoisted out of the loop, while multiplication remains
even if invariant.
Switch checks for all invariant operands and only invariant
denominator to fix the issue.
Differential Revision: https://reviews.llvm.org/D48447
llvm-svn: 335411
This gets rid of a bunch of weird special cases; instead, just use SCEV
rewriting for everything. In addition to being simpler, this fixes a
bug where we would use the wrong stride in certain edge cases.
The one bit I'm not quite sure about is the trip count handling,
specifically the FIXME about overflow. In general, I think we need to
widen the exit condition, but that's probably not profitable if the new
type isn't legal, so we probably need a check somewhere. That said, I
don't think I'm making the existing problem any worse.
As a followup to this, a bunch of IV-related code in root-finding could
be cleaned up; with SCEV-based rewriting, there isn't any reason to
assume a loop will have exactly one or two PHI nodes.
Differential Revision: https://reviews.llvm.org/D45191
llvm-svn: 335400
Since we are now producing a summary also for regular LTO builds, we
need to run the NameAnonGlobals pass in those cases as well (the
summary cannot handle anonymous globals).
See https://reviews.llvm.org/D34156 for details on the original change.
This reverts commit 6c9ee4a4a438a8059aacc809b2dd57128fccd6b3.
llvm-svn: 335385
Summary:
In LoopUnswitch when replacing a branch Parent -> Succ with a conditional
branch Parent -> True & Parent->False, the DomTree updates should insert an edge for
each of True/False if True/False are different than Succ, and delete Parent->Succ edge
if both are different. The comparison with Succ appears to be incorect,
it's comparing with Parent instead.
There is no test failing either before or after this change, but it seems to me this is
the right way to do the update.
Reviewers: chandlerc, kuhar
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D48457
llvm-svn: 335369
Enable tryToVectorizeList to support InstructionsState alternate opcode patterns at a root (build vector etc.) as well as further down the vectorization tree.
NOTE: This patch reduces some of the debug reporting if there are opcode mismatches - I can try to add it back if it proves a problem. But it could get rather messy trying to provide equivalent verbose debug strings via getSameOpcode etc.
Differential Revision: https://reviews.llvm.org/D48488
llvm-svn: 335364
SLP currently only accepts (F)Add/(F)Sub alternate counterpart ops to be merged into an alternate shuffle.
This patch relaxes this to accept any pair of BinaryOperator opcodes instead, assuming the target's cost model accepts the vectorization+shuffle.
Differential Revision: https://reviews.llvm.org/D48477
llvm-svn: 335349
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.
llvm-svn: 335320
With non-commutative binops, we could be using the same
variable value as operand 0 in 1 binop and operand 1 in
the other, so we have to check for that possibility and
bail out.
llvm-svn: 335312
This patch adds support for generating a call graph profile from Branch Frequency Info.
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335306
Summary:
A reprise of D25849.
This crash was found through fuzzing some time ago and was documented in PR28879.
No check for load size has been added due to the following tests:
- Transforms/GVN/invariant.group.ll
- Transforms/GVN/pr10820.ll
These tests expect load sizes that are not a multiple of eight.
Thanks to @davide for the original patch.
Reviewers: nlopes, davide, RKSimon, reames, efriedma
Reviewed By: efriedma
Subscribers: davide, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D48330
llvm-svn: 335294
This is the simplest case from PR37806:
https://bugs.llvm.org/show_bug.cgi?id=37806
If we have a common variable operand used in a pair of binops with vector constants
that are vector selected together, then we can constant shuffle the constant vectors
to eliminate the shuffle instruction.
This has some tricky parts that are hopefully addressed in the tests and their
respective comments:
1. If the shuffle mask contains an undef element, then that lane of the result is
undef:
http://llvm.org/docs/LangRef.html#shufflevector-instruction
Therefore, we can replace the constant in that lane with an undef value except
for div/rem. With div/rem, an undef in the divisor would cause the whole op to
be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'.
2. Intersect the wrapping and FMF of the original binops for the new binop. There
should be no extra poison or fast-math potential in the new binop that wasn't
possible in the original code.
3. Disregard other uses. Given that we're eliminating uses (shortening the
dependency chain), I think that's always the right IR canonicalization. But
I purposely chose the udiv test to demonstrate the scenario where both
intermediate values have other uses because that seems likely worse for
codegen with an expensive math op. This seems like a very rare possibility to
me, so I don't think it requires a backend patch first.
