s_setpc_b64 has just one 64-bit source which is the address of instruction to jump to.
Differential Revision: http://reviews.llvm.org/D17888
llvm-svn: 263005
Summary:
This is necessary for when we run out of VGPRs and can no
longer use v_{read,write}_lane for spilling SGPRs.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17592
llvm-svn: 262732
Summary:
This allows us to use virtual registers when we need extra registers
for inserting spill instructions in SIRegisterInfo:eliminateFrameIndex().
Once all the frame indices have been eliminated, the
PrologEpilogueInserter does an extra pass over the program to replace
all virtual registers with physical ones.
This allows us to make more efficient use of our emergency spill slots,
so we only need to create one.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17591
llvm-svn: 262728
These correspond to IMAGE_ATOMIC_* and are going to be used by Mesa for the
GL_ARB_shader_image_load_store extension.
Initial change by Nicolai H.hnle
Differential Revision: http://reviews.llvm.org/D17401
llvm-svn: 262701
Patch by: Konstantin Zhuravlyov
Summary: Tools, such as debugger, need to pause execution based on user input (i.e. breakpoint). In order to do this, two S_NOP instructions are inserted for each high level source statement: one before first isa instruction of high level source statement, and one after last isa instruction of high level source statement. Further, debugger may replace S_NOP instructions with S_TRAP instructions based on user input.
Reviewers: tstellarAMD, arsenm
Subscribers: echristo, dblaikie, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17454
llvm-svn: 262579
Summary:
When there were no free SGPRs, we were trying to move this value into
some of the reserved registers which was causing a segmentation fault.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17590
llvm-svn: 262577
This is going to be used in .hsatext disassembler and can be used
in current assembler parser (lit tests passed on parsing).
Code using this helpers isn't included in this patch.
Benefits:
unified approach
fast field name lookup on parsing
Later I would like to enhance some of the field naming/syntax using this code.
Patch by: Valery Pykhtin
Differential Revision: http://reviews.llvm.org/D17150
llvm-svn: 262473
Fix checking the same instruction twice instead of the
second branch that uses vccz. I don't think this matters
currently because s_branch_vccnz is always used currently.
llvm-svn: 262457
TableGen checks at compiletime that for scheduling models with
"CompleteModel = 1" one of the following holds:
- Is marked with the hasNoSchedulingInfo flag
- The instruction is a subclass of Sched
- There are InstRW definitions in the scheduling model
Typical steps necessary to complete a model:
- Ensure all pseudo instructions that are expanded before machine
scheduling (usually everything handled with EmitYYY() functions in
XXXTargetLowering).
- If a CPU does not support some instructions mark the corresponding
resource unsupported: "WriteRes<WriteXXX, []> { let Unsupported = 1; }".
- Add missing scheduling information.
Differential Revision: http://reviews.llvm.org/D17747
llvm-svn: 262384
Summary:
This patch impleemnts DS_PERMUTE/DS_BPERMUTE instruction definitions and intrinsics,
which are new since VI.
Reviewers: tstellarAMD, arsenm
Subscribers: llvm-commits, arsenm
Differential Revision: http://reviews.llvm.org/D17614
llvm-svn: 262356
Idea behind this change is to make code shorter and as much common for all targets as possible. Let's even accept more code than is valid for a particular target, leaving it for the assembler to sort out.
64bit instructions decoding added.
Error\warning messages on unrecognized instructions operands added, InstPrinter allowed to print invalid operands helping to find invalid/unsupported code.
The change is massive and hard to compare with previous version, so it makes sense just to take a look on the new version. As a bonus, with a few TD changes following, it disassembles the majority of instructions. Currently it fully disassembles >300K binary source of some blas kernel.
Previous TODOs were saved whenever possible.
Patch by: Valery Pykhtin
Differential Revision: http://reviews.llvm.org/D17720
llvm-svn: 262332
Previosy, if actual instruction have one of optional operands then other optional operands listed before this also should be presented.
For example instruction v_fract_f32 v0, v1, mul:2 have one optional operand - OMod and do not have optional operand clamp. Previously this was not allowed because clamp is listed before omod in AsmString:
string AsmString = "v_fract_f32$vdst, $src0_modifiers$clamp$omod";
Making this work required some hacks (both OMod and Clamp match classes have same PredicateMethod).
