The functionality contained within getIntrinsicIDForCall is two-fold: it
checks if a CallInst's callee is a vectorizable intrinsic. If it isn't
an intrinsic, it attempts to map the call's target to a suitable
intrinsic.
Move the mapping functionality into getIntrinsicForCallSite and rename
getIntrinsicIDForCall to getVectorIntrinsicIDForCall while
reimplementing it in terms of getIntrinsicForCallSite.
llvm-svn: 266801
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
InstCombine wants to optimize compares of calls to fabs with zero.
However, we didn't have the necessary legality checking to verify that
the function call had the same behavior as fabs.
llvm-svn: 266452
https://llvm.org/bugs/show_bug.cgi?id=27105
We can check if all bits outside of a constant mask are set with a
single constant.
As noted in the bug report, although this form should be considered the
canonical IR, backends may want to transform this into an 'andn' / 'andc'
comparison against zero because that could be a single machine instruction.
Differential Revision: http://reviews.llvm.org/D18842
llvm-svn: 266362
Remove an ad-hoc transform in InstCombine and replace it with more
general machinery (ValueTracking, InstructionSimplify and VectorUtils).
This fixes PR27332.
llvm-svn: 266175
When checking whether an smin is positive, we can move the comparison to one of the inputs if the other is known positive. If the known positive one is the min, then the other can't be negative. If the other is the min, then we compute the min.
Differential Revision: http://reviews.llvm.org/D17873
llvm-svn: 263059
For some cases, InstCombine replaces the sequence of xor/sub instruction
followed by cmp instruction into a single cmp instruction.
However, this replacement may result suboptimal result especially when
the xor/sub has more than one use, as discussed in
bug 26465 (https://llvm.org/bugs/show_bug.cgi?id=26465).
This patch make the replacement happen only when xor/sub has only one
use.
Differential Revision: http://reviews.llvm.org/D16915
Patch by Taewook Oh!
llvm-svn: 260695
This miscompile came about because we tried to use a transform which was
only appropriate for xor operators when addition was present.
This fixes PR26407.
llvm-svn: 259375
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
In setInsertionPoint if the value is not a PHI, Instruction or
Argument it should be a Constant, not a ConstantExpr.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257164
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the
base pointers were the same. However, in the case where we have
complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs,
conversions to or from integers, etc) the value of the original
base pointer will be hidden to the optimizer and this transformation
will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the
relevant uses of GEPs to GEPs with a common base pointer. The
GEP comparison will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257064
Allow LLVM to optimize the sequence like the following:
%inc = add nsw i32 %i, 1
%cmp = icmp slt %n, %inc
into:
%cmp = icmp sle i32 %n, %i
The case is not handled previously due to the complexity of compuation of %n.
Hence, LLVM cannot swap operands of icmp accordingly.
llvm-svn: 250746
This will allow us to optimize code such as:
int f(int *p) {
int x;
return p == &x;
}
as well as:
int *allocate(void);
int f() {
int x;
int *p = allocate();
return p == &x;
}
The folding can only be done under certain circumstances. Even though p and &x
cannot alias, the comparison must still return true if the pointer
representations are equal. If a user successfully generates a p that's a
correct guess for &x, comparison should return true even though p is an invalid
pointer.
This patch argues that if the address of the alloca isn't observable outside the
function, the function can act as-if the address is impossible to guess from the
outside. The tricky part is keeping the act consistent: if we fold p == &x to
false in one place, we must make sure to fold any other comparisons based on
those pointers similarly. To ensure that, we only fold when &x is involved
exactly once in comparison instructions.
Differential Revision: http://reviews.llvm.org/D13358
llvm-svn: 249490
Summary:
`signum(x)` is sometimes implemented as `(x >> 63) | (-x >>> 63)` (for
an `i64` `x`). This change adds a matcher for that pattern, and an
instcombine rule to optimize `signum(x) s< 1`.
Later, we can also consider optimizing:
icmp slt signum(x), 0 --> icmp slt x, 0
icmp sle signum(x), 1 --> true
etc.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12703
llvm-svn: 247846
The patch extends the optimization to cases where the constant's
magnitude is so small or large that the rounding of the conversion
is irrelevant. The "so small" case includes negative zero.
