Symbols relative to discarded comdat sections are Undefined instead of
Defined now (after D59649 and D61583). The `== &InputSection::Discarded`
test becomes dead. I cannot find a test related to this behavior.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62725
llvm-svn: 362218
For the Local Dynamic case of TLSDESC, _TLS_MODULE_BASE_ is defined as a
special TLS symbol that makes:
1) Without relaxation: it produces a dynamic TLSDESC relocation that
computes 0. Adding @dtpoff to access a TLS symbol.
2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
the TLS block). Adding @tpoff to access a TLS symbol.
For 1), this saves dynamic relocations and GOT slots as otherwise
(General Dynamic) we would create an R_X86_64_TLSDESC and reserve two
GOT slots for each symbol.
Add ElfSym::TlsModuleBase and change the signature of getTlsTpOffset()
to special case _TLS_MODULE_BASE_.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62577
llvm-svn: 362078
This change causes us to read partition specifications from partition
specification sections and split output sections into partitions according
to their reachability from partition entry points.
This is only the first step towards a full implementation of partitions. Later
changes will add additional synthetic sections to each partition so that
they can be loaded independently.
Differential Revision: https://reviews.llvm.org/D60353
llvm-svn: 361925
My recent commits separated symbol resolution from the symbol table,
so the functions to resolve symbols are now in a somewhat wrong file.
This patch moves it to Symbols.cpp.
The functions are now member functions of the symbol.
This is code move change. I modified function names so that they are
appropriate as member functions, though. No functionality change
intended.
Differential Revision: https://reviews.llvm.org/D62290
llvm-svn: 361474
Previously, we handled common symbols as a kind of Defined symbol,
but what we were doing for common symbols is pretty different from
regular defined symbols.
Common symbol and defined symbol are probably as different as shared
symbol and defined symbols are different.
This patch introduces CommonSymbol to represent common symbols.
After symbols are resolved, they are converted to Defined symbols
residing in a .bss section.
Differential Revision: https://reviews.llvm.org/D61895
llvm-svn: 360841
SymbolTable's add-family functions have lots of parameters because
when they have to create a new symbol, they forward given arguments
to Symbol's constructors. Therefore, the functions take at least as
many arguments as their corresponding constructors.
This patch simplifies the add-family functions. Now, the functions
take a symbol instead of arguments to construct a symbol. If there's
no existing symbol, a given symbol is memcpy'ed to the symbol table.
Otherwise, the functions attempt to merge the existing and a given
new symbol.
I also eliminated `CanOmitFromDynSym` parameter, so that the functions
take really one argument.
Symbol classes are trivially constructible, so looks like constructing
them to pass to add-family functions is as cheap as passing a lot of
arguments to the functions. A quick benchmark showed that this patch
seems performance-neutral.
This is a preparation for
http://lists.llvm.org/pipermail/llvm-dev/2019-April/131902.html
Differential Revision: https://reviews.llvm.org/D61855
llvm-svn: 360838
The patch solves two tasks:
1. MIPS ABI allows to mix regular and microMIPS code and perform
cross-mode jumps. Linker needs to detect such cases and replace
jump/branch instructions by their cross-mode equivalents.
2. Other tools like dunamic linkers need to recognize cases when dynamic
table entries, e_entry field of an ELF header etc point to microMIPS
symbol. Linker should provide such information.
The first task is implemented in the `MIPS<ELFT>::relocateOne()` method.
New routine `fixupCrossModeJump` detects ISA mode change, checks and
replaces an instruction.
The main problem is how to recognize that relocation target is microMIPS
symbol. For absolute and section symbols compiler or assembler set the
less-significant bit of the symbol's value or sum of the symbol's value
and addend. And this bit signals to linker about microMIPS code. For
global symbols compiler cannot do the same trick because other tools like,
for example, disassembler wants to know an actual position of the symbol.
So compiler sets STO_MIPS_MICROMIPS flag in the `st_other` field.
In `MIPS<ELFT>::relocateOne()` method we have a symbol's value only and
cannot access any symbol's attributes. To pass type of the symbol
(regular/microMIPS) to that routine as well as other places where we
write a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry` field
etc) we set when necessary a less-significant bit in the `getSymVA`
function.
Differential revision: https://reviews.llvm.org/D40147
llvm-svn: 354311
Non-GOT non-PLT relocations to non-preemptible ifuncs result in the
creation of a canonical PLT, which now takes the identity of the IFUNC
in the symbol table. This (a) ensures address consistency inside and
outside the module, and (b) fixes a bug where some of these relocations
end up pointing to the resolver.
Fixes (at least) PR40474 and PR40501.
Differential Revision: https://reviews.llvm.org/D57371
llvm-svn: 353981
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If .rela.iplt does not exist, we used to emit a corrupt symbol table
that contains two symbols, .rela_iplt_{start,end}, pointing to a
nonexisting section.
