with its source instead of forcing the values on GPRs.
This improves the lowering of vector code when such bitcasts happen in the
middle of vector computations.
rdar://problem/23691584
llvm-svn: 254684
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
llvm-svn: 254524
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
Building on r253865 the crash is not limited to signed overflows.
Disable custom handling of unsigned 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit unsigned integer overflow.
llvm-svn: 254158
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
Disable custom handling of signed 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit integer overflow crashes.
llvm-svn: 253865
This was left implicit and never ever checked, which means we could have a CMPZ against some non-zero value and we were carrying on with BFI conversion regardless.
Caught by Oliver Stannard using csmith; regression test added.
llvm-svn: 253195
I completely misunderstood what ARMISD::CMPZ means. It's not "compare equal to zero", it's "compare, only setting the zero/Z flag". It can either be equal-to-zero or not-equal-to-zero, and we weren't checking what sense it was.
If it's equal-to-zero, we can swap the operands around and pretend like it is not-equal-to-zero, which is both a bug fix and lets us handle more cases.
llvm-svn: 252891
I missed the side-effects of ParseBFI in my previous attempt (r252748).
Thanks dblaikie for the suggestion of adding a void use of the unused
variable instead.
llvm-svn: 252751
If we have a chain of BFIs, we may be able to combine several together into one merged BFI. We can do this if the "from" bits from one BFI OR'd with the "from" bits from the other BFI form a contiguous range, and the same with the "to" bits.
llvm-svn: 252740
ARM V6T2 has instructions for efficient count-leading/trailing-zeros, so this should be
considered a cheap operation (and therefore fair game for speculation) for any ARM V6T2
implementation.
The net result of allowing this speculation for the regression tests in this patch is
that we get this code:
ctlz:
clz r0, r0
bx lr
cttz:
rbit r0, r0
clz r0, r0
bx lr
Instead of:
ctlz:
cmp r0, #0
moveq r0, #32
clzne r0, r0
bx lr
cttz:
cmp r0, #0
moveq r0, #32
rbitne r0, r0
clzne r0, r0
bx lr
This will help solve a general speculation/despeculation problem noted in PR24818:
https://llvm.org/bugs/show_bug.cgi?id=24818
Differential Revision: http://reviews.llvm.org/D14469
llvm-svn: 252639
Added fixes for stage2 failures: CMOV is not commutable; commuting the operands results in the condition being flipped! d'oh!
Original commit message:
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252606
"GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp": https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Standards.html
Hence in GNUEABI targets LLVM should not convert 'memops' to their equivalent
'__aeabi_memops'. This convertion violates GCC contract.
The -meabi flag controls whether or not LLVM will modify 'memops' in GNUEABI
targets.
Without -meabi: use the triple default EABI.
With -meabi=default: use the triple default EABI.
With -meabi=gnu: use 'memops'.
With -meabi=4 or -meabi=5: use '__aeabi_memops'.
With -meabi set to an unknown value: same as -meabi=default.
Patch by Vinicius Tinti.
llvm-svn: 252462
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
We can conservatively know that CMOV's known bits are the intersection of known bits for each of its operands. This helps PerformCMOVToBFICombine find more opportunities.
I tried hard to create a testcase for this and failed - we have to sufficiently confuse DAG.computeKnownBits which can see through all the cheap tricks I tried to narrow my larger testcase down :(
This code is actually exercised in CodeGen/ARM/bfi.ll, there's just no functional difference because DAG.computeKnownBits gets the right answer in that case.
llvm-svn: 252168
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252057
Summary: After D13851 landed, we saw backend crashes when compiling the reduced test case included in this patch. The right fix seems to be to allow these vector types for expansion in instruction selection.
Reviewers: rengolin, t.p.northover
Subscribers: RKSimon, t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14082
llvm-svn: 251401
In PIC mode we were previously computing global variable addresses (or GOT
entry addresses) by adding the PC, the PC-relative GOT displacement and
the GOT-relative symbol/GOT entry displacement. Because the latter two
displacements are fixed, we ended up performing one more addition than
necessary.
This change causes us to compute addresses using a single PC-relative
displacement, resulting in a shorter code sequence. This reduces code size
by about 4% in a recent build of Chromium for Android.
As a result of this change we no longer need to compute the GOT base address
in the ARM backend, which allows us to remove the Global Base Reg pass and
SDAG lowering for the GOT.