Differential Revision: https://reviews.llvm.org/D48401
llvm-svn: 335283
This reverts commit r335206.
As discussed here: https://reviews.llvm.org/rL333740, a fix will come
tomorrow. In the meanwhile, revert this to fix some bots.
llvm-svn: 335272
The previous code worked with vectors, but it failed when the
vector constants contained undef elements.
The matchers handle those cases.
llvm-svn: 335262
This is outwardly NFC from what I can tell, but it should be more efficient
to simplify first (despite the name, SimplifyAssociativeOrCommutative does
not actually simplify as InstSimplify does - it creates/morphs instructions).
This should make it easier to refactor duplicated code that runs for all binops.
llvm-svn: 335258
Summary:
This also removes the need for atomic pseudo instructions, since
we select the correct encoding directly in SITargetLowering::lowerImage
for dimension-aware image intrinsics.
Mesa uses dimension-aware image intrinsics since
commit a9a7993441.
Change-Id: I7473d20009476a4ed6d919cae4e6dca9ff42e77a
Reviewers: arsenm, rampitec, mareko, tpr, b-sumner
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48167
llvm-svn: 335231
Summary:
Use the expanded features of the TableGen generic tables to avoid manually
adding the combinatorially exploded set of intrinsics. The
getAMDGPUImageDimIntrinsic lookup function is early-out,
i.e. non-AMDGPU intrinsics will never look at the underlying table.
Use a generic approach for getting the new intrinsic overload to keep the
code simple, and make the image dmask handling more generic:
- handle non-sampler image loads
- handle the case where the set of demanded elements is not a prefix
There is some overlap between this code and an optimization that happens
in the backend during code generation. They currently complement each other:
- only the codegen optimization can generate vec3 loads
- only the InstCombine optimization can handle D16
The InstCombine optimization also likely covers more cases since the
codegen optimization is fairly ad-hoc. Ideally, we'll remove the optimization
in codegen once the infrastructure for vec3 is in place (which will probably
take a long time).
Modify the test cases to use dimension-aware intrinsics. This makes it
easier to see that the test coverage for the new intrinsics is equivalent,
and the old style intrinsics will be removed in a follow-up commit anyway.
Change-Id: I4b91ea661413d13004956fe4ef7d13d41b8ce3ad
Reviewers: arsenm, rampitec, majnemer
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48165
llvm-svn: 335230
r335150 should resolve the issues with the clang-with-thin-lto-ubuntu
and clang-with-lto-ubuntu builders.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 335206
conditions feeding a chain of `and`s or `or`s for a branch.
Much like with full non-trivial unswitching, we rely on the pass manager
to handle iterating until all of the profitable unswitches have been
done. This is to allow other more profitable unswitches to fire on any
of the cloned, simpler versions of the loop if viable.
Threading the partial unswiching through the non-trivial unswitching
logic motivated some minor refactorings. If those are too disruptive to
make it reasonable to review this patch, I can separate them out, but
it'll be somewhat timeconsuming so I wanted to send it for initial
review as-is. Feel free to tell me whether it warrants pulling apart.
I've tried to re-use (and factor out) logic form the partial trivial
unswitching, but not as much could be shared as I had haped. Still, this
wasn't as bad as I naively expected.
Some basic testing is added, but I probably need more. Suggestions for
things you'd like to see tested more than welcome. One thing I'd like to
do is add some testing that when we schedule this with loop-instsimplify
it effectively cleans up the cruft created.
Last but not least, this uncovered a bug that has been in loop cloning
the entire time for non-trivial unswitching. Specifically, we didn't
correctly add the outer-most cloned loop to the list of cloned loops.
This meant that LCSSA wouldn't be updated for it hypothetically, and
more significantly that we would never visit it in the loop pass
manager. I noticed this while checking loop-instsimplify by hand. I'll
try to separate this bugfix out into its own patch with a more focused
test. But it is just one line, so shouldn't significantly confuse the
review here.
After this patch, the only missing "feature" in this unswitch I'm aware
of us non-trivial unswitching of switches. I'll try implementing *full*
non-trivial unswitching of switches (which is at least a sound thing to
implement), but *partial* non-trivial unswitching of switches is
something I don't see any sound and principled way to implement. I also
have no interesting test cases for the latter, so I'm not really
worried. The rest of the things that need to be ported are bug-fixes and
more narrow / targeted support for specific issues.