This patch fixes the issue by setting section index 0 to the symbols
if .rel.iplt section does not exist.
Differential Revision: https://reviews.llvm.org/D56623
llvm-svn: 351218
This patch also makes getPltEntryOffset a non-member function because
it doesn't depend on any private members of the TargetInfo class.
I tried a few different ideas, and it seems this change fits in best to me.
Differential Revision: https://reviews.llvm.org/D54981
llvm-svn: 347781
Summary:
This fixes PR39711: -static -z retpolineplt does not produce retpoline PLT header.
-z now is not relevant.
Statically linked executable does not have PLT, but may have IPLT with no header. When -z retpolineplt is specified, however, the repoline PLT header should still be emitted.
I've checked that this fixes the FreeBSD reproduce in PR39711 and a Linux program statically linked against glibc. The programm print "Hi" rather than SIGILL/SIGSEGV.
getPltEntryOffset may look dirty after this patch, but it can be cleaned up later.
Another possible improvement is that when there are non-preemptible IFUNC symbols (rare case, e.g. -Bsymbolic), both In.Plt and In.Iplt can be non-empty and we'll emit the retpoline PLT header twice.
Reviewers: espindola, emaste, chandlerc, ruiu
Reviewed By: emaste
Subscribers: emaste, arichardson, krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D54782
llvm-svn: 347404
On PowerPC64, when a function call offset is too large to encode in a call
instruction the address is stored in a table in the data segment. A thunk is
used to load the branch target address from the table relative to the
TOC-pointer and indirectly branch to the callee. When linking position-dependent
code the addresses are stored directly in the table, for position-independent
code the table is allocated and filled in at load time by the dynamic linker.
For position-independent code the branch targets could have gone in the .got.plt
but using the .branch_lt section for both position dependent and position
independent binaries keeps it consitent and helps keep this PPC64 specific logic
seperated from the target-independent code handling the .got.plt.
Differential Revision: https://reviews.llvm.org/D53408
llvm-svn: 346877
`Type` parameter was used only to check for TLS attribute mismatch,
but we can do that when we actually replace symbols, so we don't need
to type as an argument. This change should simplify the interface of
the symbol table a bit.
llvm-svn: 344394
Summary:
Add a condition UnresolvedPolicy::Ignore to elf::warnUnorderedSymbol to suppress Sym->isUndefined() warnings from both
1) --symbol-ordering-file=
2) .llvm.call-graph-profile
If --unresolved-symbols=ignore-all is used,
no "undefined symbol" error/warning is emitted. It makes sense to not warn unorderable symbols.
Otherwise,
If an executable is linked, the default policy UnresolvedPolicy::ErrorOrWarn will issue a "undefined symbol" error. The unorderable symbol warning is redundant.
If a shared object is linked, it is possible that only part of object files are used and some symbols are left undefined. The warning is not very necessary.
In particular for .llvm.call-graph-profile, when linking a shared object, a call graph profile may contain undefined symbols. This case generated a warning before but it will be suppressed by this patch.
Reviewers: ruiu, davidxl, espindola
Reviewed By: ruiu
Subscribers: grimar, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D53044
llvm-svn: 344195
This is the fix for
"Bug 39104 - LLD links incorrect ELF executable if version script contains "local: *;"
(https://bugs.llvm.org/show_bug.cgi?id=39104).
The issue happens when we have non-PIC program call to function in a shared library.
(for example, the PR above has R_X86_64_PC32 relocation against __libc_start_main)
LLD converts symbol to Defined in that case with the use of replaceWithDefined()
The issue is that after above we create a broken relocation because do not
include the symbol into .dynsym.
That happens when the version script is used because we treat the symbol as
STB_LOCAL if the following condition match:
VersionId == VER_NDX_LOCAL && isDefined() and do not include it to
.dynsym because of that. Patch fixes the issue.
Differential revision: https://reviews.llvm.org/D52724
llvm-svn: 343668
Previously, if you invoke lld's `main` more than once in the same process,
the second invocation could fail or produce a wrong result due to a stale
pointer values of the previous run.
Differential Revision: https://reviews.llvm.org/D52506
llvm-svn: 343009
Summary:
For --pack-dyn-relocs=android, finalizeSections calls
LinkerScript::assignAddresses and
AndroidPackedRelocationSection::updateAllocSize in a loop,
where assignAddresses lays out the ELF image, then updateAllocSize
determines the size of the Android packed relocation table by encoding it.
Encoding the table requires knowing the values of relocation addends.
