Similar to what already happens in the DAGCombiner wrappers, this patch adds the root nodes back onto the worklist if the DCI wrappers' SimplifyDemandedBits/SimplifyDemandedVectorElts were successful.
Differential Revision: https://reviews.llvm.org/D53026
llvm-svn: 344132
Until mischeduler is clever enough to avoid spilling in a vectorized loop
with many (scalar) DLRs it is better to avoid high vectorization factors (8
and above).
llvm-svn: 344129
I've added a new test case that causes the scalarizer to try and use
dead-and-erased values - caused by the basic blocks not being in
domination order within the function. To fix this, instead of iterating
through the blocks in function order, I walk them in reverse post order.
Differential Revision: https://reviews.llvm.org/D52540
llvm-svn: 344128
When SimplifyCFG changes the PHI node into a select instruction, the debug line records becomes ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D52887
llvm-svn: 344120
A new function getNumVectorRegs() is better to use for the number of needed
vector registers instead of getNumberOfParts(). This is to make sure that the
number of vector registers (and typically operations) required for a vector
type is accurate.
getNumberOfParts() which was previously used works by splitting the vector
type until it is legal gives incorrect results for types with a non
power of two number of elements (rare).
A new static function getScalarSizeInBits() that also checks for a pointer
type and returns 64U for it since otherwise it gets a value of 0). Used in a
few places where Ty may be pointer.
Review: Ulrich Weigand
llvm-svn: 344115
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
An upcoming patch will change the codegen for these patterns. This test case is
added now so that the patch can show the differences in codegen.
llvm-svn: 344112
Commit r343851 changed the format of the generated instructions.
An unnecessary load has been removed. Previously, a value would be moved
from r24 into a temporary register just to be copied into r30 before the
indirect call. Now, codegen immediately loads r24 into r30, saving a
MOVW instruction.
llvm-svn: 344111
For ISD::SIGN_EXTEND_INREG operation of v2i16 and v2i8 types will cause assert because they are registered as custom operation.
So that the type legalization phase will enter the custom hook, which do not handle ISD::SIGN_EXTEND_INREG operation and fall throw into unreachable assert.
Patch By: wuzish (Zixuan Wu)
Differential Revision: https://reviews.llvm.org/D52449
llvm-svn: 344109
This is the third patch in a series intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The second being r344013.
The intent is to make the output of printing a LocationSize more
precise. The main motivation for this is that we plan to add a bit to
distinguish whether a given LocationSize is an upper-bound or is
precise; making that information available in pretty-printing is nice.
llvm-svn: 344108
Summary:
Subtraction from zero and floating point negation do not have the same
semantics, so fix lowering.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52948
llvm-svn: 344107
sancov subtracts one from the address to get the previous instruction,
which makes sense on x86_64, but not on other platforms.
This change ensures that the offset is correct for different platforms.
The logic for computing the offset is copied from sanitizer_common.
Differential Revision: https://reviews.llvm.org/D53039
llvm-svn: 344103
Summary:
Before, "[options] <inputs>" is unconditionally appended to the `Name` parameter. It is more flexible to change its semantic to `Usage` and let user customize the usage line.
% llvm-objcopy
...
USAGE: llvm-objcopy <input> [ <output> ] [options] <inputs>
With this patch:
% llvm-objcopy
...
USAGE: llvm-objcopy input [output]
Reviewers: rupprecht, alexshap, jhenderson
Reviewed By: rupprecht
Subscribers: jakehehrlich, mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51009
llvm-svn: 344097
This patch fixes three issues.
The first is that we didn't consider files which are explicitly
set to eolstyle CRLF in the repo, and there are a handful of
these.
Second is that dos2unix doesn't have a -q option in GnuWin32,
so this codepath wasn't working properly.
Finally with newer versions of Python (or newer versions of Git,
or some combination of the two) patches can't be applied when
we treat stdin as text, because Python silently undoes all the
work we did to convert the newlines to LF using dos2unix by
using universal_newlines=True and then converting them *back*
to CRLF. So we need to add a way to force stdin to be treated
as binary, and use it when LF-newlines are required.