Now, if MatchInstructionImpl meets formal optional operand that is not presented in actual instruction it skips this formal operand and tries to match current actual operand with next formal.
Patch by: Sam Kolton
Review: http://reviews.llvm.org/D17568
[AMDGPU] Assembler: Check immediate types for several optional operands in predicate methods
With this change you should place optional operands in order specified by asm string:
clamp -> omod
offset -> glc -> slc -> tfe
Fixes for several tests.
Depends on D17568
Patch by: Sam Kolton
Review: http://reviews.llvm.org/D17644
llvm-svn: 262314
Technically you aren't supposed to emit these after type legalization
for some reason, and we use vector extracts of bitcasted integers
as the canonical way to do this.
llvm-svn: 262298
This currently does not have the control over the bitwidth,
and there are missing optimizations to reduce the integer to
32-bit if it can be.
But in most situations we do want the sinking to occur.
llvm-svn: 262296
The maximum private allocation for the whole GPU is 4G,
so the maximum possible index for a single workitem is the
maximum size divided by the smallest granularity for a dispatch.
This increases the number of known zero high bits, which
enables more offset folding. The maximum private size per
workitem with this is 128M but may be smaller still.
llvm-svn: 262153
In all but one case, change the DFAPacketizer API to take MachineInstr&
instead of MachineInstr*. In DFAPacketizer::endPacket(), take
MachineBasicBlock::iterator. Besides cleaning up the API, this is in
search of PR26753.
llvm-svn: 262142
This matches the behavior of the HSAIL clock instruction.
s_realmemtime is used if the subtarget supports it, and falls
back to s_memtime if not.
Also introduces new intrinsics for each of s_memtime / s_memrealtime.
llvm-svn: 262119
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
llvm-svn: 262115
Add parsing and printing of image operands. Matches legacy sp3 assembler.
Change image instruction order to have data/image/sampler operands in the beginning. This is needed because optional operands in MC are always last.
Update SITargetLowering for new order.
Add basic MC test.
Update CodeGen tests.
Review: http://reviews.llvm.org/D17574
llvm-svn: 261995
Support all instructions with VOP1 encoding with 32 or 64-bit operands for VI subtarget:
VGPR_32 and VReg_64 operand register classes
VS_32 and VS_64 operand register classes with inline and literal constants
Tests for VOP1 instructions.
Patch by: skolton
Reviewers: arsenm, tstellarAMD
Review: http://reviews.llvm.org/D17194
llvm-svn: 261878
Resubmit with index problem fixed. Verified with valgrind.
Prepare to support DPP encodings.
For DPP encodings, we want row_mask/bank_mask/bound_ctrl to be optional operands.
However this means that when parsing instruction which has no mnemonic prefix,
we cannot add both default values for VOP3 and for DPP optional operands
to OperandVector - neither instructions would match. So add default values
for optional operands to MCInst during conversion instead.
Mark more operands as IsOptional = 1 in .td files.
Do not add default values for optional operands to OperandVector in AMDGPUAsmParser.
Add default values for optional operands during conversion using new helper addOptionalImmOperand.
Change to cvtVOP3_2_mod to check instruction flag instead of presence of modifiers. In the future, cvtVOP3* functions can be combined into one.
Separate cvtFlat and cvtFlatAtomic.
Fix CNDMASK_B32 definition to have no modifiers.
Review: http://reviews.llvm.org/D17445
llvm-svn: 261856
Prepare to support DPP encodings.
For DPP encodings, we want row_mask/bank_mask/bound_ctrl to be optional operands. However this means that when parsing instruction which has no mnemonic prefix, we cannot add both default values for VOP3 and for DPP optional operands to OperandVector - neither instructions would match. So add default values for optional operands to MCInst during conversion instead.
Mark more operands as IsOptional = 1 in .td files.
Do not add default values for optional operands to OperandVector in AMDGPUAsmParser.
Add default values for optional operands during conversion using new helper addOptionalImmOperand.
Change to cvtVOP3_2_mod to check instruction flag instead of presence of modifiers. In the future, cvtVOP3* functions can be combined into one.
Separate cvtFlat and cvtFlatAtomic.
Fix CNDMASK_B32 definition to have no modifiers.
