This patch adds a cpowi function to the flang runtime, and switches
to using that function instead of pgmath for complex number to
integer power operations.
Differential Revision: https://reviews.llvm.org/D134889
This flips all of the remaining dialects to prefixed except for linalg, which
will be done in a followup.
Differential Revision: https://reviews.llvm.org/D134995
Create simplified functions for each rank with "x<rank>" suffix
that implement multidimensional reductions. To enable this I had to fix
an issue with taking incorrect box shape in cases of sliced embox/rebox.
Differential Revision: https://reviews.llvm.org/D133820
Use the RTNMAE macro (via stringify macros) to generate the name
strings for runtime functions, instead of using strings.
The sequence of macros generate exactly the same string as the
ones used previously, but this will support future changes in
runtime function names.
No functional change.
Reviewed By: vzakhari
Differential Revision: https://reviews.llvm.org/D132652
This removes a bunch of duplicated code, by adding an intermediate
function simplifyReduction that takes a std::function argument
for the actual replacement of the code.
No functional change intended.
Reviewed By: vzakhari
Differential Revision: https://reviews.llvm.org/D132588
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
This pass allows to convert operations
which use functions with abstract results to ones that do not.
Depends on D130087
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D130088
The SUM function does appear to be safe to use, so remove the
experimental flag for the SUM operation.
Reviewed By: vzakhari, awarzynski
Differential Revision: https://reviews.llvm.org/D132567
Add simplifcation pass for MAXVAL intrinsic function
This refactors some of the code to allow variation on the
initialization value and operation performed within the loop,
reusing the majority of code for both SUM and MAXVAL.
Adding tests for the test-cases that produce different output
than the SUM function.
Reviewed By: vzakhari
Differential Revision: https://reviews.llvm.org/D132234
Under some conditions, the defining op may be NULL, so
accept that rahter than try to use it and crash!
Adds test to prevent regression
Fixes github issue #57201
Reviewed By: vzakhari
Differential Revision: https://reviews.llvm.org/D132238
The current code may not always work correctly, e.g.:
https://github.com/llvm/llvm-project/issues/57201
I added 'enable-experimental' pass option so that SUM simplification
may be enabled in LIT tests, but it is not enabled when the pass
is added to the passes pipeline.
Differential Revision: https://reviews.llvm.org/D131640
Fix one encountered (issue #57072) and two potential scenarios where the
code would ask for an operand that isn't there.
Add test for the encountered case.
Reviewed By: vzakhari
Differential Revision: https://reviews.llvm.org/D131671
Fortran runtime supports mixed types by casting the loaded values
to the result type, so DOT_PRODUCT simplification has to do the same.
Differential Revision: https://reviews.llvm.org/D131726
I would like to add DOT_PRODUCT support in this pass, so this restructuring
is the first step to allow some code reuse inside getOrCreateFunction().
Differential Revision: https://reviews.llvm.org/D131530
The newly added AlgebraicSimplification pass is triggering the
greedy pattern rewriter. Since we define a specific config in the
flang pipeline, this patch adds the ability to pass the config
to the pass directly.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D131474
Find calls to FortranASum{Real8,Integer4}, check for dim and mask
arguments being absent - then produce an inlineable simple
version of the sum function.
(No longer a prototype, please review for push to llvm/main - not sure how to make Phabricator update the review with actual commit message)
Reviewed By: peixin, awarzynski
Differential Revision: https://reviews.llvm.org/D125407
This change decouples common functionality for convering abstract
results, so it can be reused later.
Depends on D129485
Reviewed By: clementval, jeanPerier
Differential Revision: https://reviews.llvm.org/D129778
This patch replaces x.getValue() with *x if the reference is obviously
protected by a presence check. Otherwise, it replaces x.getValue()
with x.value().
Flang C++ Style Guide tells us to use *X when the reference is
protected by a presense test. However, (*X).foo() is a little harder
to read, especially when X is a complicated expression.
This patch slightly deviates from the guide (but retains the spirit)
by using X->foo() instead.
Differential Revision: https://reviews.llvm.org/D130413
Try 2 to merge 4fbd1d6c87.
Flang algebraic simplification pass will run algebraic simplification
rewrite patterns for Math/Complex/etc. dialects. It is enabled
under opt-for-speed optimization levels (i.e. for O1/O2/O3; Os/Oz will not
enable it).
With this change the FIR/MLIR optimization pipeline becomes affected
by the -O* optimization level switches. Until now these switches
only affected the middle-end and back-end.
Differential Revision: https://reviews.llvm.org/D130035
Flang algebraic simplification pass will run algebraic simplification
rewrite patterns for Math/Complex/etc. dialects. It is enabled
under opt-for-speed optimization levels (i.e. for O1/O2/O3; Os/Oz will not
enable it).
With this change the FIR/MLIR optimization pipeline becomes affected
by the -O* optimization level switches. Until now these switches
only affected the middle-end and back-end.
Differential Revision: https://reviews.llvm.org/D130035
`AbstractResultOptions` is obsolete structure because `newArg` is used
only in `ReturnOpConversion`.
This change removes this struct, making dependencies of conversions more
straight-forward.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D129485
FirOpBuilder takes a fir::KindMapping reference. When the getKindMapping()
call is made inside the ctor call, the lifetime of this reference may
be as short as the ctor call (at least with when building flang in
release mode with clang 8). This can cause segfaults when later using
the FirOpBuilder.
