rL343913 was using SimplifyDemandedBits's original demanded mask instead of the adjusted 'NewMask' that accounts for multiple uses of the op (those variable names really need improving....).
Annoyingly many of the test changes (back to pre-rL343913 state) are actually safe - but only because their multiple uses are all by PMULDQ/PMULUDQ.
Thanks to Jan Vesely (@jvesely) for bisecting the bug.
llvm-svn: 343935
This patch enables SimplifyDemandedBits to call SimplifyDemandedVectorElts in cases where the demanded bits mask covers entire elements of a bitcasted source vector.
There are a couple of cases here where simplification at a deeper level (such as through bitcasts) prevents further simplification - CommitTargetLoweringOpt only adds immediate uses/users back to the worklist when we might want to combine the original caller again to see what else it can simplify.
As well as that I had to disable handling of bool vector until SimplifyDemandedVectorElts better supports some of their opcodes (SETCC, shifts etc.).
Fixes PR39178
Differential Revision: https://reviews.llvm.org/D52935
llvm-svn: 343913
Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits
Differential Revision: https://reviews.llvm.org/D46179
llvm-svn: 339650
AVX512 doesn't have an immediate controlled blend instruction. But blend throughput is still better than movss/sd on SKX.
This commit changes AVX512 to use the AVX blend instructions instead of MOVSS/MOVSD. This constrains the register allocation since it won't be able to use XMM16-31, but hopefully the increased throughput and reduced port 5 pressure makes up for that.
llvm-svn: 337083
The one I noticed is sqrtsss/sd, but there could be others.
I had to add a couple new tests that don't have insertelement in there to catch this on the fast-isel path. Otherwise we trigger an abort and use SelectionDAG.
llvm-svn: 336938
I think this covers most of the unmasked vector instructions. We're still missing a lot of the masked instructions.
There are some test changes here because of the new folding support. I don't think these particular cases should be folded because it creates an undef register dependency. I think the changes introduced in r334175 are not handling stack folding. They're only blocking the peephole pass.
llvm-svn: 334800
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44785
llvm-svn: 330322
In somes cases fast-isel fails to remove the and/shifts and uses blends or conditional moves.
But once masking gets involved, fast-isel aborts on the mask portion and we DAG combine more thorougly.
llvm-svn: 329604
As noted in PR34686, we are relying on a PSHUFD+PSHUFLW+PSHUFHW shuffle chain for most general vXi16 unary shuffles.
This patch checks for simpler PSHUFLW+PSHUFD and PSHUFHW+PSHUFD cases beforehand, building on some existing code that just handled splat shuffles.
By doing so we also prevent premature use of PSHUFB shuffles which can be slower and require the creation/loading of constant shuffle masks.
We now have the 'fast-variable-shuffle' option for hardware that prefers combining 2 or more shuffles to VPSHUFB etc.
Differential Revision: https://reviews.llvm.org/D38318
llvm-svn: 321553
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Summary:
Subregister liveness tracking is not implemented for X86 backend, so
sometimes the whole super register is said to be live, when only a
subregister is really live. That might happen if the def and the use
are located in different MBBs, see added fixup-bw-isnt.mir test.
However, using knowledge of the specific instructions handled by the
bw-fixup-pass we can get more precise liveness information which this
change does.
Reviewers: MatzeB, DavidKreitzer, ab, andrew.w.kaylor, craig.topper
Reviewed By: craig.topper
Subscribers: n.bozhenov, myatsina, llvm-commits, hiraditya
Patch by Andrei Elovikov <andrei.elovikov@intel.com>
Differential Revision: https://reviews.llvm.org/D37559
llvm-svn: 313524
We currently generate BUILD_VECTOR as a tree of UNPCKL shuffles of the same type:
e.g. for v4f32:
Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
: unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
The issue is because we are not placing sequential vector elements together early enough, we fail to recognise many combinable patterns - consecutive scalar loads, extractions etc.
Instead, this patch unpacks progressively larger sequential vector elements together:
e.g. for v4f32:
Step 1: unpcklps 0, 2 ==> X: <?, ?, 1, 0>
: unpcklps 1, 3 ==> Y: <?, ?, 3, 2>
Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
This does mean that we are creating UNPCKL shuffle of different value types, but the relevant combines that benefit from this are quite capable of handling the additional BITCASTs that are now included in the shuffle tree.
Differential Revision: https://reviews.llvm.org/D33864
llvm-svn: 304688
It can be costly to transfer from the gprs to the xmm registers and can prevent loads merging.