Review: http://reviews.llvm.org/D17445
Reviewers: tstellarAMD
llvm-svn: 261742
lit tests passed before and after because it doesn't test the binary representation of amd_kernel_code_t.
Patch by: Valery Pykhtin (Valery.Pykhtin@amd.com)
Reviewers: arsenm
llvm-svn: 261732
src1 of s_bfe_u64 is 32-bit (same as s_bfe_i64).
src0 and src1 of s_bfm_b64 are 32-bit.
Update tests.
Review: http://reviews.llvm.org/D17480
Reviewers: arsenm
llvm-svn: 261621
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
This is a little embarrassing.
When I reverted r261504 (getIterator() => getInstrIterator()) in
r261567, I did a `git grep` to see if there were new calls to
`getInstrIterator()` that I needed to migrate. There were 10-20 hits,
and I blindly did a `sed ...` before calling `ninja check`.
However, these were `MachineInstrBundleIterator::getInstrIterator()`,
which predated r261567. Perhaps coincidentally, these had an identical
name and return type.
This commit undoes my careless sed and restores
`MachineBasicBlock::iterator::getInstrIterator()`.
llvm-svn: 261577
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
Summary:
Instead of trying to replace SMRD instructions with a VGPR base pointer
with an equivalent MUBUF instruction, we now copy the base pointer to
SGPRs using v_readfirstlane.
This is safe to do, because any load selected as an SMRD instruction
has been proven to have a uniform base pointer, so each thread in the
wave will have the same pointer value in VGPRs.
This will fix some errors on VI from trying to replace SMRD instructions
with addr64-enabled MUBUF instructions that don't exist.
Reviewers: arsenm, cfang, nhaehnle
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17305
llvm-svn: 261385
Summary:
This was broken in r260694 which swapped the address and data operands
for flat store instructions. The code in SIInsertWaits assumes
that the data operand always comes before the address operand, so
we need to add a special case for flat.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17366
llvm-svn: 261330
Summary:
These correspond to IMAGE_LOAD/STORE[_MIP] and are going to be used by Mesa
for the GL_ARB_shader_image_load_store extension.
IMAGE_LOAD is already matched by llvm.SI.image.load. That intrinsic has
a legacy name and pretends not to read memory.
Differential Revision: http://reviews.llvm.org/D17276
llvm-svn: 261224
Changes:
- Added disassembler project
- Fixed all decoding conflicts in .td files
- Added DecoderMethod=“NONE” option to Target.td that allows to
disable decoder generation for an instruction.
- Created decoding functions for VS_32 and VReg_32 register classes.
- Added stubs for decoding all register classes.
- Added several tests for disassembler
Disassembler only supports:
- VI subtarget
- VOP1 instruction encoding
- 32-bit register operands and inline constants
[Valery]
One of the point that requires to pay attention to is how decoder
conflicts were resolved:
- Groups of target instructions were separated by using different
DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate
approach.
- There were conflicts in IMAGE_<> instructions caused by two
different reasons:
1. dmask wasn’t specified for the output (fixed)
2. There are image instructions that differ only by the number of
the address components but have the same encoding by the HW spec. The
actual number of address components is determined by the HW at runtime
using image resource descriptor starting from the VGPR encoded in an
IMAGE instruction. This means that we should choose only one instruction
from conflicting group to be the rule for decoder. I didn’t find the way
to disable decoder generation for an arbitrary instruction and therefore
made a onelinear fix to tablegen generator that would suppress decoder
generation when DecoderMethod is set to “NONE”. This is a change that
should be reviewed and submitted first. Otherwise I would need to
specify different DecoderNamespace for every instruction in the
conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not
used in other targets.
3. IMAGE_GATHER decoder generation is for now disabled and to be
done later.
[/Valery]
Patch By: Sam Kolton
Differential Revision: http://reviews.llvm.org/D16723
llvm-svn: 261185
Summary: This change renames output operand for VOP instructions from dst to vdst. This is needed to enable decoding named operands for disassembler.
Reviewers: vpykhtin, tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits, nhaustov
Projects: #llvm-amdgpu-spb
Differential Revision: http://reviews.llvm.org/D16920
llvm-svn: 260986
Tests for the new scalarize all private access options will be
included with a future commit.