Differential Revision: https://reviews.llvm.org/D47522
llvm-svn: 335203
Summary:
Since the value stored in the cache might be deleted or replaced with
something else, we need to use tracking ValueHandlers instead of plain
Value pointers. It was discovered in one of internal builds, and
unfortunately there is no small reproducer for the issue.
The cache was introduced in rL327328.
Reviewers: ahatanak, pete
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48407
llvm-svn: 335201
Summary:
Two utils methods have essentially the same functionality. This is an attempt to merge them into one.
1. lib/Transforms/Utils/Local.cpp : MergeBasicBlockIntoOnlyPred
2. lib/Transforms/Utils/BasicBlockUtils.cpp : MergeBlockIntoPredecessor
Prior to the patch:
1. MergeBasicBlockIntoOnlyPred
Updates either DomTree or DeferredDominance
Moves all instructions from Pred to BB, deletes Pred
Asserts BB has single predecessor
If address was taken, replace the block address with constant 1 (?)
2. MergeBlockIntoPredecessor
Updates DomTree, LoopInfo and MemoryDependenceResults
Moves all instruction from BB to Pred, deletes BB
Returns if doesn't have a single predecessor
Returns if BB's address was taken
After the patch:
Method 2. MergeBlockIntoPredecessor is attempting to become the new default:
Updates DomTree or DeferredDominance, and LoopInfo and MemoryDependenceResults
Moves all instruction from BB to Pred, deletes BB
Returns if doesn't have a single predecessor
Returns if BB's address was taken
Uses of MergeBasicBlockIntoOnlyPred that need to be replaced:
1. lib/Transforms/Scalar/LoopSimplifyCFG.cpp
Updated in this patch. No challenges.
2. lib/CodeGen/CodeGenPrepare.cpp
Updated in this patch.
i. eliminateFallThrough is straightforward, but I added using a temporary array to avoid the iterator invalidation.
ii. eliminateMostlyEmptyBlock(s) methods also now use a temporary array for blocks
Some interesting aspects:
- Since Pred is not deleted (BB is), the entry block does not need updating.
- The entry block was being updated with the deleted block in eliminateMostlyEmptyBlock. Added assert to make obvious that BB=SinglePred.
- isMergingEmptyBlockProfitable assumes BB is the one to be deleted.
- eliminateMostlyEmptyBlock(BB) does not delete BB on one path, it deletes its unique predecessor instead.
- adding some test owner as subscribers for the interesting tests modified:
test/CodeGen/X86/avx-cmp.ll
test/CodeGen/AMDGPU/nested-loop-conditions.ll
test/CodeGen/AMDGPU/si-annotate-cf.ll
test/CodeGen/X86/hoist-spill.ll
test/CodeGen/X86/2006-11-17-IllegalMove.ll
3. lib/Transforms/Scalar/JumpThreading.cpp
Not covered in this patch. It is the only use case using the DeferredDominance.
I would defer to Brian Rzycki to make this replacement.
Reviewers: chandlerc, spatel, davide, brzycki, bkramer, javed.absar
Subscribers: qcolombet, sanjoy, nemanjai, nhaehnle, jlebar, tpr, kbarton, RKSimon, wmi, arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D48202
llvm-svn: 335183
As described in D48359, this patch pushes InstructionsState down the BoUpSLP call hierarchy instead of the corresponding raw OpValue. This makes it easier to track the alternate opcode etc. and avoids us having to call getAltOpcode which makes it difficult to support more than one alternate opcode.
Differential Revision: https://reviews.llvm.org/D48382
llvm-svn: 335170
The idea of partial unswitching is to take a *part* of a branch's
condition that is loop invariant and just unswitching that part. This
primarily makes sense with i1 conditions of branches as opposed to
switches. When dealing with i1 conditions, we can easily extract loop
invariant inputs to a a branch and unswitch them to test them entirely
outside the loop.
As part of this, we now create much more significant cruft in the loop
body, so this relies on adding cleanup passes to the loop pipeline and
revisiting unswitched loops to do that cleanup before continuing to
process them.
This already appears to be more powerful at unswitching than the old
loop unswitch pass, and so I'd appreciate pretty careful review in case
I'm just missing some correctness checks. The `LIV-loop-condition` test
case is not unswitched by the old unswitch pass, but is with this pass.
Thanks to Sanjoy and Fedor for the review!
