Commit Graph

511 Commits

Author SHA1 Message Date
Robert Lougher 0c93ea2634 [TailCallElim] Enable marking of calls with byval as tails
In r339636 the alias analysis rules were changed with regards to tail calls
and byval arguments. Previously, tail calls were assumed not to alias
allocas from the current frame. This has been updated, to not assume this
for arguments with the byval attribute.

This patch aligns TailCallElim with the new rule. Tail marking can now be
more aggressive and mark more calls as tails, e.g.:

define void @test() {
  %f = alloca %struct.foo
  call void @bar(%struct.foo* byval %f)
  ret void
}

define void @test2(%struct.foo* byval %f) {
  call void @bar(%struct.foo* byval %f)
  ret void
}

define void @test3(%struct.foo* byval %f) {
  %agg.tmp = alloca %struct.foo
  %0 = bitcast %struct.foo* %agg.tmp to i8*
  %1 = bitcast %struct.foo* %f to i8*
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* %1, i64 40, i1 false)
  call void @bar(%struct.foo* byval %agg.tmp)
  ret void
}

The problematic case where a byval parameter is captured by a call is still
handled correctly, and will not be marked as a tail (see PR7272).

llvm-svn: 343986
2018-10-08 18:03:40 +00:00
Sameer AbuAsal 77beee4136 [inline Cost] Don't mark functions accessing varargs as non-inlinable
Summary:
rL323619 marks functions that are calling va_end as not viable for
inlining. This patch reverses that since this va_end doesn't need
access to the vriadic arguments list that are saved on the stack, only
va_start does.

Reviewers: efriedma, fhahn

Reviewed By: fhahn

Subscribers: eraman, haicheng, llvm-commits

Differential Revision: https://reviews.llvm.org/D52067

llvm-svn: 342675
2018-09-20 18:39:34 +00:00
Fedor Sergeev ee8d31c49e [New PM] Introducing PassInstrumentation framework
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@

The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.

Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
  and access to them.

* PassInstrumentation class that handles instrumentation-point interfaces
  that call into PassInstrumentationCallbacks.

* Callbacks accept StringRef which is just a name of the Pass right now.
  There were some ideas to pass an opaque wrapper for the pointer to pass instance,
  however it appears that pointer does not actually identify the instance
  (adaptors and managers might have the same address with the pass they govern).
  Hence it was decided to go simple for now and then later decide on what the proper
  mental model of identifying a "pass in a phase of pipeline" is.

* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
  on different IRUnits (e.g. Analyses).

* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
  usual AnalysisManager::getResult. All pass managers were updated to run that
  to get PassInstrumentation object for instrumentation calls.

* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
  args out of a generic PassManager's extra args. This is the only way I was able to explicitly
  run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
  RepeatedPass::run.
  TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
  and then get rid of getAnalysisResult by improving RepeatedPass implementation.

* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
  PassInstrumentationAnalysis. Callbacks registration should be performed directly
  through PassInstrumentationCallbacks.

* new-pm tests updated to account for PassInstrumentationAnalysis being run

* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
  Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.

  Made getName helper to return std::string (instead of StringRef initially) to fix
  asan builtbot failures on CGSCC tests.

Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858

llvm-svn: 342664
2018-09-20 17:08:45 +00:00
Eric Christopher 019889374b Temporarily Revert "[New PM] Introducing PassInstrumentation framework"
as it was causing failures in the asan buildbot.

This reverts commit r342597.

llvm-svn: 342616
2018-09-20 05:16:29 +00:00
Fedor Sergeev a5f279ea89 [New PM] Introducing PassInstrumentation framework
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@

The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.

Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
  and access to them.

* PassInstrumentation class that handles instrumentation-point interfaces
  that call into PassInstrumentationCallbacks.

* Callbacks accept StringRef which is just a name of the Pass right now.
  There were some ideas to pass an opaque wrapper for the pointer to pass instance,
  however it appears that pointer does not actually identify the instance
  (adaptors and managers might have the same address with the pass they govern).
  Hence it was decided to go simple for now and then later decide on what the proper
  mental model of identifying a "pass in a phase of pipeline" is.

* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
  on different IRUnits (e.g. Analyses).

* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
  usual AnalysisManager::getResult. All pass managers were updated to run that
  to get PassInstrumentation object for instrumentation calls.

* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
  args out of a generic PassManager's extra args. This is the only way I was able to explicitly
  run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
  RepeatedPass::run.
  TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
  and then get rid of getAnalysisResult by improving RepeatedPass implementation.

* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
  PassInstrumentationAnalysis. Callbacks registration should be performed directly
  through PassInstrumentationCallbacks.

* new-pm tests updated to account for PassInstrumentationAnalysis being run

* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
  Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.

Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858

llvm-svn: 342597
2018-09-19 22:42:57 +00:00
Fedor Sergeev 25de3f83be Revert rL342544: [New PM] Introducing PassInstrumentation framework
A bunch of bots fail to compile unittests. Reverting.

llvm-svn: 342552
2018-09-19 14:54:48 +00:00
Fedor Sergeev 875c938fec [New PM] Introducing PassInstrumentation framework
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@

The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.

Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
  and access to them.

* PassInstrumentation class that handles instrumentation-point interfaces
  that call into PassInstrumentationCallbacks.

* Callbacks accept StringRef which is just a name of the Pass right now.
  There were some ideas to pass an opaque wrapper for the pointer to pass instance,
  however it appears that pointer does not actually identify the instance
  (adaptors and managers might have the same address with the pass they govern).
  Hence it was decided to go simple for now and then later decide on what the proper
  mental model of identifying a "pass in a phase of pipeline" is.

* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
  on different IRUnits (e.g. Analyses).

* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
  usual AnalysisManager::getResult. All pass managers were updated to run that
  to get PassInstrumentation object for instrumentation calls.

* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
  args out of a generic PassManager's extra args. This is the only way I was able to explicitly
  run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
  RepeatedPass::run.
  TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
  and then get rid of getAnalysisResult by improving RepeatedPass implementation.

* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
  PassInstrumentationAnalysis. Callbacks registration should be performed directly
  through PassInstrumentationCallbacks.

* new-pm tests updated to account for PassInstrumentationAnalysis being run

* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
  Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.

Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858

llvm-svn: 342544
2018-09-19 12:25:52 +00:00
Piotr Padlewski 9a925ba616 Set cost of invariant group intrinsics to 0
Summary:
Like with other similar intrinsics, presense of strip or
launder.invariant.group should not change the result of inlining cost.
This is because they are just markers and do not perform any computation.

Reviewers: amharc, rsmith, reames, kuhar

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D51814

llvm-svn: 341725
2018-09-07 22:29:48 +00:00
Chandler Carruth 664aa868f5 [x86/SLH] Add a real Clang flag and LLVM IR attribute for Speculative
Load Hardening.

Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.

Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.

While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.

This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.

Differential Revision: https://reviews.llvm.org/D51157

llvm-svn: 341363
2018-09-04 12:38:00 +00:00
David Bolvansky c1b27b562b [Inliner] Attribute callsites with inline remarks
Summary:
Sometimes reading an output *.ll file it is not easy to understand why some callsites are not inlined. We can read output of inline remarks (option --pass-remarks-missed=inline) and try correlating its messages with the callsites.

An easier way proposed by this patch is to add to every callsite processed by Inliner an attribute with the latest message that describes the cause of not inlining this callsite. The attribute is called //inline-remark//. By default this feature is off. It can be switched on by the option //-inline-remark-attribute//.

For example in the provided test the result method //@test1// has two callsites //@bar// and inline remarks report different inlining missed reasons:
  remark: <unknown>:0:0: bar not inlined into test1 because too costly to inline (cost=-5, threshold=-6)
  remark: <unknown>:0:0: bar not inlined into test1 because it should never be inlined (cost=never): recursive

It is not clear which remark correspond to which callsite. With the inline remark attribute enabled we get the reasons attached to their callsites:
  define void @test1() {
    call void @bar(i1 true) #0
    call void @bar(i1 false) #2
    ret void
  }
  attributes #0 = { "inline-remark"="(cost=-5, threshold=-6)" }
  ..
  attributes #2 = { "inline-remark"="(cost=never): recursive" }

Patch by: yrouban (Yevgeny Rouban)

Reviewers: xbolva00, tejohnson, apilipenko

Reviewed By: xbolva00, tejohnson

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D50435

llvm-svn: 340834
2018-08-28 15:27:25 +00:00
Mikael Holmen 4d652c4ce7 [CloneFunction] Constant fold terminators before checking single predecessor
Summary:
This fixes PR31105.

There is code trying to delete dead code that does so by e.g. checking if
the single predecessor of a block is the block itself.

That check fails on a block like this
 bb:
   br i1 undef, label %bb, label %bb
since that has two (identical) predecessors.