This patch splits vXi16/vXi32/vXi64 BUILD_VECTORS that use the same operand in multiple elements into a BUILD_VECTOR with only a single insertion of each of those elements and then performs an unary shuffle to duplicate the values.
There are a couple of minor regressions this patch unearths due to some missing MOVDDUP/BROADCAST folds that I will address in a future patch.
Note: Now that vector shuffle lowering and combining is pretty good we should be reusing that instead of duplicating so much in LowerBUILD_VECTOR - this is the first of several patches to address this.
Differential Revision: https://reviews.llvm.org/D31373
llvm-svn: 299387
The code emiited by Clang's intrinsics for (v)cvtsi2ss, (v)cvtsi2sd,
(v)cvtsd2ss and (v)cvtss2sd is lowered to a code sequence that includes
redundant (v)movss/(v)movsd instructions. This patch adds patterns for
optimizing these sequences.
Differential revision: https://reviews.llvm.org/D28455
llvm-svn: 291660
Add the missing domain equivalences for movss, movsd, movd and movq zero extending loading instructions.
Differential Revision: https://reviews.llvm.org/D27684
llvm-svn: 289825
Summary:
These intrinsic instructions are all selected from intrinsics that have well defined behavior for where the upper bits come from. It's not the same place as the lower bits.
As you can see we were suppressing load folding for these instructions in some cases. In none of the cases was the separate load helping avoid a partial dependency on the destination register. So we should just go ahead and allow the load to be folded.
Only foldMemoryOperand was suppressing folding for these. They all have patterns for folding sse_load_f32/f64 that aren't gated with OptForSize, but sse_load_f32/f64 doesn't allow 128-bit vector loads. It only allows scalar_to_vector and vzmovl of scalar loads to match. There's no reason we can't allow a 128-bit vector load to be narrowed so I would like to fix sse_load_f32/f64 to allow that. And if I do that it changes some of these same test cases to fold the load too.
Reviewers: spatel, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27611
llvm-svn: 289419
As discussed on PR26491, we are missing the opportunity to make use of the smaller MOVHLPS instruction because we set both arguments of a SHUFPD when using it to lower a single input shuffle.
This patch sets the lowered argument to UNDEF if that shuffle element is undefined. This in turn makes it easier for target shuffle combining to decode UNDEF shuffle elements, allowing combines to MOVHLPS to occur.
A fix to match against MOVHPD stores was necessary as well.
This builds on the improved MOVLHPS/MOVHLPS lowering and memory folding support added in D16956
Adding similar support for SHUFPS will have to wait until have better support for target combining of binary shuffles.
Differential Revision: https://reviews.llvm.org/D23027
llvm-svn: 279430
Fixed typo in the intrinsic definitions of (v)cvtsd2ss with memory folding.
This was only unearthed when rL276102 started using the intrinsic again.....
llvm-svn: 276740
D20859 and D20860 attempted to replace the SSE (V)CVTTPS2DQ and VCVTTPD2DQ truncating conversions with generic IR instead.
It turns out that the behaviour of these intrinsics is different enough from generic IR that this will cause problems, INF/NAN/out of range values are guaranteed to result in a 0x80000000 value - which plays havoc with constant folding which converts them to either zero or UNDEF. This is also an issue with the scalar implementations (which were already generic IR and what I was trying to match).
This patch changes both scalar and packed versions back to using x86-specific builtins.
It also deals with the other scalar conversion cases that are runtime rounding mode dependent and can have similar issues with constant folding.
A companion clang patch is at D22105
Differential Revision: https://reviews.llvm.org/D22106
llvm-svn: 275981
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
The original commit tried inserting an 8bit-subreg into a GR32 (not GR32_ABCD)
which was not appreciated by fast regalloc on 32-bit.
llvm-svn: 274802
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
Differential Revision: http://reviews.llvm.org/D21774
llvm-svn: 274692
This allows us to emit native IR in Clang (next commit).
Also, update the intrinsic tests to show that codegen already knows how to handle
the IR that Clang will soon produce.
llvm-svn: 272806
This patch removes the llvm intrinsics (V)CVTTPS2DQ and VCVTTPD2DQ truncation (round to zero) conversions and auto-upgrades to FP_TO_SINT calls instead.
Note: I looked at updating CVTTPD2DQ as well but this still requires a lot more work to correctly lower.
Differential Revision: http://reviews.llvm.org/D20860
llvm-svn: 271510