Summary:
As discussed previously when landing patch for OpenMP in Flang, the idea is
to share common part of the OpenMP declaration between the different Frontend.
While doing this it was thought that moving to tablegen instead of Macros will also
give a cleaner and more powerful way of generating these declaration.
This first part of a future series of patches is setting up the base .td file for
DirectiveLanguage as well as the OpenMP version of it. The base file is meant to
be used by other directive language such as OpenACC.
In this first patch, the Directive and Clause enums are generated with tablegen
instead of the macros on OMPConstants.h. The next pacth will extend this
to other enum and move the Flang frontend to use it.
Reviewers: jdoerfert, DavidTruby, fghanim, ABataev, jdenny, hfinkel, jhuber6, kiranchandramohan, kiranktp
Reviewed By: jdoerfert, jdenny
Subscribers: arphaman, martong, cfe-commits, mgorny, yaxunl, hiraditya, guansong, jfb, sstefan1, aaron.ballman, llvm-commits
Tags: #llvm, #openmp, #clang
Differential Revision: https://reviews.llvm.org/D81736
Originally commited in rG57b8a407493c34c3680e7e1e4cb82e097f43744a, but
it broke the modules bot. This is solved by putting the contructors of
the CheckerManager class to the Frontend library.
Differential Revision: https://reviews.llvm.org/D75360
TableGen and .def files (which are meant to be used with the preprocessor) come
with obvious downsides. One of those issues is that generated switch-case
branches have to be identical. This pushes corner cases either to an outer code
block, or into the generated code.
Inspect the removed code in AnalysisConsumer::DigestAnalyzerOptions. You can see
how corner cases like a not existing output file, the analysis output type being
set to PD_NONE, or whether to complement the output with additional diagnostics
on stderr lay around the preprocessor generated code. This is a bit problematic,
as to how to deal with such errors is not in the hands of the users of this
interface (those implementing output types, like PlistDiagnostics etc).
This patch changes this by moving these corner cases into the generated code,
more specifically, into the called functions. In addition, I introduced a new
output type for convenience purposes, PD_TEXT_MINIMAL, which always existed
conceptually, but never in the actual Analyses.def file. This refactoring
allowed me to move TextDiagnostics (renamed from ClangDiagPathDiagConsumer) to
its own file, which it really deserved.
Also, those that had the misfortune to gaze upon Analyses.def will probably
enjoy the sight that a clang-format did on it.
Differential Revision: https://reviews.llvm.org/D76509
Its been a while since my CheckerRegistry related patches landed, allow me to
refresh your memory:
During compilation, TblGen turns
clang/include/clang/StaticAnalyzer/Checkers/Checkers.td into
(build directory)/tools/clang/include/clang/StaticAnalyzer/Checkers/Checkers.inc.
This is a file that contains the full name of the checkers, their options, etc.
The class that is responsible for parsing this file is CheckerRegistry. The job
of this class is to establish what checkers are available for the analyzer (even
from plugins and statically linked but non-tblgen generated files!), and
calculate which ones should be turned on according to the analyzer's invocation.
CheckerManager is the class that is responsible for the construction and storage
of checkers. This process works by first creating a CheckerRegistry object, and
passing itself to CheckerRegistry::initializeManager(CheckerManager&), which
will call the checker registry functions (for example registerMallocChecker) on
it.
The big problem here is that these two classes lie in two different libraries,
so their interaction is pretty awkward. This used to be far worse, but I
refactored much of it, which made things better but nowhere near perfect.
---
This patch changes how the above mentioned two classes interact. CheckerRegistry
is mainly used by CheckerManager, and they are so intertwined, it makes a lot of
sense to turn in into a field, instead of a one-time local variable. This has
additional benefits: much of the information that CheckerRegistry conveniently
holds is no longer thrown away right after the analyzer's initialization, and
opens the possibility to pass CheckerManager in the shouldRegister* function
rather then LangOptions (D75271).
There are a few problems with this. CheckerManager isn't the only user, when we
honor help flags like -analyzer-checker-help, we only have access to a
CompilerInstance class, that is before the point of parsing the AST.
CheckerManager makes little sense without ASTContext, so I made some changes and
added new constructors to make it constructible for the use of help flags.
Differential Revision: https://reviews.llvm.org/D75360
Summary:
This patch introduces a way to apply the fix-its by the Analyzer:
`-analyzer-config apply-fixits=true`.
The fix-its should be testable, therefore I have copied the well-tested
`check_clang_tidy.py` script. The idea is that the Analyzer's workflow
is different so it would be very difficult to use only one script for
both Tidy and the Analyzer, the script would diverge a lot.
Example test: `// RUN: %check-analyzer-fixit %s %t -analyzer-checker=core`
When the copy-paste happened the original authors were:
@alexfh, @zinovy.nis, @JonasToth, @hokein, @gribozavr, @lebedev.ri
Reviewed By: NoQ, alexfh, zinovy.nis
Differential Revision: https://reviews.llvm.org/D69746
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.
One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.
This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:
class CheckerRegistry;
void registerBuiltinCheckers(CheckerRegistry ®istry);
it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.
Differential Revision: https://reviews.llvm.org/D54436
llvm-svn: 349275
Originally submitted as r326323 and r326324.
Reverted in r326432.
Reverting the commit was a mistake.
The breakage was due to invalid build files in our internal buildsystem,
CMakeLists did not have any cyclic dependencies.
llvm-svn: 326439
Also revert "[analyzer] Fix a compiler warning"
This reverts commits r326323 and r326324.