However, after the check for dead blocks there is a call to
ConstantFoldTerminator on the basic block, and that call simplifies the
block to
 bb:
   br label %bb

Therefore we now do the call to ConstantFoldTerminator before the check if
the block is dead, so it can realize that it really is.

The original behavior lead to the block not being removed, but it was
simplified as above, and then we did a call to
    Dest->replaceAllUsesWith(&*I);
with old and new being equal, and an assertion triggered.

Reviewers: chandlerc, fhahn

Reviewed By: fhahn

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D51280

llvm-svn: 340820
2018-08-28 12:40:11 +00:00
David Bolvansky 1ccbddca2c Revert [Inliner] Attribute callsites with inline remarks
llvm-svn: 340619
2018-08-24 16:39:41 +00:00
David Bolvansky 7c0537a3ac [Inliner] Attribute callsites with inline remarks
Summary:
Sometimes reading an output *.ll file it is not easy to understand why some callsites are not inlined. We can read output of inline remarks (option --pass-remarks-missed=inline) and try correlating its messages with the callsites.

An easier way proposed by this patch is to add to every callsite processed by Inliner an attribute with the latest message that describes the cause of not inlining this callsite. The attribute is called //inline-remark//. By default this feature is off. It can be switched on by the option //-inline-remark-attribute//.

For example in the provided test the result method //@test1// has two callsites //@bar// and inline remarks report different inlining missed reasons:
  remark: <unknown>:0:0: bar not inlined into test1 because too costly to inline (cost=-5, threshold=-6)
  remark: <unknown>:0:0: bar not inlined into test1 because it should never be inlined (cost=never): recursive

It is not clear which remark correspond to which callsite. With the inline remark attribute enabled we get the reasons attached to their callsites:
  define void @test1() {
    call void @bar(i1 true) #0
    call void @bar(i1 false) #2
    ret void
  }
  attributes #0 = { "inline-remark"="(cost=-5, threshold=-6)" }
  ..
  attributes #2 = { "inline-remark"="(cost=never): recursive" }

Patch by: yrouban (Yevgeny Rouban)

Reviewers: xbolva00, tejohnson, apilipenko

Reviewed By: xbolva00, tejohnson

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D50435

llvm-svn: 340618
2018-08-24 16:28:36 +00:00
David Bolvansky c0aa4b75a4 Enrich inline messages
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.

Patch by: yrouban (Yevgeny Rouban)


Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00

Reviewed By: tejohnson, xbolva00

Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith

Differential Revision: https://reviews.llvm.org/D49412

llvm-svn: 338969
2018-08-05 14:53:08 +00:00
David Bolvansky fbbb83c782 Revert "Enrich inline messages", tests fail
llvm-svn: 338496
2018-08-01 08:02:40 +00:00
David Bolvansky 7f36cd9d96 Enrich inline messages
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.

Patch by: yrouban (Yevgeny Rouban)


Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00

Reviewed By: tejohnson, xbolva00

Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith

Differential Revision: https://reviews.llvm.org/D49412

llvm-svn: 338494
2018-08-01 07:37:16 +00:00
David Bolvansky ab79414f7b Revert Enrich inline messages
llvm-svn: 338389
2018-07-31 14:47:22 +00:00
David Bolvansky b562dbabda Enrich inline messages
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.

Patch by: yrouban (Yevgeny Rouban)


Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00

Reviewed By: tejohnson, xbolva00

Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith

Differential Revision: https://reviews.llvm.org/D49412

llvm-svn: 338387
2018-07-31 14:25:24 +00:00
Manoj Gupta 9d83ce9043 [Inline] Copy "null-pointer-is-valid" attribute in caller.
Summary:
Normally, inling does not happen if caller does not have
"null-pointer-is-valid"="true" attibute but callee has it.

However, alwaysinline may force callee to be inlined.
In this case, if the caller has the "null-pointer-is-valid"="true"
attribute, copy the attribute to caller.

Reviewers: efriedma, a.elovikov, lebedev.ri, jyknight

Reviewed By: efriedma

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D50000

llvm-svn: 338292
2018-07-30 19:33:53 +00:00
Manoj Gupta f9f50f634d ConstantFolding: Avoid a crash.
Summary:
Check if the parent basic block and caller exists
before calling CS.getCaller when constant folding
strip.invariant.group instrinsic.

This avoids a crash when the function containing the intrinsic
is being inlined. The instruction is checked for any simplifiction
but has not yet been added to a basic block.