Differential Revision: https://reviews.llvm.org/D51444
llvm-svn: 344095
Summary:
Also add tests to catch crashes in passes that are not normally run in
tests.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52959
llvm-svn: 344094
We already do the following combines:
(bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
(bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
When the target has "bit preserving fp logic". This patch just extends it
to also combine:
(bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> fneg (fabs X)
As some targets have fnabs and even those that don't can efficiently lower
both the fabs and the fneg.
Differential revision: https://reviews.llvm.org/D44548
llvm-svn: 344093
Summary:
- Categorize instructions into the categories as in the SIMD spec
- Move SIMD-related definition to WebAssemblyInstrSIMD.td
- Put definition and use of patterns together
- Add newlines here and there
Reviewers: tlively
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D53045
llvm-svn: 344086
When we're on the last bucket the computation is tricky.
We were failing when the last bucket contained multiple
matches. Added a new test for this.
llvm-svn: 344081
rather than require them to have been promoted before being passed in.
Dropping this precondition is better for layer composition (CompileOnDemandLayer
was the only one that placed pre-conditions on the modules that could be added).
It also means that the promoted private symbols do not show up in the target
JITDylib's symbol table. Instead, they are confined to the hidden implementation
dylib that contains the actual definitions.
For the 403.gcc testcase this cut down the public symbol table size from ~15,000
symbols to ~4000, substantially reducing symbol dependence tracking costs.
llvm-svn: 344078
This is the PPC-specific non-controversial part of
https://reviews.llvm.org/D44548 that simply enables this combine for PPC
since PPC has these instructions.
This commit will allow the target-independent portion to be truly target
independent.
llvm-svn: 344077
This may give slightly better opportunities for DAG combine to simplify with the operations before the setcc. It also matches the type the xors will eventually be promoted to anyway so it saves a legalization step.
Almost all of the test changes are because our constant pool entry is now v2i64 instead of v4i32 on 64-bit targets. On 32-bit targets getConstant should be emitting a v4i32 build_vector and a v4i32->v2i64 bitcast.
There are a couple test cases where it appears we now combine a bitwise not with one of these xors which caused a new constant vector to be generated. This prevented a constant pool entry from being shared. But if that's an issue we're concerned about, it seems we need to address it another way that just relying a bitcast to hide it.
This came about from experiments I've been trying with pushing the promotion of and/or/xor to vXi64 later than LegalizeVectorOps where it is today. We run LegalizeVectorOps in a bottom up order. So the and/or/xor are promoted before their users are legalized. The bitcasts added for the promotion act as a barrier to computeKnownBits if we try to use it during vector legalization of a later operation. So by moving the promotion out we can hopefully get better results from computeKnownBits/computeNumSignBits like in LowerTruncate on AVX512. I've also looked at running LegalizeVectorOps in a top down order like LegalizeDAG, but thats showing some other issues.
llvm-svn: 344071
In the case of soft-fp (e.g. fp128 under wasm) the result of
getTypeLegalizationCost() can be an integer type even if the input is
floating point (See LegalizeTypeAction::TypeSoftenFloat).
Before calling isFabsFree() (which asserts if given a non-fp
type) we need to check that that result is fp. This is safe since in
fabs is certainly not free in the soft-fp case.
Fixes PR39168
Differential Revision: https://reviews.llvm.org/D52899
llvm-svn: 344069
We changed an ArrayRef<uint8_t> to an ArrayRef<uint32_t>, but
it needs to be an ArrayRef<support::ulittle32_t>.
We also change ArrayRef<> to FixedStreamArray<>. Technically
an ArrayRef<> will work, but it can cause a copy in the underlying
implementation if the memory is not contiguous, and there's no
reason not to use a FixedStreamArray<>.
Thanks to nemanjai@ and thakis@ for helping me track this down
and confirm the fix.
llvm-svn: 344063
As noted in D52747, if we prefer IR to use trunc for bool vectors rather
than and+icmp, we can expose codegen shortcomings as seen here with masked store.
Replace a hard-coded PCMPGT simplification with the more general demanded bits call
to improve things.
Differential Revision: https://reviews.llvm.org/D52964
llvm-svn: 344048
For O32 and N32 ABI FDE/CFI encoding should be `DW_EH_PE_sdata4` and only
N64 ABI uses `DW_EH_PE_sdata8`. To cover all cases this patch check code
pointer size and setup a correct FDE/CFI encoding type.
