Also added a data formatter that presents them as structs if you use frame
variable to look at their contents. Now the blocks testcase works.
<rdar://problem/15984431>
llvm-svn: 268307
Some older versions of clang emitted bit offsets that were negative and these bitfields would have their bitfield-ness stripped off and it would cause a clang assertion in clang assertions were enabled. I updated the bitfield C test to make sure we don't regress.
<rdar://problem/21082998>
llvm-svn: 267248
1 - DWARF in .o files with debug map in executable: we would place the compile unit index in the upper 32 bits of the 64 bit value and the lower 32 bits would be the DIE offset
2 - DWO: we would place the compile unit offset in the upper 32 bits of the 64 bit value and the lower 32 bits would be the DIE offset
There was a mixing and matching of this and it wasn't done consistently.
Major changes include:
The DIERef constructor that takes a lldb::user_id_t now requires a SymbolFileDWARF:
DIERef(lldb::user_id_t uid, SymbolFileDWARF *dwarf)
It is needed so that it can be decoded correctly. If it is DWARF in .o files with debug map in executable, then we get the right compile unit from the SymbolFileDWARFDebugMap, otherwise, we use the compile unit offset and DIE offset for DWO or normal DWARF.
The function:
lldb::user_id_t DIERef::GetUID() const;
Now becomes
lldb::user_id_t DIERef::GetUID(SymbolFileDWARF *dwarf) const;
Again, we need the DWARF file to encode it correctly.
This removes the need for "lldb::user_id_t SymbolFileDWARF::MakeUserID() const" and for bool SymbolFileDWARF::UserIDMatches (lldb::user_id_t uid) const". There were also many places were doing things inneficiently like:
1 - encode a dw_offset_t into a lldb::user_id_t
2 - call the public SymbolFile interface to resolve types using the lldb::user_id_t
3 - This would then decode the lldb::user_id_t into a DIERef, and then try to find that type.
There are many places that are now doing this more efficiently by storing DW_AT_type form values as DWARFFormValue objects and then making a DIERef from them and directly calling the underlying function to resolve the lldb_private::Type, lldb_private::CompilerType, lldb_private::CompilerDecl, lldb_private::CompilerDeclContext.
If there are any regressions in DWARF with DWO, we will need to fix any issues that arise since the original patch wasn't functional for the much more widely used DWARF in .o files with debug map.
<rdar://problem/25200976>
llvm-svn: 264909
This allows these functions to be re-used by a forthcoming
PDBASTParser. The functions in question are CanCompleteType,
CompleteType, and CanImport. Conceptually, these functions belong
on ClangASTImporter anyway, and previously they were just ping
ponging around through a few levels of indirection to end up there
as well, so this patch actually makes the code somewhat simpler.
A few methods were moved to a new file called ClangUtil, so that
they can be shared between ClangASTImporter and ClangASTContext
without creating a circular dependency between those two cpp
files.
Differential Revision: http://reviews.llvm.org/D18381
llvm-svn: 264685
Summary:
GCC does not emit DW_AT_data_member_location for members of a union.
Starting with a 0 value for member locations helps is reading union types
in such cases.
Reviewers: clayborg
Subscribers: ldrumm, lldb-commits
Differential Revision: http://reviews.llvm.org/D18008
llvm-svn: 263085
Additionally fix the type of some dwarf expression where we had a
confusion between scalar and load address types after a dereference.
Differential revision: http://reviews.llvm.org/D17604
llvm-svn: 262014
Inline functions in DWARF have AT_abstract_origin set, but we only handled that
if the functions were C++ methods. Inline functions -- C or C++ -- have this
also, and as a result they got one FunctionDecl for each inlined instance. When
going to construct the locals, this meant that the arguments (which did properly
have their abstract origins handled) would get associated with the master
FunctionDecl, and the inlined FunctionDecls would all appear to have no locals.
This manifested as not being able to look up local variables when stopped in an
inline fuunction. We should have had a test for this, but somewhere along the
line the relevant test case lost its .py file (or it never had one).
This patch fixes this problem and restores the .py file.
<rdar://problem/24712434>
llvm-svn: 261598
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
assert(((SymbolFileDWARF*)m_ast.GetSymbolFile())->UserIDMatches(die.GetDIERef().GetUID()) &&
"Adding incorrect type to forward declaration map");
The problem is that "m_ast.GetSymbolFile()" can return a SymbolFileDWARFDebugMap. The code is doing the right thing if the assertion is ignored.
<rdar://problem/24437972>
llvm-svn: 260618
1) Turns out we weren't correctly uniquing types for C++. We would search our repository for "lldb_private::Process", but yet store just "Process" in the unique type map. Now we store things correctly and correctly unique types.