We also now no longer use the GOT when addressing a symbol which is known
to be defined in the same linkage unit. Specifically, the symbol must have
either hidden visibility or a strong definition in the current module in
order to not use the the GOT.
This is a change from the previous behaviour where we would use the GOT to
address externally visible symbols defined in the same module. I think the
only cases where this could matter are cases involving symbol interposition,
but we don't really support that well anyway.
Differential Revision: http://reviews.llvm.org/D13650
llvm-svn: 251322
Summary:
TargetLoweringBase::Expand is defined as "Try to expand this to other ops,
otherwise use a libcall." For ISD::UDIV and ISD::SDIV, the choice between
the two possibilities was defined in a rather convoluted way:
- if DIVREM is legal, expand to DIVREM
- if DIVREM has a custom lowering, expand to DIVREM
- if DIVREM libcall is defined and a remainder from the same division is
computed elsewhere, expand to a DIVREM libcall
- else, expand to a DIV libcall
This had the undesirable effect that if both DIV and DIVREM are implemented
as libcalls, then ISD::UDIV and ISD::SDIV are expanded to the heavier DIVREM
libcall, even when the remainder isn't used.
The new code adds a new LegalizeAction, TargetLoweringBase::LibCall, so that
backends can directly control whether they prefer an expansion or a conversion
to a libcall. This makes the generic lowering code even more generic,
allowing its reuse in a wider range of target-specific configurations.
The useful effect is that ARM backend will now generate a call
to __aeabi_{i,u}div rather than __aeabi_{i,u}divmod in cases where
it doesn't need the remainder. There's no functional change outside
the ARM backend.
Reviewers: t.p.northover, rengolin
Subscribers: t.p.northover, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D13862
llvm-svn: 250826
I'll be using the function in a similar combine for AArch64. The helper was
also improved to handle undef values.
Part of http://reviews.llvm.org/D13442
llvm-svn: 249572
The ARM RTABI defines the half- to single-precision float conversion functions
with an __aeabi prefix, but libgcc only has them with a __gnu prefix. Therefore
we need to emit the __aeabi version when compiling with an eabi or eabihf
triple, and the __gnu version with a gnueabi or gnueabihf triple.
llvm-svn: 249565
Without an additional check for NEON, the compiler crashes during
legalization of NEON ldN/stN.
Differential Revision: http://reviews.llvm.org/D13508
llvm-svn: 249550
We were previously codegen'ing memcpy as regular load/store operations and
hoping that the register allocator would allocate registers in ascending order
so that we could apply an LDM/STM combine after register allocation. According
to the commit that first introduced this code (r37179), we planned to teach the
register allocator to allocate the registers in ascending order. This never got
implemented, and up to now we've been stuck with very poor codegen.
A much simpler approach for achieving better codegen is to create MEMCPY pseudo
instructions, attach scratch virtual registers to them and then, post register
allocation, expand the MEMCPYs into LDM/STM pairs using the scratch registers.
The register allocator will have picked arbitrary registers which we sort when
expanding the MEMCPY. This approach also avoids the need to repeatedly calculate
offsets which ultimately ought to be eliminated pre-RA in order to decrease
register pressure.
Fixes PR9199 and PR23768.
[This is based on Peter Collingbourne's r238473 which was reverted.]
Differential Revision: http://reviews.llvm.org/D13239
Change-Id: I727543c2e94136e0f80b8e22d5642d7b9ee5b458
Author: Peter Collingbourne <peter@pcc.me.uk>
llvm-svn: 249322
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D12985
llvm-svn: 248887
supportsTailCall() has two callers. Both of them double-check isThumb1Only(),
and refuse to proceed with tail-calling in that case.
Therefore, it makes sense to move this check to
ARMSubtarget::initSubtargetFeatures, where SupportsTailCall is initialized;
and to eliminate the extra checks at the call sites.
Following a review comment, added an "assert(supportsTailCall())"
in IsEligibleForTailCall.
NFC.
llvm-svn: 248703
We now emit the compiler generated divide by zero check that was needed for the
MSVC routines. We construct a psuedo-instruction for the DBZ check as the
operation requires splitting up the BB. For the 64-bit operations, we need to
custom expand the node as we need to insert the DBZ check and then emit the
libcall to the appropriate name. Because this is target specific, it seemed
better to reproduce the expansion operation from the target-agnostic type
legalization rather than sink this there to avoid the duplication. The division
library calls now match MSVC semantically.
llvm-svn: 248561
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in a
hand-rolled tricky condition block in tools/clang/lib/Basic/Targets.cpp, with
a FIXME: attached.