Differential revision: https://reviews.llvm.org/D52876
llvm-svn: 344040
CodePointerSize and CalleeSaveStackSlotSize values are used in DWARF
generation. In case of MIPS it's incorrect to check for Triple::isMIPS64()
only this function returns true for N32 ABI too.
Now we do not have a method to recognize N32 if it's specified by a command
line option and is not a part of a target triple. So we check for
Triple::GNUABIN32 only. It's better than nothing.
Differential revision: https://reviews.llvm.org/D52874
llvm-svn: 344039
There are occasionally instances where AADB rewrites registers in such a way
that a reg-reg copy becomes a self-copy. Such an instruction is obviously
redundant and can be removed. This patch does precisely that.
Note that this will not remove various nop's that we insert (which are
themselves just self-copies). The reason those are left alone is that all of
them have their own opcodes (that just encode to a self-copy).
What prompted this patch is the fact that these self-copies sometimes end up
using registers that make the instruction a priority-setting nop, thereby
having a significant effect on performance.
Differential revision: https://reviews.llvm.org/D52432
llvm-svn: 344036
Summary:
This moves checking logic into the accessors and makes the structure smaller.
It will also help when/if Operand are generated from the TD files.
Subscribers: tschuett, courbet, llvm-commits
Differential Revision: https://reviews.llvm.org/D52982
llvm-svn: 344028
Summary:
This patch forces the alignment of the `data` field of `IntervalMap`.
It is because x86 MSVC doesn't apply automatically
(without `__declspec(align(...))`) alignments more than 4 bytes,
even if `alignof` has returned so. Consider the example:
https://godbolt.org/z/zIPa_G
Here `alignof` for both `S0` and `S1` returns `8`, but only `S1` is really
aligned on x86. The explanation of this behavior is here:
https://docs.microsoft.com/en-us/cpp/build/conflicts-with-the-x86-compiler
Reviewers: bkramer, stoklund, hans, rnk
Reviewed By: rnk
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52613
llvm-svn: 344027
As discussed on D52964, this adds 256-bit *_EXTEND_VECTOR_INREG lowering support for AVX1 targets to help improve SimplifyDemandedBits handling.
Differential Revision: https://reviews.llvm.org/D52980
llvm-svn: 344019
Summary:
This patch forces the alignment of the `data` field of `IntervalMap`.
It is because x86 MSVC doesn't apply automatically
(without `__declspec(align(...))`) alignments more than 4 bytes,
even if `alignof` has returned so. Consider the example:
https://godbolt.org/z/zIPa_G
Here `alignof` for both `S0` and `S1` returns `8`, but only `S1` is really
aligned on x86. The explanation of this behavior is here:
https://docs.microsoft.com/en-us/cpp/build/conflicts-with-the-x86-compiler
Reviewers: bkramer, stoklund, hans, rnk
Reviewed By: rnk
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52613
llvm-svn: 344018
prefix.
Use this to direct these files to a specific location in the test suite
so that we don't write files out to random directories (or fail if the
working directory isn't writable).
llvm-svn: 344014
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
This might produce hard to read/illegible diagnostics for especially
weird/non-trivial module metadata but integers are about all we are
using these days, so seems more useful than not.
Patch based on work by Kristina Brooks - thanks!
Differential Revision: https://reviews.llvm.org/D52952
llvm-svn: 344011
One case left around nonsensical operands for the KILL instruction
which the machine verifier checks for nowadays. While this should not
hurt in release builds we should fix the machine verifier errors anyway.
llvm-svn: 344008
The comment was contradicting the code. Looking at history the feature
was implemented a day after the comment was written without dropping the
comment.
llvm-svn: 344005
Remove the space in the asm check so that the expression is more general
and can also capture MIPS labels which can be surrounded by braces, e.g.:
.4byte ($tmp1) # DW_AT_low_pc
Also change optimization level to O0 because the DW_TAG_label does not
appear on MIPS when -O2 is used.
Patch by Milos Stojanovic.