The only functional change is to make the split/scalarize behavior
for private access of > 4 element vectors to be consistent
with the flat/global handling. This makes the spilling worse
in the two changed tests.
llvm-svn: 260804
Historically, AMD internal sp3 assembler has flat_store* addr, data
format. To match existing code and to enable reuse, change LLVM
definitions to match. Also update MC and CodeGen tests.
Differential Revision: http://reviews.llvm.org/D16927
Patch by: Nikolay Haustov
llvm-svn: 260694
Summary:
It is possible that the loop condition can be a boolean constant (infinite loop,
for example). So we sould handle constant condition in annotating a loop. This
patch adds this functionality to support annotating constant condition.
Reviewers: tstellarAMD, arsenm
Subscribers: llvm-commits, arsenm
Differential Revision: http://reviews.llvm.org/D15093
llvm-svn: 260692
This was hardcoded to the static private size, but this
would be missing the offset and additional size for someday
when we have dynamic sizing.
Also stops always initializing flat_scratch even when unused.
In the future we should stop emitting this unless flat instructions
are used to access private memory. For example this will initialize
it almost always on VI because flat is used for global access.
llvm-svn: 260658
Introduce a subtarget feature for this, and leave the default with
the current behavior which assumes up to 16-byte loads/stores can
be used. The field also seems to have the ability to be set to 2 bytes,
but I'm not sure what that would be used for.
llvm-svn: 260651
Summary:
It's possible to have resource descriptors and samplers stored in
VGPRs, either by a VMEM instruction or in the case of samplers,
floating-point calculations. When this happens, we need to use
v_readfirstlane to copy these values back to sgprs.
Reviewers: mareko, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17102
llvm-svn: 260599
Summary:
When we split SMRD instructions into two MUBUFs we were adding the users
of the newly created MUBUFs to the VALU worklist. However, the only
users these instructions had was the REG_SEQUENCE that was inserted
by splitSMRD when the original SMRD instruction was split.
We need to make sure to add the users of the original SMRD to the VALU
worklist before it is split.
I have a test case, but it requires one other bug fix, so it will be
added in a later commt.
Reviewers: mareko, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17101
llvm-svn: 260588
Summary:
Added support for "VOP3Only" attribute in VOP3bInst encoding.
Set VOP3Only=1 for V_DIV_SCALE_F64/32 insns.
Added support for multi-dest instructions in AMDGPUAs::cvt*().
Added lit test for "V_DIV_SCALE_F64|F32 vreg,vcc|sreg,vreg,vreg,vreg".
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, SamWot, nhaustov, vpykhtin
Differential Revision: http://reviews.llvm.org/D16995
Patch By: Artem Tamazov
llvm-svn: 260560
If the two operands to an instruction were both
subregisters of the same super register, it would incorrectly
think this counted as the same constant bus use.
This fixes the verifier error in fmin_legacy.ll which
was missing -verify-machineinstrs.
llvm-svn: 260495
Separate methods to convert parsed instructions to MCInst:
- VOP3 only instructions (always create modifiers as operands in MCInst)
- VOP2 instrunctions with modifiers (create modifiers as operands
in MCInst when e64 encoding is forced or modifiers are parsed)
- VOP2 instructions without modifiers (do not create modifiers
as operands in MCInst)
- Add VOP3Only flag. Pass HasMods flag to VOP3Common.
- Simplify code that deals with modifiers (-1 is now same as
0). This is no longer needed.
- Add few tests (more will be added separately).
Update error message now correct.
Patch By: Nikolay Haustov
Differential Revision: http://reviews.llvm.org/D16778
llvm-svn: 260483
Summary:
This fixes a crash where subsequent spills would be unable to scavenge
a register. In particular, it fixes a crash in piglit's
spec@glsl-1.50@execution@geometry@max-input-components (the test still
has a shader that fails to compile because of too many SGPR spills, but
at least it doesn't crash any more).
This is a candidate for the release branch.
Reviewers: arsenm, tstellarAMD
Subscribers: qcolombet, arsenm
Differential Revision: http://reviews.llvm.org/D16558
llvm-svn: 260427
Summary:
We will hit this once we have enabled uniform branches. The
smrd-vccz-bug.ll test will be added with the uniform branch commit.
Reviewers: mareko, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D16725
llvm-svn: 260137
The current situation isn't great, because the amount of padding
requires is determined by the inverse order of the first encountered
use. We should eventually somehow sort these to minimize wasted space.
