InstCombine keeps a worklist and assumes that optimizations don't
eraseFromParent() the instruction, which SimplifyLibCalls violates. This change
adds a new callback to SimplifyLibCalls to let clients specify their own hander
for erasing actions.
Differential Revision: https://reviews.llvm.org/D52729
llvm-svn: 344251
This is the umin alternative to the umax code from rL344237. We use
DeMorgans law on the umax case to bring us to the same thing on umin,
but using countLeadingOnes, not countLeadingZeros.
Differential Revision: https://reviews.llvm.org/D53036
llvm-svn: 344239
Use the demanded bits of umax(A,C) to prove we can just use A so long as the
lowest non-zero bit of DemandMask is higher than the highest non-zero bit of C
Differential Revision: https://reviews.llvm.org/D53033
llvm-svn: 344237
Currently running the @insertelem_after_gep function below through the InstCombine pass with opt produces invalid IR.
Input:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t1 = bitcast <16 x i32>* %t0 to [16 x i32]*
%t2 = addrspacecast [16 x i32]* %t1 to [16 x i32] addrspace(3)*
%t3 = getelementptr inbounds [16 x i32], [16 x i32] addrspace(3)* %t2, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @extern_vec_pointers_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Output:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t3 = getelementptr inbounds <16 x i32>, <16 x i32>* %t0, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @my_extern_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Which although causes no complaints when produced, isn't valid IR as the insertelement use of the %t3 GEP expects an address space.
```
opt: /tmp/bad.ll:52:73: error: '%t3' defined with type 'i32*' but expected 'i32 addrspace(3)*'
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
```
I've fixed this by adding an addrspacecast after the GEP in the InstCombine pass, and including a check for this type mismatch to the verifier.
Reviewers: spatel, lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52294
llvm-svn: 343956
We established the (unfortunately complicated) rules for UB/poison
propagation with vector ops in:
D48893
D48987
D49047
It's clear from the affected tests that we are potentially creating
poison where none existed before the transforms. For add/sub/mul,
the answer is simple: just drop the flags because the extra undef
vector lanes are generally more valuable for analysis and codegen.
llvm-svn: 343819
This is a follow-up to rL343482 / D52439.
This was a pattern that initially caused the commit to be reverted because
the transform requires a bitcast as shown here.
llvm-svn: 343794
We're a long way from D50992 and D51553, but this is where we have to start.
We weren't back-propagating undefs into binop constant values for anything but
add/sub/mul/and/or/xor.
This is likely because we have to be careful about not introducing UB/poison
with div/rem/shift. But I suspect we already are getting the poison part wrong
for add/sub/mul (although it may not be possible to expose the bug currently
because we use SimplifyDemandedVectorElts from a limited set of opcodes).
See the discussion/implementation from D48987 and D49047.
This patch just enables functionality for FP ops because those do not have
UB/poison potential.
llvm-svn: 343727
These are candidates for the same fold that was implemented in
D52439, but FP types require bitcasting (and that changes the
extra uses profitability calculation).
llvm-svn: 343587
This is an attempt to get out of a local-minimum that instcombine currently
gets stuck in. We essentially combine two optimisations at once, ~a - ~b = b-a
and min(~a, ~b) = ~max(a, b), only doing the transform if the result is at
least neutral. This involves using IsFreeToInvert, which has been expanded a
little to include selects that can be easily inverted.
This is trying to fix PR35875, using the ideas from Sanjay. It is a large
improvement to one of our rgb to cmy kernels.
Differential Revision: https://reviews.llvm.org/D52177
llvm-svn: 343569
Summary:
This is a continuation of the fix for PR34627 "InstCombine assertion at vector gep/icmp folding". (I just realized bugpoint had fuzzed the original test for me, so I had fixed another trigger of the same assert in adjacent code in InstCombine.)
This patch avoids optimizing an icmp (to look only at the base pointers) when the resulting icmp would have a different type.
The patch adds a testcase and also cleans up and shrinks the pre-existing test for the adjacent assert trigger.
Reviewers: lebedev.ri, majnemer, spatel
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52494
llvm-svn: 343486
This was originally committed at rL343407, but reverted at
rL343458 because it crashed trying to handle a case where
the destination type is FP. This version of the patch adds
a check for that possibility. Tests added at rL343480.
Original commit message:
This transform is requested for the backend in:
https://bugs.llvm.org/show_bug.cgi?id=39016
...but I figured it was worth doing in IR too, and it's probably
easier to implement here, so that's this patch.
In the simplest case, we are just truncating a scalar value. If the
extract index doesn't correspond to the LSBs of the scalar, then we
have to shift-right before the truncate. Endian-ness makes this tricky,
but hopefully the ASCII-art helps visualize the transform.
Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343482
The first attempt at this transform:
rL343407
...was reverted:
rL343458
...because it did not handle the case where we bitcast to FP.