Differential Revision: https://reviews.llvm.org/D52901
llvm-svn: 343999
Simple types are a superset of what all in tree targets in LLVM could possibly have a legal type. This means the behavior of using isSimple to check for a supported type for X86 could change over time. For example, this could would change if a v256i1 type was added to MVT in the future.
llvm-svn: 343995
More tests related to PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
If we limit the horizontal codegen, it may require different
constraints for FP and integer.
llvm-svn: 343994
This patch implements a pass that optimizes condition branches on x86 by
taking advantage of the three-way conditional code generated by compare
instructions.
Currently, it tries to hoisting EQ and NE conditional branch to a dominant
conditional branch condition where the same EQ/NE conditional code is
computed. An example:
bb_0:
cmp %0, 19
jg bb_1
jmp bb_2
bb_1:
cmp %0, 40
jg bb_3
jmp bb_4
bb_4:
cmp %0, 20
je bb_5
jmp bb_6
Here we could combine the two compares in bb_0 and bb_4 and have the
following code:
bb_0:
cmp %0, 20
jg bb_1
jl bb_2
jmp bb_5
bb_1:
cmp %0, 40
jg bb_3
jmp bb_6
For the case of %0 == 20 (bb_5), we eliminate two jumps, and the control height
for bb_6 is also reduced. bb_4 is gone after the optimization.
This optimization is motivated by the branch pattern generated by the switch
lowering: we always have pivot-1 compare for the inner nodes and we do a pivot
compare again the leaf (like above pattern).
This pass currently is enabled on Intel's Sandybridge and later arches. Some
reviewers pointed out that on some arches (like AMD Jaguar), this pass may
increase branch density to the point where it hurts the performance of the
branch predictor.
Differential Revision: https://reviews.llvm.org/D46662
llvm-svn: 343993
Emit a waterfall loop in the general case for a potentially-divergent Rsrc
operand. When practical, avoid this by using Addr64 instructions.
Recommits r341413 with changes to update the MachineDominatorTree when present.
Differential Revision: https://reviews.llvm.org/D51742
llvm-svn: 343992
Some necessary yak shaving before lowering *_EXTEND_VECTOR_INREG 256-bit vectors on AVX1 targets as suggested by D52964.
Differential Revision: https://reviews.llvm.org/D52970
llvm-svn: 343991
The instructions are complicated, so this code will
probably never be very obvious, but hopefully this
makes it better.
As shown in PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
...we need to improve the matching to not miss cases
where we're h-opping on 1 source vector, and that
should be a small patch after this rearranging.
llvm-svn: 343989
In r339636 the alias analysis rules were changed with regards to tail calls
and byval arguments. Previously, tail calls were assumed not to alias
allocas from the current frame. This has been updated, to not assume this
for arguments with the byval attribute.
This patch aligns TailCallElim with the new rule. Tail marking can now be
more aggressive and mark more calls as tails, e.g.:
define void @test() {
%f = alloca %struct.foo
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test2(%struct.foo* byval %f) {
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test3(%struct.foo* byval %f) {
%agg.tmp = alloca %struct.foo
%0 = bitcast %struct.foo* %agg.tmp to i8*
%1 = bitcast %struct.foo* %f to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* %1, i64 40, i1 false)
call void @bar(%struct.foo* byval %agg.tmp)
ret void
}
The problematic case where a byval parameter is captured by a call is still
handled correctly, and will not be marked as a tail (see PR7272).
llvm-svn: 343986
CFGPrinter (-view-cfg, -dot-cfg) invokes an undefined behaviour (dangling
pointer to rvalue) on IR files with branch weights. This patch fixes the
problem caused by Twine initialization and string conversion split into
two statements.
This change fixes the bug 37019. A similar patch to this problem was
provided in the llvmlite project
Patch by mcopik (Marcin Copik).
Differential Revision: https://reviews.llvm.org/D52933
llvm-svn: 343984
Summary:
The ISA is really supposed to support 64-bit atomics as well,
so the data type should be an overload.
Mesa doesn't use these atomics yet, in fact I noticed this
issue while trying to use the atomics from Mesa.