Another problem is the alignment of kernel arguments isn't
respected. The group_segment_alignment is always emitted as
the default 16, and typed arguments with higher alignments
or an explicitly set alignment are also ignored.
llvm-svn: 259912
If we can't assume the pointer value isn't within the bounds
of the object, it seems risky to try to replace the pointer
calculations.
llvm-svn: 259573
When promoting allocas to LDS, we know we are indexing
into a specific area just created, and the calculation
will also never overflow.
Also emit some of the muls as nsw nuw, because instcombine
infers this already from the range metadata. I think
putting this on the other adds and muls might be OK too,
but I'm not 100% sure.
llvm-svn: 259545
Re-commit of r258951 after fixing layering violation.
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
llvm-svn: 259498
The AMDGPUPromoteAlloca pass was emitting the read.local.size
calls, which with HSA was incorrectly selected to reading from
the offset mesa uses off of the kernarg pointer.
Error on intrinsics which aren't supported by HSA, and start
emitting the correct IR to read the workgroup size
out of the dispatch pointer.
Also initialize the pass so it can be tested with opt, and
start moving towards not depending on the subtarget as an
argument.
Start emitting errors for the intrinsics not handled with HSA.
llvm-svn: 259297
Only the dispatch.ptr intrinsic is supposed to be used now to get
the workgroup size, and the read.local.size intrinsics do not
work correctly.
llvm-svn: 259296
Summary:
Also delete all the stub functions that are identical to the
implementations in TargetInstrInfo.cpp.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D16609
llvm-svn: 259054
Re-commit of r258951 after fixing layering violation.
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 259035
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
The implementation of DiagnosticInfoUnsupported::print must be in
lib/Codegen rather than in the existing file in lib/IR/ to avoid
introducing a dependency from IR to CodeGen.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 258951
Summary:
We didn't have entries in the commuting table for the 32-bit
instructions. I don't think we hit this problem now, but we
will once uniform branching is enabled. Tests will come in
a later commit.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D16600
llvm-svn: 258936
Summary:
This is a candidate for stable, along with all patches that add the "stoney"
processor.
Reviewers: tstellarAMD
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16485
llvm-svn: 258922
When no device name is specified, default to kaveri
for HSA since SI is not supported and it woud fail.
Default to "tahiti" instead of "SI" since these are
effectively the same, and tahiti is an actual device.
Move default device handling to the TargetMachine
rather than the AMDGPUSubtarget. The module ISA version
is computed from the device name provided with the target
machine, so the attributes printed by the AsmPrinter were
inconsistent with those computed in the subtarget.
Also remove DevName field from subtarget since it's redundant
with getCPU() in the superclass.
llvm-svn: 258901
This brings the compile time of Function.cpp from ~40s down to ~4s for
me locally. It also shaves off about 400KB of object file size in a
release+asserts build.
I also realized that the AMDGPU backend does not have any GCC builtin
names to match, so the extra lookup was a no-op. I removed it to silence
a zero-length string table array warning. There should be no functional
change here.
This change really ends the story of PR11951.
llvm-svn: 258897
The AMDGPU backend was the last user of the old StringMatcher
recognition code. Move it over to the new lookupLLVMIntrinsicName
funciton, which is now improved to handle all of the interesting edge
cases exposed by AMDGPU intrinsic names.
llvm-svn: 258875
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Make comments and indentation more consistent.
Rearrange a few things to be in a more consistent order,
such as organizing subtarget features from those describing
an actual device property, and those used as options.
llvm-svn: 258789
I did my best to try to update all the uses in tests that
just happened to use the old ones to the newer intrinsics.
I'm not sure I got all of the immediate operand conversions
correct, since the value seems to have been ignored by the
old pattern but I don't think it really matters.
llvm-svn: 258787
Some of the special intrinsics now that now correspond to a instruction
also have special setting of some registers, e.g. llvm.SI.sendmsg sets
m0 as well as use s_sendmsg. Using these explicit register intrinsics
may be a better option.
Reading the exec mask and others may be useful for debugging. For this
I'm not sure this is entirely correct because we would want this to
be convergent, although it's possible this is already treated
sufficently conservatively.
llvm-svn: 258785
The intrinsic target prefix should match the target name
as it appears in the triple.