Differential review: http://reviews.llvm.org/D11210
llvm-svn: 247708
PR24605 is caused due to an incorrect insert point in instcombine's IR
builder. When simplifying
%t = add X Y
...
%m = icmp ... %t
the replacement for %t should be placed before %t, not before %m, as
there could be a use of %t between %t and %m.
llvm-svn: 246315
The original checkin was buggy, this change has a fix.
Original commit message:
[InstCombine] Transform A & (L - 1) u< L --> L != 0
Summary:
This transform is never a pessimization at the IR level (since it
replaces an `icmp` with another), and has potentiall payoffs:
1. It may make the `icmp` fold away or become loop invariant.
2. It may make the `A & (L - 1)` computation dead.
This shows up in Java, in range checks generated by array accesses of
the form `a[i & (a.length - 1)]`.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12210
llvm-svn: 245753
Summary:
This transform is never a pessimization at the IR level (since it
replaces an `icmp` with another), and has potentiall payoffs:
1. It may make the `icmp` fold away or become loop invariant.
2. It may make the `A & (L - 1)` computation dead.
This shows up in Java, in range checks generated by array accesses of
the form `a[i & (a.length - 1)]`.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12210
llvm-svn: 245635
Bitwise arithmetic can obscure a simple sign-test. If replacing the
mask with a truncate is preferable if the type is legal because it
permits us to rephrase the comparison more explicitly.
llvm-svn: 245171
`InstCombiner::OptimizeOverflowCheck` was asserting an
invariant (operands to binary operations are ordered by decreasing
complexity) that wasn't really an invariant. Fix this by instead having
`InstCombiner::OptimizeOverflowCheck` establish the invariant if it does
not hold.
llvm-svn: 244676
Summary:
Fixes PR23809. Without passing the context to SimplifyICmpInst, we would
use the assume to prove that the condition feeding the assume is
trivially true (see isValidAssumeForContext in ValueTracking.cpp),
causing the removal of the assume which may be useful for later
optimizations.
Test Plan: pr23800.ll
Reviewers: hfinkel, majnemer
Reviewed By: hfinkel
Subscribers: henryhu, llvm-commits, wengxt, broune, meheff, eliben
Differential Revision: http://reviews.llvm.org/D10695
llvm-svn: 240683
This change is NFC because both the ``break;`` and the fall through end
up returning immediately. However, this helps clarify intent and also
ensures correctness in case more ``case`` blocks are added later.
llvm-svn: 239172
This change does a few things:
- Move some InstCombine transforms to InstSimplify
- Run SimplifyCall from within InstCombine::visitCallInst
- Teach InstSimplify to fold [us]mul_with_overflow(X, undef) to 0.
llvm-svn: 237995
Make sure if we're truncating a constant that would then be sign extended
that the sign extension of the truncated constant is the same as the
original constant.
> Canonicalize min/max expressions correctly.
>
> This patch introduces a canonical form for min/max idioms where one operand
> is extended or truncated. This often happens when the other operand is a
> constant. For example:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = sext i32 %a to i64
> %3 = select i1 %1, i64 %2, i64 0
>
> Would now be canonicalized into:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = select i1 %1, i32 %a, i32 0
> %3 = sext i32 %2 to i64
>
> This builds upon a patch posted by David Majenemer
> (https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
> passively stopped instcombine from ruining canonical patterns. This
> patch additionally actively makes instcombine canonicalize too.
>
> Canonicalization of expressions involving a change in type from int->fp
> or fp->int are not yet implemented.
llvm-svn: 237821
SimplifyDemandedBits was "simplifying" a constant by removing just sign bits.
This caused a canonicalization race between different parts of instcombine.
Fix and regression test added - third time lucky?
llvm-svn: 237539
The AArch64 LNT bot is unhappy - I've found that the problem is in
SimpliftDemandedBits, but that's going to require another code review
so reverting in the meantime.
llvm-svn: 237528
The test timeouts were due to instcombine fighting itself. Regression test added.
Original log message:
Canonicalize min/max expressions correctly.
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
llvm-svn: 237520
This reverts r237453 - it was causing timeouts on some bots. Reverting
while I investigate (it's probably InstCombine fighting itself...)
llvm-svn: 237458
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
llvm-svn: 237453