Ensure the kindMap passed to the FirOpBuilder ctor is the same as the
FirOpBuilder.
Differential Revision: https://reviews.llvm.org/D129494
Flang C++ Style Guide tells us to avoid .has_value() in the predicate
expressions of control flow statements. I am treating ternary
expressions as control flow statements for the purpose of this patch.
Differential Revision: https://reviews.llvm.org/D128622
Array-value-copy fails to generate a temporary array for case like this:
subroutine bug(b)
real, allocatable :: b(:)
b = b(2:1:-1)
end subroutine
Since LHS may need to be reallocated, lowering produces the following FIR:
%rhs_load = fir.array_load %b %slice
%lhs_mem = fir.if %b_is_allocated_with_right_shape {
fir.result %b
} else {
%new_storage = fir.allocmem %rhs_shape
fir.result %new_storage
}
%lhs = fir.array_load %lhs_mem
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %lhs_mem
// deallocate old storage if reallocation occured,
// and update b descriptor if needed.
Since %b in array_load and %lhs_mem in array_merge_store are not the same SSA
values, array-value-copy does not detect the conflict and does not produce
a temporary array. This causes incorrect result in runtime.
The suggested change in lowering is to generate this:
%rhs_load = fir.array_load %b %slice
%lhs_mem = fir.if %b_is_allocated_with_right_shape {
%lhs = fir.array_load %b
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %b
fir.result %b
} else {
%new_storage = fir.allocmem %rhs_shape
%lhs = fir.array_load %new_storage
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %new_storage
fir.result %new_storage
}
// deallocate old storage if reallocation occured,
// and update b descriptor if needed.
Note that there are actually 3 branches in FIR, so the assignment loops
are currently produced in three copies, which is a code-size issue.
It is possible to generate just two branches with two copies of the loops,
but it is not addressed in this change-set.
Differential Revision: https://reviews.llvm.org/D129314
- Add verifiers that determine if an Op requires type parameters or
not and checks that the correct number of parameters is specified.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128828
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This aligns the SCF dialect file layout with the majority of the dialects.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D128049
Follow up from flipping dialects to both, flip accessor used to prefixed
variant ahead to flipping from _Both to _Prefixed. This just flips to
the accessors introduced in the preceding change which are just prefixed
forms of the existing accessor changed from.
Mechanical change using helper script
https://github.com/jpienaar/llvm-project/blob/main/clang-tools-extra/clang-tidy/misc/AddGetterCheck.cpp and clang-format.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127738
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Codegen does not support fir.addressof of functions returning derived
types, arrays are descriptors inside GlobalOp region.
This is because the abstract-result-opt is required to rewrite such
functions (a hidden argument must be added), but this pass is meant to
run in GlobalOp currently.
Such fir.address_of may be created when lowering procedure pointers
initial value (TODO), or when creating derived type descriptors for
types with bindings.
Add a TODO in lowering until abstract-result-opt is modified to run
on GlobalOp too.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127722
Remove a backwards dependence from Optimizer -> Lower by moving Todo.h
to the optimizer and out of lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127292
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.
To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.
This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.
Differential Revision: https://reviews.llvm.org/D122775
In FIR, we want to wrap function pointers in a special box known as a
boxproc value. Fortran has a limited form of dynamic scoping
[https://tinyurl.com/2p8v2hw7] between "host procedures" and "internal
procedures". There are a number of implementations possible.
Boxproc typed values abstract away the implementation details of when a
function pointer can be passed directly (as a raw address) and when a
function pointer has to account for the presence of a dynamic scope.
When lowering Fortran syntax to FIR, all function pointers are emboxed
as boxproc values.
When creating LLVM IR, we must strip away the abstraction and produce
low-level LLVM "assembly" code. This patch implements that
transformation as converting the boxproc values to either raw function
pointers or executable trampolines on the stack as needed. The
trampoline then captures the dynamic scope context within an executable
thunk that can be passed instead of the function's raw address.
Some extra handling is required for Fortran functions that return a
character value to deal with LEN values here.
Some of the code in Bridge.cpp and ConvertExpr.cpp and be re-arranged to
faciliate the upstreaming effort.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D122223
Co-authored-by: mleair <leairmark@gmail.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
When creating an array temporary in the array copy pass, care must be
taken with allocatable components. The element components needs to be
given a clean unallocated status before being used in the assignments.
This is because assignment of allocatable components makes deep copy,
and may cause deallocation of the previous value if it was allocated.
Hence the previous allocation status cannot be let undefined.
On top of that, when cleaning-up the temp, all allocatable components
that may have been allocated must be deallocated.
This patch implements this by centralizing the code making and cleaning
array temps in ArrayValueCopy.cpp, and by calling Initialize and Destroy
runtime entry points when they are allocatable components.
Differential Revision: https://reviews.llvm.org/D121892
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).
Differential Revision: https://reviews.llvm.org/D121762
This patch adds lowering for IO input with vector subscripts.
It defines a VectorSubscriptBox class that allow representing and working
with a lowered Designator containing vector subscripts while ensuring
all the subscripts expression are only lowered once.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121806
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>