Change-Id: I77f58317a085a0d3eb933cc7e99308c48a19f83e
Reviewers: tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52291
llvm-svn: 343978
Summary:
The predicate function is added in InlinePatternFragments, no need to
do it here. As a result, all uses of addPredicateFn are located in
InlinePatternFragments.
Test confirmed that there are no changes to generated files when
building all (non-experimental) targets.
Change-Id: I720e42e045ca596eb0aa339fb61adf6fe71034d5
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D51993
llvm-svn: 343977
This commit adds a new IR level pass to the AMDGPU backend to perform
atomic optimizations. It works by:
- Running through a function and finding atomicrmw add/sub or uses of
the atomic buffer intrinsics for add/sub.
- If all arguments except the value to be added/subtracted are uniform,
record the value to be optimized.
- Run through the atomic operations we can optimize and, depending on
whether the value is uniform/divergent use wavefront wide operations
(DPP in the divergent case) to calculate the total amount to be
atomically added/subtracted.
- Then let only a single lane of each wavefront perform the atomic
operation, reducing the total number of atomic operations in flight.
- Lastly we recombine the result from the single lane to each lane of
the wavefront, and calculate our individual lanes offset into the
final result.
Differential Revision: https://reviews.llvm.org/D51969
llvm-svn: 343973
This works on Windows, but seems to be breaking tests that
use an external shell (e.g. bash) because backquote has special
meaning.
This particular argument wasn't crucial for the test, so I've
just removed it.
llvm-svn: 343971
Summary:
If we have a symbol with (linkonce|weak)_odr linkage, we do not want
to dead strip it even it is not prevailing.
IR level (linkonce|weak)_odr symbol can become non-prevailing when we mix
ELF objects and IR objects where the (linkonce|weak)_odr symbol in the ELF
object is prevailing and the ones in the IR objects are not. Stripping
them will prevent us from doing optimizations with them.
By not dead stripping them, We will convert these symbols to
available_externally linkage as a result of non-prevailing and eventually
dropping them after inlining.
I modified cache-prevailing.ll to use linkonce linkage as it is
testing whether cache prevailing bit is effective or not, not
we should treat linkonce_odr alive or not
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52893
llvm-svn: 343970
When branch target identification is enabled, we can only do indirect
tail-calls through x16 or x17. This means that the outliner can't
transform a BLR instruction at the end of an outlined region into a BR.
Differential revision: https://reviews.llvm.org/D52869
llvm-svn: 343969
When branch target identification is enabled, all indirectly-callable
functions start with a BTI C instruction. this instruction can only be
the target of certain indirect branches (direct branches and
fall-through are not affected):
- A BLR instruction, in either a protected or unprotected page.
- A BR instruction in a protected page, using x16 or x17.
- A BR instruction in an unprotected page, using any register.
Without BTI, we can use any non call-preserved register to hold the
address for an indirect tail call. However, when BTI is enabled, then
the code being compiled might be loaded into a BTI-protected page, where
only x16 and x17 can be used for indirect tail calls.
Legacy code withiout this restriction can still indirectly tail-call
BTI-protected functions, because they will be loaded into an unprotected
page, so any register is allowed.
Differential revision: https://reviews.llvm.org/D52868
llvm-svn: 343968
The Branch Target Identification extension, introduced to AArch64 in
Armv8.5-A, adds the BTI instruction, which is used to mark valid targets
of indirect branches. When enabled, the processor will trap if an
instruction in a protected page tries to perform an indirect branch to
any instruction other than a BTI. The BTI instruction uses encodings
which were NOPs in earlier versions of the architecture, so BTI-enabled
code will still run on earlier hardware, just without the extra
protection.
There are 3 variants of the BTI instruction, which are valid targets for
different kinds or branches:
- BTI C can be targeted by call instructions, and is inteneded to be
used at function entry points. These are the BLR instruction, as well
as BR with x16 or x17. These BR instructions are allowed for use in
PLT entries, and we can also use them to allow indirect tail-calls.
- BTI J can be targeted by BR only, and is intended to be used by jump
tables.
- BTI JC acts ab both a BTI C and a BTI J instruction, and can be
targeted by any BLR or BR instruction.
Note that RET instructions are not restricted by branch target
identification, the reason for this is that return addresses can be
protected more effectively using return address signing. Direct branches
and calls are also unaffected, as it is assumed that an attacker cannot
modify executable pages (if they could, they wouldn't need to do a
ROP/JOP attack).