2) SymbolFileDWARF::CompleteType() can be called at any time in order to complete a C++ or Objective C class. All public inquiries into the SymbolFile go through SymbolVendor, and SymbolVendor correctly takes the module lock before it call the SymbolFile API call, but when we let CompilerType objects out in the wild, they can complete themselves at any time from the expression parser, so the ValueObjects or (SBValue objects in the public API), and many more places. So we now take the module lock when completing a type to avoid two threads being in the SymbolFileDWARF at the same time.
3) If a class has a template member function like:
class A
{
<template T>
void Foo(T t);
};
The DWARF will _only_ contain a DW_TAG_subprogram for "Foo" if anyone specialized it. This would cause a class definition for A inside a.cpp that used a "int" and "float" overload to look like:
class A
{
void Foo(int t);
void Foo(double t);
};
And a version from b.cpp that used a "float" overload to look like:
class A
{
void Foo(float t);
};
And a version from c.cpp that use no overloads to look like:
class A
{
};
Then in an expression if you have two variables, one name "a" from a.cpp in liba.dylib, and one named "b" from b.cpp in libb.dylib, you will get conflicting definitions for "A" and your expression will fail. This all stems from the fact that DWARF _only_ emits template specializations, not generic definitions, and they are only emitted if they are used. There are two solutions to this:
a) When ever you run into ANY class, you must say "just because this class doesn't have templatized member functions, it doesn't mean that any other instances might not have any, so when ever I run into ANY class, I must parse all compile units and parse all instances of class "A" just in case it has member functions that are templatized.". That is really bad because it means you always pull in ALL DWARF that contains most likely exact duplicate definitions of the class "A" and you bloat the memory that the SymbolFileDWARF plug-in uses in LLDB (since you pull in all DIEs from all compile units that contain a "A" definition) uses for little value most of the time.
b) Modify DWARF to emit generic template member function definitions so that you know from looking at any instance of class "A" wether it has template member functions or not. In order to do this, we would have to have the ability to correctly parse a member function template, but there is a compiler bug:
<rdar://problem/24515533> [PR 26553] C++ Debug info should reference DW_TAG_template_type_parameter
This bugs means that not all of the info needed to correctly make a template member function is in the DWARF. The main source of the problem is if we have DWARF for a template instantiation for "int" like: "void A::Foo<int>(T)" the DWARF comes out as "void A::Foo<int>(int)" (it doesn't mention type "T", it resolves the type to the specialized type to "int"). But if you actually have your function defined as "<template T> void Foo(int t)" and you only use T for local variables inside the function call, we can't correctly make the function prototype up in the clang::ASTContext.
So the best we can do for now we just omit all member functions that are templatized from the class definition so that "A" never has any template member functions. This means all defintions of "A" look like:
class A
{
};
And our expressions will work. You won't be able to call template member fucntions in expressions (not a regression, we weren't able to do this before) and if you are stopped in a templatized member function, we won't know that are are in a method of class "A". All things we should fix, but we need <rdar://problem/24515533> fixed first, followed by:
<rdar://problem/24515624> Classes should always include a template subprogram definition, even when no template member functions are used
before we can do anything about it in LLDB.
This bug mainly fixed the following Apple radar:
<rdar://problem/24483905>
llvm-svn: 260308
A lot of C code uses code like:
typedef struct
{
int a;
} FooType;
This creates debug info with an anonymous struct (a DW_TAG_structure_type with no DW_AT_name) and then a DW_TAG_typedef that points to the anonymous structure type. When a typedef is from a module and clang uses -gmodules and -fmodules, then we can end up trying to resolve an anonymous structure type in a DWO symbol file. This doesn't work very well when the structuture has no name, so we now check if a typedef comes from a module, and we directly resolve the typedef type in the module and copy it over. The version we copy from the module of course is correctly able to find the structure in the DWO symbol file, so this fixes the issues we run into.
<rdar://problem/24092915>
llvm-svn: 258443
We have a check what warns if the offset of a class member is greater
then or equal to the size of the class. The warning is valid in most
case but it is invalid when the last data member is a 0 size array
because in this case the member offset can be equal to the class size
(subject to alignment limitations).
This CL fixis LLDB to not print out a warning in this special case.
llvm-svn: 257603
It was previously reverted due to issues that showed up only on linux. I was able to reproduce these issues and fix the underlying cause.
So this is the same patch as 254476 with the following two fixes:
- Fix not trying to complete classes that don't have external sources
- Fix ClangASTSource::CompleteType() to check the decl context of types that it finds by basename to ensure we don't complete a type "S" with a type like "std::S". Before this fix ClangASTSource::CompleteType() would accept _any_ type that had a matching basename and copy it into the other type.
<rdar://problem/22992457>
llvm-svn: 254980
This is done by finding the types that are forward declarations that come from a module, and loading that module's debug info in a separate lldb_private::Module, and copying the type over into the current module using a ClangASTImporter object. ClangASTImporter objects are already used to copy types from on clang::ASTContext to another for expressions so the type copying code has been around for a while.