Differential Revision: https://reviews.llvm.org/D46706
llvm-svn: 335156
This utility should operate on Values, not Instructions. While I'm here,
I've also made it possible to skip emitting replacement dbg.values for
certain debug users (by having RewriteExpr return nullptr).
llvm-svn: 335152
Using OrderedInstructions::dominates as comparator for instructions in
BBs without dominance relation can cause a non-deterministic order
between such instructions. That in turn can cause us to materialize
copies in a non-deterministic order. While this does not effect
correctness, it causes some minor non-determinism in the final generated
code, because values have slightly different labels.
Without this patch, running -print-predicateinfo on a reasonably large
module produces slightly different output on each run.
This patch uses the dominator trees DFSInNum to order instruction from
different BBs, which should enforce a deterministic ordering and
guarantee that dominated instructions come after the instructions that
dominate them.
Reviewers: dberlin, efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D48230
llvm-svn: 335150
The purpose of this utility is to make it easier for optimizations to
insert replacement dbg.values for instructions they are deleting. This
is useful in situations where salvageDebugInfo is inapplicable, say,
because the new dbg.value cannot refer to an operand of the dying value.
The utility is called insertReplacementDbgValues.
It assumes that the instruction 'From' is going to be deleted, and
inserts replacement dbg.values for each debug user of 'From'. The
newly-inserted dbg.values refer to 'To' instead of 'From'. Each
replacement dbg.value has the same location and variable as the debug
user it replaces, has a DIExpression determined by the result of
'RewriteExpr' applied to an old debug user of 'From', and is placed
before 'InsertBefore'.
This should simplify future patches, like D48331.
llvm-svn: 335144
This is part of a move towards generalizing the alternate opcode mechanism and not just supporting (F)Add/(F)Sub counterparts.
The patch embeds the AltOpcode in the InstructionsState instead of calling getAltOpcode so often.
I'm hoping to eventually remove all uses of getAltOpcode and handle alternate opcode selection entirely within getSameOpcode, that will require us to use InstructionsState throughout the BoUpSLP call hierarchy (similar to some of the changes in D28907), which I will begin in future patches.
Differential Revision: https://reviews.llvm.org/D48359
llvm-svn: 335134
D47985 saw the old SK_Alternate 'alternating' shuffle mask replaced with the SK_Select mask which accepts either input operand for each lane, equivalent to a vector select with a constant condition operand.
This patch updates SLPVectorizer to make full use of this SK_Select shuffle pattern by removing the 'isOdd()' limitation.
The AArch64 regression will be fixed by D48172.
Differential Revision: https://reviews.llvm.org/D48174
llvm-svn: 335130
Summary:
Related to https://bugs.llvm.org/show_bug.cgi?id=37793, https://reviews.llvm.org/D46760#1127287
We'd like to do this canonicalization https://rise4fun.com/Alive/Gmc
But it is currently restricted by rL155136 / rL155362, which says:
```
// This is a constant shift of a constant shift. Be careful about hiding
// shl instructions behind bit masks. They are used to represent multiplies
// by a constant, and it is important that simple arithmetic expressions
// are still recognizable by scalar evolution.
//
// The transforms applied to shl are very similar to the transforms applied
// to mul by constant. We can be more aggressive about optimizing right
// shifts.
//
// Combinations of right and left shifts will still be optimized in
// DAGCombine where scalar evolution no longer applies.
```
I think these tests show that for *constants*, SCEV has no issues with that canonicalization.
Reviewers: mkazantsev, spatel, efriedma, sanjoy
Reviewed By: mkazantsev
Subscribers: sanjoy, javed.absar, llvm-commits, stoklund, bixia
Differential Revision: https://reviews.llvm.org/D48229
llvm-svn: 335101
This patch introduces two helpers to make it easier to ignore debug
intrinsics:
- Instruction::getNextNonDebugInstruction()
This is just like Instruction::getNextNode(), except that it skips debug
info.
- skipDebugInfo(BasicBlock::iterator)
A free function which advances a BasicBlock iterator past any debug
info. This is a no-op when the iterator already points to a non-debug
instruction.
Part of: llvm.org/PR37728
Related to: https://reviews.llvm.org/D47874
Differential Revision: https://reviews.llvm.org/D48305
llvm-svn: 335083
The getArithmeticInstrCost calls for shuffle vectors entry costs specify TargetTransformInfo::OperandValueKind arguments, but are just using the method's default values. This seems to be a copy + paste issue and doesn't affect the costs in anyway. The TargetTransformInfo::OperandValueProperties default arguments are already not being used.
Noticed while working on D47985.
Differential Revision: https://reviews.llvm.org/D48008
llvm-svn: 335045