Reviewers: Prazek, rsmith, efriedma

Reviewed By: efriedma

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D49690

llvm-svn: 337742
2018-07-23 21:20:00 +00:00
Evgeniy Stepanov ca8c2f7638 Revert "CallGraphSCCPass: iterate over all functions."
This reverts commit r336419: use-after-free on CallGraph::FunctionMap elements
due to the use of a stale iterator in CGPassManager::runOnModule.

The iterator may be invalidated if a pass removes a function, ex.:
  llvm::LegacyInlinerBase::inlineCalls
  inlineCallsImpl
  llvm::CallGraph::removeFunctionFromModule

llvm-svn: 337018
2018-07-13 16:32:31 +00:00
Manoj Gupta 77eeac3d9e llvm: Add support for "-fno-delete-null-pointer-checks"
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.

More details : https://lkml.org/lkml/2018/4/4/601

GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.

-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.

This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.

Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv

Reviewed By: efriedma, george.burgess.iv

Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits

Differential Revision: https://reviews.llvm.org/D47895

llvm-svn: 336613
2018-07-09 22:27:23 +00:00
Tim Northover 7ee46ed992 CallGraphSCCPass: iterate over all functions.
Previously we only iterated over functions reachable from the set of
external functions in the module. But since some of the passes under
this (notably the always-inliner and coroutine lowerer) are required for
correctness, they need to run over everything.

This just adds an extra layer of iteration over the CallGraph to keep
track of which functions we've already visited and get the next batch of
SCCs.

Should fix PR38029.

llvm-svn: 336419
2018-07-06 08:04:47 +00:00
Gabor Buella da4a966e1c NFC - Various typo fixes in tests
llvm-svn: 336268
2018-07-04 13:28:39 +00:00
Teresa Johnson e87868b7e9 [ThinLTO] Port InlinerFunctionImportStats handling to new PM
Summary:
The InlinerFunctionImportStats will collect and dump stats regarding how
many function inlined into the module were imported by ThinLTO.

Reviewers: wmi, dexonsmith

Subscribers: mehdi_amini, inglorion, llvm-commits, eraman

Differential Revision: https://reviews.llvm.org/D48729

llvm-svn: 335914
2018-06-28 20:07:47 +00:00
Piotr Padlewski d6f7346a4b Fix aliasing of launder.invariant.group
Summary:
Patch for capture tracking broke
bootstrap of clang with -fstict-vtable-pointers
which resulted in debbugging nightmare. It was fixed
https://reviews.llvm.org/D46900 but as it turned
out, there were other parts like inliner (computing of
noalias metadata) that I found after bootstraping with enabled
assertions.

Reviewers: hfinkel, rsmith, chandlerc, amharc, kuhar

Subscribers: JDevlieghere, eraman, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D47088

llvm-svn: 333070
2018-05-23 09:16:44 +00:00
Shiva Chen 2c864551df [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: !1, name: "foo", file: !2, line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata !1)

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Teresa Johnson 59da890c96 [NewPM] Emit inliner NoDefinition missed optimization remark
Summary: Makes this consistent with the old PM.

Reviewers: eraman

Subscribers: mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D46526

llvm-svn: 331709
2018-05-08 01:45:46 +00:00
Vitaly Buka 4296ea72ff Don't inline @llvm.icall.branch.funnel
Summary: @llvm.icall.branch.funnel is musttail with variable number of
arguments. After inlining current backend can't separate call targets from call
arguments.

Reviewers: pcc

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D45116

llvm-svn: 329235
2018-04-04 21:46:27 +00:00
Reid Kleckner a9e9918ee4 Treat inlining a notail call as a regular, non-tail call
Otherwise, we end up inlining a musttail call into a non-tail position,
which breaks verifier invariants.

Fixes PR31014

llvm-svn: 329015
2018-04-02 21:23:16 +00:00
Fedor Sergeev 6660fd0f95 [PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass
Summary:
This was motivated by absence of PrunEH functionality in new PM.
It was decided that a proper way to do PruneEH is to add NoUnwind inference
into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top.

This change generalizes attribute handling implemented for (a removal of)
Convergent attribute, by introducing a generic builder-like class
   AttributeInferer

It registers all the attribute inference requests, storing per-attribute
predicates into a vector, and then goes through an SCC Node, scanning all
the instructions for not breaking attribute assumptions.

The main idea is that as soon all the instructions from all the functions
of SCC Node conform to attribute assumptions then we are free to infer
the attribute as set for all the functions of SCC Node.