This patch changes the handling of +t2dsp to be in line with other
architecture extensions.
Following a revert of r248152 and new review comments, this patch also includes
renaming FeatureDSPThumb2 -> FeatureDSP, hasThumb2DSP() -> hasDSP(), etc.
The spelling of "t2dsp" is preserved, pending a further investigation of its
possible external usage.
Differential Revision: http://reviews.llvm.org/D12937
llvm-svn: 248519
ARM counterpart to r248291:
In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.
Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.
Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".
Differential Revision: http://reviews.llvm.org/D13033
llvm-svn: 248294
The vext pseudo-instruction takes the number of elements that need to be
extracted, not the number of bytes. Hence, use the number of elements
directly instead of scaling them with a factor.
Reviewers: Silviu Baranga, James Molloy
(not reflected in the differential revision)
Differential Revision: http://reviews.llvm.org/D12974
llvm-svn: 248208
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
We used to have this magic "hasLoadLinkedStoreConditional()" callback,
which really meant two things:
- expand cmpxchg (to ll/sc).
- expand atomic loads using ll/sc (rather than cmpxchg).
Remove it, and, instead, introduce explicit callbacks:
- bool shouldExpandAtomicCmpXchgInIR(inst)
- AtomicExpansionKind shouldExpandAtomicLoadInIR(inst)
Differential Revision: http://reviews.llvm.org/D12557
llvm-svn: 247429
The tests in isVTRNMask and isVTRN_v_undef_Mask should also check that the elements of the upper and lower half of the vectorshuffle occur in the correct order when both halves are used. Without this test the code assumes that it is correct to use vector transpose (vtrn) for the masks <1, 1, 0, 0> and <1, 3, 0, 2>, among others, but the transpose actually incorrectly generates shuffles for <0, 0, 1, 1> and <0, 2, 1, 3> in this case.
Patch by Jeroen Ketema!
llvm-svn: 247254
The code introduced in r244314 assumed that EXTRACT_VECTOR_ELT only
takes constant indices, but it does accept variables.
Bail out for those: we can't use them, as the shuffles we want to
reconstruct do require constant masks.
llvm-svn: 246594
For targets that didn't support this, this will let us respect the
langref instead of failing to select.
Note that we don't need to change the 32-bit x86/PPC lowerings (to
account for the result type/# difference) because they're both
custom and bypass type legalization.
llvm-svn: 246258
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
It won't go well. We've already marked 64-bit SETCCs as non-Custom, but it's just possible that a SETCC has a legal result type but an illegal operand type. If this happens, bail out before we create unselectable nodes.
Fixes PR24292. I tried to create a testcase but in 99% of cases we can't trigger this - not surprising that this bug has been latent since 2009.
llvm-svn: 245577
Summary:
The mid-end was generating vector smin/smax/umin/umax nodes, but
we were using vbsl to generatate the code. This adds the vmin/vmax
patterns and a test to check that we are now generating vmin/vmax
instructions.
Reviewers: rengolin, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D12105
llvm-svn: 245439
This was my error. We've got f32 marked as legal because they're simulated using a v2f32 instruction, but there's no equivalent for f64.
This will get test coverage imminently when D12015 lands.
llvm-svn: 244916
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Lower Intrinsic::arm_neon_vmins/vmaxs to fminnan/fmaxnan and match that instead. This is important because SDAG will soon be able to select FMINNAN itself, so we need a unified lowering path for intrinsics and SDAG.
NFCI.
llvm-svn: 244593
Lower the intrinsic to a FMINNUM/FMAXNUM node and select that instead. This is important because soon SDAG will be able to select FMINNUM/FMAXNUM itself, so we need an integrated lowering path between SDAG and intrinsics.
NFCI.
llvm-svn: 244592
Summary:
Port the ReconstructShuffle function from AArch64 to ARM
to handle mismatched incoming types in the BUILD_VECTOR
node.
This fixes an outstanding FIXME in the ReconstructShuffle
code.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11720
llvm-svn: 244314
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
This adds the software division routines for the Windows RTABI. These are not
expected to be used often though as most modern Windows ARM capable targets
support hardware division. In the case that the target CPU doesnt support
hardware division, this will be the fallback.
llvm-svn: 243952
For a modulo (reminder) operation,
clang -target armv7-none-linux-gnueabi generates "__modsi3"
clang -target armv7-none-eabi generates "__aeabi_idivmod"
clang -target armv7-linux-androideabi generates "__modsi3"
Android bionic libc doesn't provide a __modsi3, instead it provides a
"__aeabi_idivmod". This patch fixes the LLVM ARMISelLowering to generate
the correct call when ever there is a modulo operation.