This patch adds a MachineFunctionPass which:
- Adds a BTI C at the start of every function which could be indirectly
called (either because it is address-taken, or externally visible so
could be address-taken in another translation unit).
- Adds a BTI J at the start of every basic block which could be
indirectly branched to. This could be either done by a jump table, or
by taking the address of the block (e.g. the using GCC label values
extension).
We only need to use BTI JC when a function is indirectly-callable, and
takes the address of the entry block. I've not been able to trigger this
from C or IR, but I've included a MIR test just in case.
Using BTI C at function entries relies on the fact that no other code in
BTI-protected pages uses indirect tail-calls, unless they use x16 or x17
to hold the address. I'll add that code-generation restriction as a
separate patch.
Differential revision: https://reviews.llvm.org/D52867
llvm-svn: 343967
Support G_UDIV/G_UREM/G_SREM. The instruction selection
code is taken from FastISel with only minor tweaks to adapt
for GlobalISel.
Differential Revision: https://reviews.llvm.org/D49781
llvm-svn: 343966
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
The following instruction:
> str q28, [x0, #1*6*4*@]
contains a @ which is parsed as an empty symbol. The parser returns true
but has no error, so the assembler continues by ignoring the
instruction.
Differential Revision: https://reviews.llvm.org/D52645
llvm-svn: 343961
When deciding if it is safe to optimize a conditional branch to a CBZ or
CBNZ the offsets of the BasicBlocks from the start of the function are
estimated. For inline assembly the generic getInlineAsmLength() function is
used to get a worst case estimate of the inline assembly by multiplying the
number of instructions by the max instruction size of 4 bytes. This
unfortunately doesn't take into account the generation of Thumb implicit IT
instructions. In edge cases such as when all the instructions in the block
are 4-bytes in size and there is an implicit IT then the size is
underestimated. This can cause an out of range CBZ or CBNZ to be generated.
The patch takes a conservative approach and assumes that every instruction
in the inline assembly block may have an implicit IT.
Fixes pr31805
Differential Revision: https://reviews.llvm.org/D52834
llvm-svn: 343960
The MachineOutliner for AArch64 transforms indirect calls into indirect
tail calls, replacing the call with the TCRETURNri pseudo-instruction.
This pseudo lowers to a BR, but has the isCall and isReturn flags set.
The problem is that TCRETURNri takes a tcGPR64 as the register argument,
to prevent indiret tail-calls from using caller-saved registers. The
indirect calls transformed by the outliner could use caller-saved
registers. This is fine, because the outliner ensures that the register
is available at all call sites. However, this causes a verifier failure
when the register is not in tcGPR64. The fix is to add a new
pseudo-instruction like TCRETURNri, but which accepts any GPR.
Differential revision: https://reviews.llvm.org/D52829
llvm-svn: 343959
The srli test in alu8.ll was a no-op, as it shifted by 8 bits. Fix this, and
also change the immediate in alu16.ll as shifted by something other than a
poewr of 8 is more interesting.
llvm-svn: 343958
Fix the following warning when compiling with clang (caused by commit
rL343951):
GlobalsStream.cpp:61:33: warning: comparison of integers of different
signs: 'int' and 'uint32_t'
This also avoids double evaluation of `GlobalsTable.HashBuckets.size()`.
llvm-svn: 343957
Currently running the @insertelem_after_gep function below through the InstCombine pass with opt produces invalid IR.
Input:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t1 = bitcast <16 x i32>* %t0 to [16 x i32]*
%t2 = addrspacecast [16 x i32]* %t1 to [16 x i32] addrspace(3)*
%t3 = getelementptr inbounds [16 x i32], [16 x i32] addrspace(3)* %t2, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @extern_vec_pointers_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Output:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t3 = getelementptr inbounds <16 x i32>, <16 x i32>* %t0, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @my_extern_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Which although causes no complaints when produced, isn't valid IR as the insertelement use of the %t3 GEP expects an address space.