This is not yet complete, but gets most of the important ones.
llvm.AMDGPU.* intrinsics used by mesa and libclc are still handled
for compatability for now.
llvm-svn: 258557
The promote alloca pass didn't handle these intrinsics and crashed.
These intrinsics should accept any address space, but for now just
erase them to avoid breaking.
llvm-svn: 258537
Summary:
Currently the SI scheduler can be selected via command line option,
but it turned out it would be better if it was selectable via a Target Attribute.
This patch adds "si-scheduler" attribute to the backend.
Reviewers: tstellarAMD, echristo
Subscribers: echristo, arsenm
Differential Revision: http://reviews.llvm.org/D16192
llvm-svn: 258386
Summary:
While working on uniform branching, I've hit a few cases where we emit
i1 SETCC operations.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D16233
llvm-svn: 258352
This breaks the tests that were meant for testing
64-bit inline immediates, so move those to shl where
they won't be broken up.
This should be repeated for the other related bit ops.
llvm-svn: 258095
Summary:
v2: Make ReturnsVoid private, so that I can another 8 lines of code and
look more productive.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16034
llvm-svn: 257622
Summary:
Return values can be stored in SGPRs (i32) and VGPRs (f32).
This will be used by functions which expect some bytecode or other binary to
be appended at the end. It allows defining in which registers the return
values will be stored.
v2: don't do this for compute shaders
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16033
llvm-svn: 257621
Summary:
It is off by default, but can be used
with --misched=si
Patch by: Axel Davy
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: nhaehnle, solenskiner, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D11885
llvm-svn: 257609
Summary:
With the ability to concatenate shader binaries, the limit of 15 no longer
applies.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16031
llvm-svn: 257592
Summary:
This allows Mesa to pass initial SPI_PS_INPUT_ADDR to LLVM.
The register assigns VGPR locations to PS inputs, while the ENA register
determines whether or not they are loaded.
Mesa needs to set some inputs as not-movable, so that a pixel shader prolog
binary appended at the beginning can assume where some inputs are.
v2: Make PSInputAddr private, because there is never enough silly getters
and setters for people to read.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16030
llvm-svn: 257591
Summary: ret.ll will contain a test for this
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16029
llvm-svn: 257590
The hardware instruction's output on 0 is -1 rather than 32.
Eliminate a test and select to -1. This removes an extra instruction
from the compatability function with HSAIL's firstbit instruction.
llvm-svn: 257352
Summary:
Multi-dword constant loads generated unnecessary moves from SGPRs into VGPRs,
increasing the code size and VGPR pressure. These moves are now folded away.
Note that this lack of operand folding was not a problem for VMEM loads,
because COPY nodes from VReg_Nnn to VGPR32 are eliminated by the register
coalescer.
Some tests are updated, note that the fsub.ll test explicitly checks that
the move is elided.
With the IR generated by current Mesa, the changes are obviously relatively
minor:
7063 shaders in 3531 tests
Totals:
SGPRS: 351872 -> 352560 (0.20 %)
VGPRS: 199984 -> 200732 (0.37 %)
Code Size: 9876968 -> 9881112 (0.04 %) bytes
LDS: 91 -> 91 (0.00 %) blocks
Scratch: 1779712 -> 1767424 (-0.69 %) bytes per wave
Wait states: 295164 -> 295337 (0.06 %)
Totals from affected shaders:
SGPRS: 65784 -> 66472 (1.05 %)
VGPRS: 38064 -> 38812 (1.97 %)
Code Size: 1993828 -> 1997972 (0.21 %) bytes
LDS: 42 -> 42 (0.00 %) blocks
Scratch: 795648 -> 783360 (-1.54 %) bytes per wave
Wait states: 54026 -> 54199 (0.32 %)
Reviewers: tstellarAMD, arsenm, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15875
llvm-svn: 257074
Summary:
Somehow, I first interpreted the docs as saying space for xnack_mask is only
reserved when XNACK is enabled via SH_MEM_CONFIG. I felt uneasy about this and
went back to actually test what is happening, and it turns out that xnack_mask
is always reserved at least on Tonga and Carrizo, in the sense that flat_scr
is always fixed below the SGPRs that are used to implement xnack_mask, whether
or not they are actually used.