Reason: the commits introduced a cyclic dependency in the build graph.
This happens to work with cmake, but breaks out internal integrate.
llvm-svn: 326432
The aim of this patch is to be minimal to enable incremental development of
the feature on the top of the tree. This patch should be an NFC when the
feature is turned off. It is turned off by default and still considered as
experimental.
Technical details are available in the EuroLLVM Talk:
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#7
Note that the initial prototype was done by A. Sidorin et al.: http://lists.llvm.org/pipermail/cfe-dev/2015-October/045730.html
Contributions to the measurements and the new version of the code: Peter Szecsi, Zoltan Gera, Daniel Krupp, Kareem Khazem.
Differential Revision: https://reviews.llvm.org/D30691
llvm-svn: 326323
Currently the analyzer lazily models some functions using 'BodyFarm',
which constructs a fake function implementation that the analyzer
can simulate that approximates the semantics of the function when
it is called. BodyFarm does this by constructing the AST for
such definitions on-the-fly. One strength of BodyFarm
is that all symbols and types referenced by synthesized function
bodies are contextual adapted to the containing translation unit.
The downside is that these ASTs are hardcoded in Clang's own
source code.
A more scalable model is to allow these models to be defined as source
code in separate "model" files and have the analyzer use those
definitions lazily when a function body is needed. Among other things,
it will allow more customization of the analyzer for specific APIs
and platforms.
This patch provides the initial infrastructure for this feature.
It extends BodyFarm to use an abstract API 'CodeInjector' that can be
used to synthesize function bodies. That 'CodeInjector' is
implemented using a new 'ModelInjector' in libFrontend, which lazily
parses a model file and injects the ASTs into the current translation
unit.
Models are currently found by specifying a 'model-path' as an
analyzer option; if no path is specified the CodeInjector is not
used, thus defaulting to the current behavior in the analyzer.
Models currently contain a single function definition, and can
be found by finding the file <function name>.model. This is an
initial starting point for something more rich, but it bootstraps
this feature for future evolution.
This patch was contributed by Gábor Horváth as part of his
Google Summer of Code project.
Some notes:
- This introduces the notion of a "model file" into
FrontendAction and the Preprocessor. This nomenclature
is specific to the static analyzer, but possibly could be
generalized. Essentially these are sources pulled in
exogenously from the principal translation.
Preprocessor gets a 'InitializeForModelFile' and
'FinalizeForModelFile' which could possibly be hoisted out
of Preprocessor if Preprocessor exposed a new API to
change the PragmaHandlers and some other internal pieces. This
can be revisited.
FrontendAction gets a 'isModelParsingAction()' predicate function
used to allow a new FrontendAction to recycle the Preprocessor
and ASTContext. This name could probably be made something
more general (i.e., not tied to 'model files') at the expense
of losing the intent of why it exists. This can be revisited.
- This is a moderate sized patch; it has gone through some amount of
offline code review. Most of the changes to the non-analyzer
parts are fairly small, and would make little sense without
the analyzer changes.
- Most of the analyzer changes are plumbing, with the interesting
behavior being introduced by ModelInjector.cpp and
ModelConsumer.cpp.
- The new functionality introduced by this change is off-by-default.
It requires an analyzer config option to enable.
llvm-svn: 216550
This does;
- clang_tablegen() adds each tblgen'd target to global property CLANG_TABLEGEN_TARGETS as list.
- List of targets is added to LLVM_COMMON_DEPENDS.
- all clang libraries and targets depend on generated headers.
You might wonder this would be regression, but in fact, this is little loss.
- Almost all of clang libraries depend on tblgen'd files and clang-tblgen.
- clang-tblgen may cause short stall-out but doesn't cause unconditional rebuild.
- Each library's dependencies to tblgen'd files might vary along headers' structure.
It made hard to track and update *really optimal* dependencies.
Each dependency to intrinsics_gen and ClangSACheckers is left as DEPENDS.
llvm-svn: 201842
This is similar to how we divide up the StaticAnalyzer libraries to separate
core functionality to what is clearly associated with Frontend actions.
llvm-svn: 163050
very simple semantic analysis that just builds the AST; minor changes for lexer
to pick up source locations I didn't think about before.
Comments AST is modelled along the ideas of HTML AST: block and inline content.
* Block content is a paragraph or a command that has a paragraph as an argument
or verbatim command.
* Inline content is placed within some block. Inline content includes plain
text, inline commands and HTML as tag soup.
llvm-svn: 159790
express library-level dependencies within Clang.
This is no more verbose really, and plays nicer with the rest of the
CMake facilities. It should also have no change in functionality.
llvm-svn: 158888
-Checkers will be defined in the tablegen file 'Checkers.td'.
-Apart from checkers, we can define checker "packages" that will contain a collection of checkers.
-Checkers can be enabled with -analyzer-checker=<name> and disabled with -analyzer-disable-checker=<name> e.g:
Enable checkers from 'cocoa' and 'corefoundation' packages except the self-initialization checker:
-analyzer-checker=cocoa -analyzer-checker=corefoundation -analyzer-disable-checker=cocoa.SelfInit
-Introduces CheckerManager and CheckerProvider. CheckerProviders get the set of checker names to enable/disable and
register them with the CheckerManager which will be the entry point for all checker-related functionality.
Currently only the self-initialization checker takes advantage of the new mechanism.
llvm-svn: 125503