```
opt: /tmp/bad.ll:52:73: error: '%t3' defined with type 'i32*' but expected 'i32 addrspace(3)*'
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
```
I've fixed this by adding an addrspacecast after the GEP in the InstCombine pass, and including a check for this type mismatch to the verifier.
Reviewers: spatel, lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52294
llvm-svn: 343956
r126518 introduced a a type parameter to the getShiftAmountTy target hook. It
produces the type of the shift (RHSTy), parameterised by the type of the value
being shifted (LHSTy). SelectionDAGBuilder::visitShift passed RHSTy rather
than LHSTy and this patch corrects this. The change is a no-op because in LLVM
IR the LHS and RHS types for a shift must be equal anyway.
llvm-svn: 343955
At the point when we perform `emitTransformedIndex`, we have a broken IR (in
particular, we have Phis for which not every incoming value is properly set). On
such IR, it is illegal to create SCEV expressions, because their internal
simplification process may try to prove some predicates and break when it
stumbles across some broken IR.
The only purpose of using SCEV in this particular place is attempt to simplify
the generated code slightly. It seems that the result isn't worth it, because
some trivial cases (like addition of zero and multiplication by 1) can be
handled separately if needed, but more generally InstCombine is able to achieve
the goals we want to achieve by using SCEV.
This patch fixes a functional crash described in PR39160, and as side-effect it
also generates a bit smarter code in some simple cases. It also may cause some
optimality loss (i.e. we will now generate `mul` by power of `2` instead of
shift etc), but there is nothing what InstCombine could not handle later. In
case of dire need, we can support more trivial cases just in place.
Note that this patch only fixes one particular case of the general problem that
LV misuses SCEV, attempting to create SCEVs or prove predicates on invalid IR.
The general solution, however, seems complex enough.
Differential Revision: https://reviews.llvm.org/D52881
Reviewed By: fhahn, hsaito
llvm-svn: 343954
The Globals table is a hash table keyed on symbol name, so
it's possible to lookup symbols by name in O(1) time. Add
a function to the globals stream to do this, and add an option
to llvm-pdbutil to exercise this, then use it to write some
tests to verify correctness.
llvm-svn: 343951
This is where we legalize gather and masked load so this is consistent.
Since these ops are always on vectors I've chosen to go with LegalizeDAG since that's what we do for other vector only ops like BUILD_VECTOR, VECTOR_SHUFFLE, etc. The ScalarizeMaskedMemIntrinsic pass should take care of scalarizing these before SelectionDAG so hopefully we don't need to worry about illegally typed scalar ops being emitted in the legalizing. If we did we would need to do this in LegalizeVectorOps so we could get the second type legalization that runs between LegalizeVectorOps and LegalizeDAG.
llvm-svn: 343947
This change is proposed as a part of D44548, but we
need this independently to avoid regressions from improved
undef propagation in SimplifyDemandedVectorElts().
llvm-svn: 343940
rL343913 was using SimplifyDemandedBits's original demanded mask instead of the adjusted 'NewMask' that accounts for multiple uses of the op (those variable names really need improving....).
Annoyingly many of the test changes (back to pre-rL343913 state) are actually safe - but only because their multiple uses are all by PMULDQ/PMULUDQ.
Thanks to Jan Vesely (@jvesely) for bisecting the bug.
llvm-svn: 343935
It was always returning the chain which seems to be the result number of the SDValue in the lit tests we have. But I don't know if that's guaranteed.
llvm-svn: 343933
This patch fixes PR39099.
When strided loads are predicated, each of them will form an interleaved-group
(with gaps). However, subsequent stages of vectorization (planning and
transformation) assume that if a load is part of an Interleave-Group it is not
predicated, resulting in wrong code - unmasked wide loads are created.
The Interleaving Analysis does take care not to have conditional interleave
groups of size > 1, but until we extend the planning and transformation stages
to support masked-interleave-groups we should also avoid having them for
size == 1.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D52682
llvm-svn: 343931
Symbols can be removed provided that all are present in the JITDylib and none
are currently in the materializing state. On success all requested symbols are
removed. On failure an error is returned and no symbols are removed.
llvm-svn: 343928
Prevents missing other simplifications that may occur deep in the operand chain where CommitTargetLoweringOpt won't add the PMULDQ back to the worklist itself
llvm-svn: 343922
Attempt to simplify PSHUFB masks (even non-constant ones) - we should probably be able to simplify other variable shuffles as well as the need arises.
llvm-svn: 343919
This patch enables SimplifyDemandedBits to call SimplifyDemandedVectorElts in cases where the demanded bits mask covers entire elements of a bitcasted source vector.