I confirmed this by writing a shader using inline assembly to tease out the
aliasing between flat_scratch and regular SGPRs. For example, on Tonga, where
we fix the number of SGPRs to 80, s[74:75] aliases flat_scratch (so
xnack_mask is s[76:77] and vcc is s[78:79]).
This patch changes both the calculation of the total number of SGPRs and the
various register reservations to account for this.
It ought to be possible to use the gap left by xnack_mask when the feature
isn't used, but this patch doesn't try to do that. (Note that the same applies
to vcc.)
Note that previously, even before my earlier change in r256794, the SGPRs that
alias to xnack_mask could end up being used as well when flat_scr was unused
and the total number of SGPRs happened to fall on the right alignment
(e.g. highest regular SGPR being used s29 and VCC used would lead to number
of SGPRs being 32, where s28 and s29 alias with xnack_mask). So if there
were some conflict due to such aliasing, we should have noticed that already.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15898
llvm-svn: 257073
Summary:
This is admittedly something that you could only run into by manually
playing around with shader assembly because the SITypeWriter pass is
skipped for compute.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15902
llvm-svn: 256980
Due to the SGPR init bug, every program claims to use the same number
of SGPRs anyway, so there's no point in trying to shift those registers
down from their initial spot of reservation.
Add a test that uses VGPR spilling and blocks most SGPRs from being used for
the scratch resource register. Previously, this would run into an assertion.
Differential Revision: http://reviews.llvm.org/D15724
llvm-svn: 256870
Summary:
We had to sets of identical FLAT patterns one inside the
HasFlatAddressSpace predicate and one inside the useFlatForGloabl
predicate. This patch merges these sets into a single pattern
under the isCIVI predicate.
The reason we can remove the predicates is that when MUBUF instructions
are legal, the instruction selector will prefer selecting those over
FLAT instructions because MUBUF patterns have a higher complexity score.
So, in this case having patterns for FLAT instructions will have no effect.
This change also simplifies the process for forcing global address space
loads to use FLAT instructions, since we no only have to disable the
MUBUF patterns instead of having to disable the MUBUF patterns and
enable the FLAT patterns.
Reviewers: arsenm, cfang
Subscribers: llvm-commits
llvm-svn: 256807
Summary:
Enabling this feature will account for the two SGPRs used by the hardware
to store the XNACK_MASK physically.
The hardware only requires this reservation when the XNACK feature is
explicitly enabled. At some point, HSA will probably want to do that, but
it does increase SGPR register pressure, so leave it disabled by default
for now (but do add a small test).
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15869
llvm-svn: 256794
Summary: This was accidently moved to CIInstructions.td in r256282
Reviewers: cfang, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15763
llvm-svn: 256775
Summary:
The comment explains it: emitError does not necessarily exit the compilation
process, and then using NoRegister leads to assertions later on.
This generates incorrect code, of course, but the user should know to not use
the result when an error has been emitted.
It would be nice to have a test-case for this inside the LLVM repository,
but llc exits on error. shader-db tests trigger the underlying issue at least
on Tonga.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15826
llvm-svn: 256757
Summary:
For some reason doing executing an MUBUF instruction with the addr64
bit set and a zero base pointer in the resource descriptor causes
the memory operation to be dropped when the shader is executed using
the HSA runtime.
This kind of MUBUF instruction is commonly used when the pointer is
stored in VGPRs. The base pointer field in the resource descriptor
is set to zero and and the pointer is stored in the vaddr field.
This patch resolves the issue by only using flat instructions for
global memory operations when targeting HSA. This is an overly
conservative fix as all other configurations of MUBUF instructions
appear to work.
NOTE: re-commit by fixing a failure in Codegen/AMDGPU/llvm.dbg.value.ll
Reviewers: tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15543
llvm-svn: 256282
Summary:
For some reason doing executing an MUBUF instruction with the addr64
bit set and a zero base pointer in the resource descriptor causes
the memory operation to be dropped when the shader is executed using
the HSA runtime.
This kind of MUBUF instruction is commonly used when the pointer is
stored in VGPRs. The base pointer field in the resource descriptor
is set to zero and and the pointer is stored in the vaddr field.
This patch resolves the issue by only using flat instructions for
global memory operations when targeting HSA. This is an overly
conservative fix as all other configurations of MUBUF instructions
appear to work.
Reviewers: tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15543
llvm-svn: 256273