Create a TargetCharacteristics class to centralize the few items of
target specific information that are relevant to semantics. Use the
new class for all target queries, including derived type component layout
modeling.
Future work will initialize this class with target information
provided or forwarded by the drivers, and use it to fold layout-dependent
intrinsic functions like TRANSFER().
Differential Revision: https://reviews.llvm.org/D129018
Updates: Attempts to work around build issues on Windows.
On targets with __float128 available and distinct from long double,
use it to support more kind=16 entry points. This affects mostly
x86-64 targets. This means that more runtime entry points are
defined for lowering to call.
Delete Common/long-double.h and its LONG_DOUBLE macro in favor of
testing the standard macro LDBL_MANT_DIG.
Differential Revision: https://reviews.llvm.org/D127025
Evaluate real-valued references to the intrinsic functions MODULO
and MOD at compilation time without recourse to an external math
library.
Differential Revision: https://reviews.llvm.org/D125151
A recent change assumed that the native C++ "long double" maps to
a Fortran data type; but this turns out to not be true for ppc64le,
which uses "double-double" for "long double".
This is a quick patch to get the ppc64le flang build bot back up.
A better fix that either uses HostTypeExists<> or replaces "long double"
with "ieee128_t" (or some other solution) is expected to follow soon.
Differential Revision: https://reviews.llvm.org/D124423
Transformational bessel intrinsic functions require the same math runtime
as elemental bessel intrinsics.
Currently elemental bessels could be folded if f18 was linked with pgmath
(cmake -DLIBPGMATH_DIR option). `j0`, `y0`, ... C libm functions were not
used because they are not standard C functions: they are Posix
extensions.
This patch enable:
- Using the Posix bessel host runtime functions when available.
- folding the transformational bessel using the elemental version.
Differential Revision: https://reviews.llvm.org/D124167
Implement IEEE Real::SQRT() operation, then use it to
also implement Real::HYPOT(), which can then be used directly
to implement Complex::ABS().
Differential Revision: https://reviews.llvm.org/D109250
Move the closure of the subset of flang/runtime/*.h header files that
are referenced by source files outside flang/runtime (apart from unit tests)
into a new directory (flang/include/flang/Runtime) so that relative
include paths into ../runtime need not be used.
flang/runtime/pgmath.h.inc is moved to flang/include/flang/Evaluate;
it's not used by the runtime.
Differential Revision: https://reviews.llvm.org/D109107
- Rework the host runtime table so that it is constexpr to avoid
having to construct it and to store/propagate it.
- Make the interface simpler (remove many templates and a file)
- Enable 16bits float folding using 32bits float host runtime
- Move StaticMultimapView into its own header to use it for host
folding
Reviewed By: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D88981
This change prepares usage of lipgmath description in lowering.
- Removes the static variable templates that were used to abstract
libpgmath description
- Move the description to pgmath.h.inc header and rework the macros
so that they can both be used to declare pgmath functions and use
them.
The way they are to be used is left to pgmath.h.inc user that
must define PGMATH_USE_XX macros that will be called for all pgmath
functions in pgmath.h.inc.
- In intrinsic-library.cpp define PGMATH_USE_XX macro callbacks in
order to capture function pointers to pgmath functions as well as
a description of their type. This will be used for constant folding
using pgmath.
- Change atan/atan2 handling to use atan2 instead of atan when there are two
arguments because it is easier to handle in the runtime description.
Also fixes lipgmath linking regression after D78215 cmake changes.
This change is motivated by the need to use a similar pgmath
description in lowering. The difference is that no function pointers will
be taken there, and instead only the function name and type are needed.
Reviewed By: schweitz, sscalpone
Differential Revision: https://reviews.llvm.org/D83051