It handles two distinct cases of attributes:
   - those that might break due to derefinement of the function code

     for these attributes we are allowed to apply inference only if all the
     functions are "exact definitions". Example - NoUnwind.

   - those that do not care about derefinement

     for these attributes we are allowed to apply inference as soon as we see
     any function definition. Example - removal of Convergent attribute.

Also in this commit:
* Converted all the FunctionAttrs tests to use FileCheck and added new-PM
  invocations to them

* FunctionAttrs/convergent.ll test demonstrates a difference in behavior between
   new and old PM implementations. Marked with FIXME.

* PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg
  combo as intended

* some of "other" tests were updated since function-attrs now infers 'nounwind'
  even for old PM pipeline

* -disable-nounwind-inference hidden option added as a possible workaround for a supposedly
  rare case when nounwind being inferred by default presents a problem

Reviewers: chandlerc, jlebar

Reviewed By: jlebar

Subscribers: eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D44415

llvm-svn: 328377
2018-03-23 21:46:16 +00:00
Hiroshi Inoue c8e9245816 [NFC] fix trivial typos in comments and documents
"to to" -> "to"

llvm-svn: 323628
2018-01-29 05:17:03 +00:00
Florian Hahn 1636651e35 [InlineCost] Mark functions accessing varargs as not viable.
This prevents functions accessing varargs from being inlined if they
have the alwaysinline attribute.

Reviewers: efriedma, rnk, davide

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D42556

llvm-svn: 323619
2018-01-28 19:11:49 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Bjorn Pettersson 3851496e6e Avoid inlining if there is byval arguments with non-alloca address space
Summary:
After teaching InlineCost more about address spaces ()
another fault was detected in the inliner. If an argument has
the byval attribute the parameter might be copied to an alloca.
That part seems to work fine even if the argument has a different
address space than the alloca address space. However, if the
address spaces differ, then the inlined function still might
refer to the parameter using the original address space (the
inliner does not handle that situation very well).

This patch avoids the problem by simply disallowing inlining
when there are byval arguments with address space that differs
from the alloca address space.

I'm not really sure how to transform the code if we want to
get inlining for this situation. I assume that it never has
been working, and that the fixes in r321809 just exposed an
old problem.

Fault found by skatkov (Serguei Katkov). It is mentioned in
follow up comments to https://reviews.llvm.org/D40455.

Reviewers: skatkov

Reviewed By: skatkov

Subscribers: uabelho, eraman, llvm-commits, haicheng

Differential Revision: https://reviews.llvm.org/D41898

llvm-svn: 322181
2018-01-10 13:01:18 +00:00
Florian Hahn a82eef2363 [InlineFunction] Preserve calling convention when forwarding VarArgs.
Reviewers: efriedma, rnk, davide

Reviewed By: rnk, davide

Differential Revision: https://reviews.llvm.org/D41556

llvm-svn: 321943
2018-01-06 20:56:27 +00:00
Florian Hahn de10e6e064 [InlineFunction] Preserve attributes when forwarding VarArgs.
Reviewers: rnk, efriedma

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D41555

llvm-svn: 321942
2018-01-06 20:46:00 +00:00
Florian Hahn 80788d8088 [InlineFunction] Inline vararg functions that do not access varargs.
If the varargs are not accessed by a function, we can inline the
function.

Reviewers: dblaikie, chandlerc, davide, efriedma, rnk, hfinkel

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D41335

llvm-svn: 321940
2018-01-06 19:45:40 +00:00
Bjorn Pettersson 77f3299415 Teach InlineCost about address spaces
Summary:
I basically copied this patch from here:
  https://reviews.llvm.org/D1251
But I skipped some of the refactoring to make the patch more clean.

The new outer3/inner3 test case in ptr-diff.ll triggers the
following assert without this patch:
lib/IR/Constants.cpp:1834: static llvm::Constant *llvm::ConstantExpr::getCompare(unsigned short, llvm::Constant *, llvm::Constant *, bool): Assertion `C1->getType() == C2->getType() && "Op types should be identical!"' failed.

The other new test cases makes sure that there is code coverage
for all modifications in InlineCost.cpp (getting different values
due to not fetching sizes for address space zero). I only guarantee
code coverage for those tests. The tests are not written in a way
that they would break if not having the corrections in
InlineCost.cpp. I found it quite hard to fine tune the tests into
getting different results based on the pointer sizes (except for
the test case where we hit an assert if not teaching InlineCost
about address spaces).