There are a couple of cases here where simplification at a deeper level (such as through bitcasts) prevents further simplification - CommitTargetLoweringOpt only adds immediate uses/users back to the worklist when we might want to combine the original caller again to see what else it can simplify.
As well as that I had to disable handling of bool vector until SimplifyDemandedVectorElts better supports some of their opcodes (SETCC, shifts etc.).
Fixes PR39178
Differential Revision: https://reviews.llvm.org/D52935
llvm-svn: 343913
A pattern was present for addi rd, x0, simm6 but not addiw which is
semantically identical when the source register is x0. This patch addresses
that, and the benefit can be seen in rv64c-aliases-valid.s.
llvm-svn: 343911
Summary:
Merge the SMRD patterns for CI into the same multiclass as the
patterns for other sub-targets.
This removes some duplicate code and will make it easier for some
future GlobalISel changes I would like to do.
Reviewers: arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52557
llvm-svn: 343909
Summary:
The POSIX spec says:
```
If the −t option is used with the −v option, the standard output format shall be:
"%s %u/%u %u %s %d %d:%d %d %s\n", <member mode>, <user ID>,
<group ID>, <number of bytes in member>,
<abbreviated month>, <day-of-month>, <hour>,
<minute>, <year>, <file>
where:
...
<abbreviated month>
Equivalent to the format of the %b conversion specification format in date.
<day-of-month>
Equivalent to the format of the %e conversion specification format in date.
<hour> Equivalent to the format of the %H conversion specification format in date.
<minute> Equivalent to the format of the %M conversion specification format in date.
<year> Equivalent to the format of the %Y conversion specification format in date.
```
This actually used to be the format printed by llvm-ar. It was apparently accidentally changed (see r207385 followed by comments in r207387). This makes it conform to GNU ar for easier replacement.
Reviewers: MaskRay
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52940
llvm-svn: 343901
Enable time-passes functionality through PassInstrumentation callbacks
for passes and analyses.
TimePassesHandler class keeps all the callbacks, the timing data as it
is being collected as well as the stack of currently active timers.
Parts of the fix that might be somewhat unobvious:
- mapping of passes into Timer (TimingData) can not be done per-instance.
PassID name provided into the callback is common for all the pass invocations.
Thus the only way to get a timing with reasonable granularity is to collect
timing data per pass invocation, getting a new timer for each BeforePass.
Hence the key for TimingData uses a pair of <StringRef/unsigned count> to
uniquely identify a pass invocation.
- consequently, this new-pass-manager implementation performs no aggregation
of timing data, reporting timings for each pass invocation separately.
In that it differs from legacy-pass-manager time-passes implementation that
reports timing data aggregated per pass instance.
- pass managers and adaptors are not tracked, similar to how pass managers are
not tracked in legacy time-passes.
- TimerStack tracks timers that are active, each BeforePass pushes the new timer
on stack, each AfterPass pops active timer from stack and stops it.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D51276
llvm-svn: 343898
This small patch updates the CPU detection for Cavium processors when
-mcpu=native is passed on compile-line.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D51939
llvm-svn: 343897
This rebases and recommits r343520. hwasan should be fixed now and this
shouldn't break the tests anymore.
Spill/reload instructions are artificially generated by the compiler and
have no relation to the original source code. So the best thing to do is
not attach any debug location to them (instead of just taking the next
debug location we find on following instructions).
Differential Revision: https://reviews.llvm.org/D52125
llvm-svn: 343895
On the PPC bot, the %llc_dwarf substitution does not contain an -mtriple
argument. This can cause the wrong backend to be exercised.
This causes issues because the backends differ in when they decide to
emit tail calls:
http://lab.llvm.org:8011/builders/clang-ppc64be-linux-multistage/builds/12440
This is mostly a speculative fix as I don't have a PPC machine to test
with.
llvm-svn: 343893