A new FindTypes variant was added to SymbolVendor and SymbolFile:
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
The CompilerContext is a way to represent the exact context of a type and pass it through an agnostic API boundary so that we can find that exact context elsewhere in another file. This was required here because we can have a module that has submodules, both of which have a "foo" type.
I am not able to add tests for this yet as we currently don't build our C/C++/ObjC binaries with the clang binary that we build. There are some driver issues where it can't find the header files for the C and C++ standard library which makes compiling these tests hard. We can't also guarantee that if we are building with clang that it supporst the exact format of -gmodule debugging that we are trying to test. We have had other versions of clang that had a different implementation of -gmodule debugging that we are no longer supporting, so we can't enable tests if we are building with clang without compiling something and looking at the structure of the DWARF that was generated to ensure that it is the format we can actually use.
llvm-svn: 254476
A very expected layout: source tree is in ~/src/llvm, the build directory is in
~/src/llvm-build, and the install location is in /usr/local/{lib,include}.
The DWARF information in /usr/local/lib/libLLVM.a for ilist.h points to
~/src/llvm-build/include/llvm/ADT/ilist.h. Now, when someone includes
"llvm/ADT/ilist.h" and links against /usr/local/lib/libLLVM.a. Disaster.
The DWARF information in libUser.so for ilist.h points to two locations: the one
in /usr/include, and the one in ~/src/llvm-build/include. LLDB gets confused.
Let's uniquify fully-qualified names and never trip on such a thing.
Differential Revision: http://reviews.llvm.org/D14549
llvm-svn: 252898
Summary: This change fixes pr24916. As associated test has been added.
Reviewers: clayborg
Subscribers: zturner, lldb-commits
Differential Revision: http://reviews.llvm.org/D13224
llvm-svn: 249629
Summary:
With this change DWARFASTParserClang::CompleteTypeFromDWARF returns false if
DWARFASTParserClang::ParseChildMembers returns false. Similarly, it returns
false if any base class is of an incomplete type. This helps in cases like
these:
class Foo
{
public:
std::string str;
};
...
Foo f;
If a file with the above code is compiled with a modern clang but without
the -fno-limit-debug-info (or similar) option, then the DWARF has only
a forward declration for std::string. In which case, the type for
"class Foo" cannot be completed. If LLDB does not detect that a child
member has incomplete type, then it wrongly conveys to clang (the LLDB
compiler) that "class Foo" is complete, and consequently crashes due to
an assertion failure in clang when running commands like "p f" or
"frame var f".
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13066
llvm-svn: 248401
Summary: Supports the parsing of the "using namespace XXX" and "using XXX::XXX" directives. Added ambiguity errors when it two decls with the same name are encountered (see comments in TestCppNsImport). Fixes using directives being duplicated for anonymous namespaces. Fixes GetDeclForUID for specification DIEs.
Reviewers: sivachandra, chaoren, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12897
llvm-svn: 247836
Summary: SymbolFileDWARF now creates VarDecl and BlockDecl and adds them to the Decl tree. Then, in ClangExpressionDeclMap it uses the Decl tree to search for a variable. This fixes lots of variable scoping problems.
Reviewers: sivachandra, chaoren, spyffe, clayborg
Subscribers: tberghammer, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D12658
llvm-svn: 247746
* Create new dwo symbol file class
* Add handling for .dwo sections
* Change indexes in SymbolFileDWARF to store compile unit offset next to
DIE offset
* Propagate queries from dwarf compile unit to the dwo compile unit
where applicable
Differential revision: http://reviews.llvm.org/D12291
llvm-svn: 247132
This will keep our code cleaner and it removes the need for intrusive additions to TypeSystem like:
class TypeSystem
{
virtual ClangASTContext *
AsClangASTContext() = 0;
}
As you can now just use the llvm::dyn_cast and other casts.
llvm-svn: 247041
class DWARFASTParser
{
public:
virtual ~DWARFASTParser() {}
virtual lldb::TypeSP
ParseTypeFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die,
lldb_private::Log *log,
bool *type_is_new_ptr) = 0;
virtual lldb_private::Function *
ParseFunctionFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die) = 0;
virtual bool
CompleteTypeFromDWARF (const DWARFDIE &die,
lldb_private::Type *type,
lldb_private::CompilerType &clang_type) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextForUIDFromDWARF (const DWARFDIE &die) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextContainingUIDFromDWARF (const DWARFDIE &die) = 0;
};
We have one subclass named DWARFASTParserClang that implements all of the clang specific AST type parsing. This keeps all DWARF parsing in the DWARF plug-in. Moved all of the DWARF parsing code that was in ClangASTContext over into DWARFASTParserClang.
lldb_private::TypeSystem classes no longer have any DWARF parsing functions in them, but they can hand out a DWARFASTParser:
virtual DWARFASTParser *
GetDWARFParser ()
{
return nullptr;
}
This keeps things clean and makes for easy merging when we have different AST's for different languages.
llvm-svn: 246242