The patch was already limited to avoid the case where we
bitcast from FP, but we might want to transform that too.
llvm-svn: 343480
This caused Chromium builds to fail with "Illegal Trunc" assertion.
See https://crbug.com/890723 for repro.
> This transform is requested for the backend in:
> https://bugs.llvm.org/show_bug.cgi?id=39016
> ...but I figured it was worth doing in IR too, and it's probably
> easier to implement here, so that's this patch.
>
> In the simplest case, we are just truncating a scalar value. If the
> extract index doesn't correspond to the LSBs of the scalar, then we
> have to shift-right before the truncate. Endian-ness makes this tricky,
> but hopefully the ASCII-art helps visualize the transform.
>
> Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343458
This transform is requested for the backend in:
https://bugs.llvm.org/show_bug.cgi?id=39016
...but I figured it was worth doing in IR too, and it's probably
easier to implement here, so that's this patch.
In the simplest case, we are just truncating a scalar value. If the
extract index doesn't correspond to the LSBs of the scalar, then we
have to shift-right before the truncate. Endian-ness makes this tricky,
but hopefully the ASCII-art helps visualize the transform.
Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343407
As noted in post-commit comments for D52548, the limitation on
increasing vector length can be applied by opcode.
As a first step, this patch only allows insertelement to be
widened because that has no logical downsides for IR and has
little risk of pessimizing codegen.
This may cause PR39132 to go into hiding during a full compile,
but that bug is not fixed.
llvm-svn: 343406
InstCombine would propagate shufflevector insts that had wider output vectors onto
predecessors, which would sometimes push undef's onto the divisor of a div/rem and
result in bad codegen.
I've fixed this by just banning propagating shufflevector back if the result of
the shufflevector is wider than the input vectors.
Patch by: @sheredom (Neil Henning)
Differential Revision: https://reviews.llvm.org/D52548
llvm-svn: 343329
These are the updated baseline tests for D52548 -
I'm putting the tests next to the tests where the transform
functions as expected, so we can see the intended/unintended
consequences.
Patch by: @sheredom (Neil Henning)
llvm-svn: 343328
When C is not zero and infinites are not allowed (C / X) > 0 is a sign
test. Depending on the sign of C, the predicate must be swapped.
E.g.:
foo(double X) {
if ((-2.0 / X) <= 0) ...
}
=>
foo(double X) {
if (X >= 0) ...
}
Patch by: @marels (Martin Elshuber)
Differential Revision: https://reviews.llvm.org/D51942
llvm-svn: 343228
If the fsub in this pattern was replaced by an actual fneg
instruction, we would need to add a fold to recognize that
because fneg would not be a binop.
llvm-svn: 343041
The motivating case from:
https://bugs.llvm.org/show_bug.cgi?id=33026
...has no shuffles now. This kind of pattern may occur during
vectorization when targets have lumpy ISAs like SSE/AVX.
llvm-svn: 342988
Follow-up to rL342324 (D52059):
Missing optimizations with blendv are shown in:
https://bugs.llvm.org/show_bug.cgi?id=38814
This is an easier and more powerful solution than adding pattern matching for a few
special cases in the backend. The potential danger with this transform in IR is that
the condition value can get separated from the select, and the backend might not be
able to make a blendv out of it again.
llvm-svn: 342806
Summary: This restores the combine that was reverted in r341883. The infinite loop from the failing test no longer occurs due to changes from r342163.
Reviewers: spatel, dmgreen
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52070
llvm-svn: 342797
Summary:
Same as to D52146.
`((1 << y)+(-1))` is simply non-canoniacal version of `~(-1 << y)`: https://rise4fun.com/Alive/0vl
We can not canonicalize it due to the extra uses. But we can handle it here.
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52147
llvm-svn: 342547
Summary:
Two folds are happening here:
1. https://rise4fun.com/Alive/oaFX
2. And then `foldICmpWithHighBitMask()` (D52001): https://rise4fun.com/Alive/wsP4
This change doesn't just add the handling for eq/ne predicates,
it actually builds upon the previous `foldICmpWithLowBitMaskedVal()` work,
so **all** the 16 fold variants* are immediately supported.
I'm indeed only testing these two predicates.
I do not feel like re-proving all 16 folds*, because they were already proven
for the general case of constant with all-ones in low bits. So as long as
the mask produces all-ones in low bits, i'm pretty sure the fold is valid.
But required, i can re-prove, let me know.
* eq/ne are commutative - 4 folds; ult/ule/ugt/uge - are not commutative (the commuted variant is InstSimplified), 4 folds; slt/sle/sgt/sge are not commutative - 4 folds. 12 folds in total.
https://bugs.llvm.org/show_bug.cgi?id=38123https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52146
llvm-svn: 342546
This is still unsafe for long double, we will transform things into tanl
even if tanl is for another type. But that's for someone else to fix.
llvm-svn: 342542