Differential Revision: http://reviews.llvm.org/D11661
llvm-svn: 243717
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
llvm-svn: 243693
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
Some shufflevectors are currently being incorrectly lowered in the AArch32
backend as the existing checks for detecting the NEON operations from the
shufflevector instruction expects the shuffle mask and the vector operands to be
of the same length.
This is not always the case as the mask may be twice as long as the operand;
here only the lower half of the shufflemask gets checked, so provided the lower
half of the shufflemask looks like a vector transpose (or even is just all -1
for undef) then the intrinsics may get incorrectly lowered into a vector
transpose (VTRN) instruction.
This patch fixes this by accommodating for both cases and adds regression tests.
Differential Revision: http://reviews.llvm.org/D11407
llvm-svn: 243103
is an immediate, in this check the value is negated and stored in and int64_t.
The value can be -2^63 yet the result cannot be stored in an int64_t and this
gives some undefined behaviour causing failures. The negation is only necessary
when the values is within a certain range and so it should not need to negate
-2^63, this patch introduces this and also a regression test.
Differential Revision: http://reviews.llvm.org/D11408
llvm-svn: 243100
llvm.eh.sjlj.setjmp was used as part of the SjLj exception handling
style but is also used in clang to implement __builtin_setjmp. The ARM
backend needs to output additional dispatch tables for the SjLj
exception handling style, these tables however can't be emitted if
llvm.eh.sjlj.setjmp is simply used for __builtin_setjmp and no actual
landing pad blocks exist.
To solve this issue a new llvm.eh.sjlj.setup_dispatch intrinsic is
introduced which is used instead of llvm.eh.sjlj.setjmp in the SjLj
exception handling lowering, so we can differentiate between the case
where we actually need to setup a dispatch table and the case where we
just need the __builtin_setjmp semantic.
Differential Revision: http://reviews.llvm.org/D9313
llvm-svn: 242481
The 64/128-bit vector types are legal if NEON instructions are
available. However, there was no matching patterns for @llvm.cttz.*()
intrinsics and result in fatal error.
This commit fixes the problem by lowering cttz to:
a. ctpop((x & -x) - 1)
b. width - ctlz(x & -x) - 1
llvm-svn: 242037
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11017
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241655
be emitted.
This is needed to enable ARM long calls for LTO and enable and disable it on a
per-function basis.
Out-of-tree projects currently using EnableARMLongCalls to emit long calls
should start passing "+long-calls" to the feature string (see the changes made
to clang in r241565).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D9364
llvm-svn: 241566
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Currently, we canonicalize shuffles that produce a result larger than
their operands with:
shuffle(concat(v1, undef), concat(v2, undef))
->
shuffle(concat(v1, v2), undef)
because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
This is useful in the general case, but there are special cases where
native shuffles produce larger results: the two-result ops.
We can look through the concat when lowering them:
shuffle(concat(v1, v2), undef)
->
concat(VZIP(v1, v2):0, :1)
This lets us generate the native shuffles instead of scalarizing to
dozens of VMOVs.
Differential Revision: http://reviews.llvm.org/D10424
llvm-svn: 240118
This reverts commit r239437.
This broke clang-cl self-hosts. We'd end up calling the __imp_ symbol
directly instead of using it to do an indirect function call.
llvm-svn: 239502
that was resetting it.
Remove the uses of DisableTailCalls in subclasses of TargetLowering and use
the value of function attribute "disable-tail-calls" instead. Also,
unconditionally add pass TailCallElim to the pipeline and check the function
attribute at the start of runOnFunction to disable the pass on a per-function
basis.
This is part of the work to remove TargetMachine::resetTargetOptions, and since
DisableTailCalls was the last non-fast-math option that was being reset in that
function, we should be able to remove the function entirely after the work to
propagate IR-level fast-math flags to DAG nodes is completed.
Out-of-tree users should remove the uses of DisableTailCalls and make changes
to attach attribute "disable-tail-calls"="true" or "false" to the functions in
the IR.
rdar://problem/13752163
Differential Revision: http://reviews.llvm.org/D10099
llvm-svn: 239427