Reviewers: chandlerc, arsenm, haicheng

Reviewed By: arsenm

Subscribers: wdng, eraman, llvm-commits, haicheng

Differential Revision: https://reviews.llvm.org/D40455

llvm-svn: 321809
2018-01-04 18:23:40 +00:00
Haicheng Wu 6d14dfe8f3 [InlineCost] Find more free binary operations
Currently, inline cost model considers a binary operator as free only if both
its operands are constants. Some simple cases are missing such as a + 0, a - a,
etc. This patch modifies visitBinaryOperator() to call SimplifyBinOp() without
going through simplifyInstruction() to get rid of the constant restriction.
Thus, visitAnd() and visitOr() are not needed.

Differential Revision: https://reviews.llvm.org/D41494

llvm-svn: 321366
2017-12-22 17:09:09 +00:00
Eli Friedman 07d94d59a4 inline-fp.ll was moved in r321332; delete it properly.
llvm-svn: 321333
2017-12-22 02:10:40 +00:00
Eli Friedman 39ed9a602b [Inliner] Restrict soft-float inlining penalty.
The penalty is currently getting applied in a bunch of places where it
doesn't make sense, like bitcasts (which are free) and calls (which
were getting the call penalty applied twice). Instead, just apply the
penalty to binary operators and floating-point casts.

While I'm here, also fix getFPOpCost() to do the right thing in more
cases, so we don't have to dig into function attributes.

Differential Revision: https://reviews.llvm.org/D41522

llvm-svn: 321332
2017-12-22 02:08:08 +00:00
Haicheng Wu b3689cabda [InlineCost] Skip volatile loads when looking for repeated loads
This is a follow-up fix of r320814.  A test case is also added.

llvm-svn: 321075
2017-12-19 13:42:58 +00:00
Haicheng Wu a446151552 [InlineCost] Find repeated loads in the callee
SROA analysis of InlineCost can figure out that some stores can be removed
after inlining and then the repeated loads clobbered by these stores are also
free.  This patch finds these clobbered loads and adjust the inline cost
accordingly.

Differential Revision: https://reviews.llvm.org/D33946

llvm-svn: 320814
2017-12-15 14:34:41 +00:00
Haicheng Wu 3739e14ab4 [InlineCost] Tracking Values through PHI Nodes
This patch fix this FIXME in visitPHI()

FIXME: We should potentially be tracking values through phi nodes,
especially when they collapse to a single value due to deleted CFG edges
during inlining.

Differential Revision: https://reviews.llvm.org/D38594

llvm-svn: 320699
2017-12-14 14:36:18 +00:00
Evgeniy Stepanov c667c1f47a Hardware-assisted AddressSanitizer (llvm part).
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.

HWASan comes with its own IR attribute.

A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).

Reviewers: kcc, pcc, alekseyshl

Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D40932

llvm-svn: 320217
2017-12-09 00:21:41 +00:00
Adam Nemet 9303f62255 [opt-remarks] If hotness threshold is set, ignore remarks without hotness
These are blocks that haven't not been executed during training.  For large
projects this could make a significant difference.  For the project, I was
looking at, I got an order of magnitude decrease in the size of the total YAML
files with this and r319235.

Differential Revision: https://reviews.llvm.org/D40678

Re-commit after fixing the failing testcase in rL319576, rL319577 and
rL319578.

llvm-svn: 319581
2017-12-01 20:41:38 +00:00
Adam Nemet 57783730fd Revert "[opt-remarks] If hotness threshold is set, ignore remarks without hotness"
This reverts commit r319556.

Something is not working with this when used with sample-based profiling.
Investigating...

llvm-svn: 319562
2017-12-01 18:12:29 +00:00
Adam Nemet 8d1fc2b65b [opt-remarks] If hotness threshold is set, ignore remarks without hotness
These are blocks that haven't not been executed during training.  For large
projects this could make a significant difference.  For the project, I was
looking at, I got an order of magnitude decrease in the size of the total YAML
files with this and r319235.

Differential Revision: https://reviews.llvm.org/D40678

llvm-svn: 319556
2017-12-01 17:02:04 +00:00
Arnold Schwaighofer d9e710984d Inliner: Don't mark notail calls with the 'tail' attribute
enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2,
                    TCK_NoTail = 3 };

TCK_NoTail is greater than TCK_Tail so taking the min does not do the
correct thing.

rdar://35639547

llvm-svn: 319075
2017-11-27 19:03:40 +00:00