There is not point in importing a "weak" or a "linkonce" function
since we won't be able to inline it anyway.
We already had a targeted check for WeakAny, this is using the
same check on GlobalValue as the inline, i.e.
isMayBeOverriddenLinkage()
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268341
There is not point in importing a "weak" or a "linkonce" function
since we won't be able to inline it anyway.
We already had a targeted check for WeakAny, this is using the
same check on GlobalValue as the inline, i.e.
isMayBeOverriddenLinkage()
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268315
When running cc1 with -flto=thin, it is followed by GlobalOpt, which
requires the callgraph. This saves rebuilding one.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268266
Make it possible that TryToSimplifyUncondBranchFromEmptyBlock merges empty
basic block including lifetime intrinsics as well as phi nodes and
unconditional branch into its successor or predecessor(s).
If successor of empty block has single predecessor, all contents including
lifetime intrinsics are sinked into the successor. Otherwise, they are
hoisted into its predecessor(s) and then merged into the predecessor(s).
Patch by Josh Yoon <josh.yoon@samsung.com>!
Differential Revision: http://reviews.llvm.org/D19257
llvm-svn: 268254
This is where it was originally, until LoopVersioningLICM was
inserted before in r259986, I don't believe it was on purpose.
Differential Revision: http://reviews.llvm.org/D19809
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268252
SystemZ on Linux currently has 53-bit address space. In theory, the hardware
could support a full 64-bit address space, but that's not supported due to
kernel limitations (it'd require 5-level page tables), and there are no plans
for that. The default process layout stays within first 4TB of address space
(to avoid creating 4-level page tables), so any offset >= (1 << 42) is fine.
Let's use 1 << 52 here, ie. exactly half the address space.
I've originally used 7 << 50 (uses top 1/8th of the address space), but ASan
runtime assumes there's some space after the shadow area. While this is
fixable, it's simpler to avoid the issue entirely.
Also, I've originally wanted to have the shadow aligned to 1/8th the address
space, so that we can use OR like X86 to assemble the offset. I no longer
think it's a good idea, since using ADD enables us to load the constant just
once and use it with register + register indexed addressing.
Differential Revision: http://reviews.llvm.org/D19650
llvm-svn: 268161
Make use of Constant::getAggregateElement instead of checking constant types - first step towards adding support for UNDEF mask elements.
llvm-svn: 268158
If a guard call being lowered by LowerGuardIntrinsics has the
`!make.implicit` metadata attached, then reattach the metadata to the
branch in the resulting expanded form of the intrinsic. This allows us
to implement null checks as guards and still get the benefit of implicit
null checks.
llvm-svn: 268148
support multiple induction variables
This patch enable loop reroll for the following case:
for(int i=0; i<N; i += 2) {
S += *a++;
S += *a++;
};
Differential Revision: http://reviews.llvm.org/D16550
llvm-svn: 268147
This moves some logic added to EarlyCSE in rL268120 into
`llvm::isInstructionTriviallyDead`. Adds a test case for DCE to
demonstrate that passes other than EarlyCSE can now pick up on the new
information.
llvm-svn: 268126
Summary:
This change teaches EarlyCSE some basic properties of guard intrinsics:
- Guard intrinsics read all memory, but don't write to any memory
- After a guard has executed, the condition it was guarding on can be
assumed to be true
- Guard intrinsics on a constant `true` are no-ops
Reviewers: reames, hfinkel
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19578
llvm-svn: 268120
Make use of Constant::getAggregateElement instead of checking constant types - first step towards adding support for UNDEF mask elements.
llvm-svn: 268115
The implemented heuristic has a large body of code which better sits
in its own function for better readability. It also allows adding more
heuristics easier in the future.
llvm-svn: 268107
This patch fixes two somewhat related bugs in MemorySSA's caching
walker. These bugs were found because D19695 brought up the problem
that we'd have defs cached to themselves, which is incorrect.
The bugs this fixes are:
- We would sometimes skip the nearest clobber of a MemoryAccess, because
we would query our cache for a given potential clobber before
checking if the potential clobber is the clobber we're looking for.
The cache entry for the potential clobber would point to the nearest
clobber *of the potential clobber*, so if that was a cache hit, we'd
ignore the potential clobber entirely.
- There are times (sometimes in DFS, sometimes in the getClobbering...
functions) where we would insert cache entries that say a def
clobbers itself.
There's a bit of common code between the fixes for the bugs, so they
aren't split out into multiple commits.
This patch also adds a few unit tests, and refactors existing tests a
bit to reduce the duplication of setup code.
llvm-svn: 268087
Summary: Callee name is not used to identify a callsite now, so do not read it during annotation.
Reviewers: davidxl, dnovillo
Subscribers: dnovillo, danielcdh, llvm-commits
Differential Revision: http://reviews.llvm.org/D19704
llvm-svn: 268069
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
llvm-svn: 268050
We neglected to transfer operand bundles for some transforms. These
were found via inspection, I'll try to come up with some test cases.
llvm-svn: 268011
We neglected to transfer operand bundles for some transforms. These
were found via inspection, I'll try to come up with some test cases.
llvm-svn: 268010
We need to keep loop hints from the original loop on the new vector loop.
Failure to do this meant that, for example:
void foo(int *b) {
#pragma clang loop unroll(disable)
for (int i = 0; i < 16; ++i)
b[i] = 1;
}
this loop would be unrolled. Why? Because we'd vectorize it, thus dropping the
hints that unrolling should be disabled, and then we'd unroll it.
llvm-svn: 267970
I closely followed the precedents set by the vectorizer:
* With -Rpass-missed, the loop is reported with further details pointing
to -Rpass--analysis.
* -Rpass-analysis reports the details why distribution has failed.
* Regardless of -Rpass*, when distribution fails for a loop where
distribution was forced with the pragma, a warning is produced according
to -Wpass-failed. In this case the analysis info is also printed even
without -Rpass-analysis.
llvm-svn: 267952
The next patch will start using these for -Rpass-analysis so they won't
be internal-only anymore.
Move the 'Skipping; ' prefix that some of the message are using into the
'fail' function. We don't want to include this prefix in
the -Rpass-analysis report.
llvm-svn: 267951
When inlining a call site with llvm.mem.parallel_loop_access metadata, this
metadata needs to be propagated to all cloned memory-accessing instructions.
Otherwise, inlining parts of the loop body will invalidate the annotation.
With this functionality, we now vectorize the following as expected:
void Body(int *res, int *c, int *d, int *p, int i) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
Body(res, c, d, p, i);
}
}
llvm-svn: 267949