To get the addend of a TLS relocation, updateAllocSize can call getSymVA
on a TLS symbol before setPhdrs has initialized Out::TlsPhdr, producing an
error:
<file> has an STT_TLS symbol but doesn't have an SHF_TLS section
Fix the problem by initializing Out::TlsPhdr immediately after the program
headers are created. The segment's p_vaddr field isn't initialized until
setPhdrs, so use FirstSec->Addr, which is what setPhdrs would use.
FirstSec will typically refer to the .tdata or .tbss output section, whose
(tentative) address was computed by assignAddresses.
Android currently avoids this problem because it uses emutls and doesn't
support ELF TLS. This problem doesn't apply to --pack-dyn-relocs=relr
because SHR_RELR only handles relative relocations without explicit addends
or info.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37841.
Reviewers: ruiu, pcc, chh, javed.absar, espindola
Subscribers: emaste, arichardson, llvm-commits, srhines
Differential Revision: https://reviews.llvm.org/D51671
llvm-svn: 342432
Patch by PkmX.
This patch makes lld recognize RISC-V target and implements basic
relocation for RV32/RV64 (and RVC). This should be necessary for static
linking ELF applications.
The ABI documentation for RISC-V can be found at:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md.
Note that the documentation is far from complete so we had to figure out
some details from bfd.
The patch should be pretty straightforward. Some highlights:
- A new relocation Expr R_RISCV_PC_INDIRECT is added. This is needed as
the low part of a PC-relative relocation is linked to the corresponding
high part (auipc), see:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
- LLVM's MC support for RISC-V is very incomplete (we are working on
this), so tests are given in objectyaml format with the original
assembly included in the comments. Once we have complete support for
RISC-V in MC, we can switch to llvm-as/llvm-objdump.
- We don't support linker relaxation for now as it requires greater
changes to lld that is beyond the scope of this patch. Once this is
accepted we can start to work on adding relaxation to lld.
Differential Revision: https://reviews.llvm.org/D39322
llvm-svn: 339364
Adding all libcall symbols to the link can have undesired consequences.
For example, the libgcc implementation of __sync_val_compare_and_swap_8
on 32-bit ARM pulls in an .init_array entry that aborts the program if
the Linux kernel does not support 64-bit atomics, which would prevent
the program from running even if it does not use 64-bit atomics.
This change makes it so that we only add libcall symbols to the
link before LTO if we have to, i.e. if the symbol's definition is in
bitcode. Any other required libcall symbols will be added to the link
after LTO when we add the LTO object file to the link.
Differential Revision: https://reviews.llvm.org/D50475
llvm-svn: 339301
There are following symbols currently available:
DefinedKind, SharedKind, UndefinedKind, LazyArchiveKind, LazyObjectKind.
Our code calls getSize() only for first two and there
seems to be no reason to return 0 for the rest.
llvm-svn: 337265
If a symbol with an undefined version in a DSO is not going to be
exported into the dynamic symbol table then do not give an error message
for the missing version. This can happen with the --exclude-libs option
which implicitly gives all symbols in a static library the local version.
This matches the behavior of ld.gold and is exploited by the Bionic
dynamic linker on Arm.
Differential Revision: https://reviews.llvm.org/D43126
llvm-svn: 332224
This is slightly simpler to read IMHO. Now if a symbol has a position
in the file, it is Defined.
The main motivation is that with this a SharedSymbol doesn't need a
section, which reduces the size of SymbolUnion.
With this the peak allocation when linking chromium goes from 568.1 to
564.2 MB.
llvm-svn: 330966
It was always an offset of PltIndex.
This doesn't reduce the size of the structures, but makes it easier to
do so in a followup patch.
llvm-svn: 330953
Before this patch:
Symbol 56
Defined 80
Undefined 56
SharedSymbol 88
LazyArchive 72
LazyObject 56
With this patch
Symbol 48
Defined 72
Undefined 48
SharedSymbol 80
LazyArchive 64
LazyObject 48
The result is that peak allocation when linking chromium (according to
heaptrack) goes from 578 to 568 MB.
llvm-svn: 330874
Now that we don't ICF synthetic sections, we can go back to the old
logic on whose responsibility it is to check Repl.
The idea is that Sec->something() will not check Repl. It is the
responsibility of the caller to find the correct Sec.
llvm-svn: 330346
We had a single symbol using -1 with a synthetic section. It is
simpler to just update its value.
This is not a big will by itself, but will allow having a simple
getOffset for InputSeciton.
llvm-svn: 330340
They are to pull out an object file for a symbol, but for a historical
reason the code is written in two separate functions. This patch
merges them.
llvm-svn: 329039
Since SectionBase::getOutputSection handles ICF replaces and
SectionBase::getOffset was handling it in some cases, it is more
consistent to have getOffset always handle it.
llvm-svn: 328391
The profailing style in lld seem to be to not include such empty lines.
Clang-tidy/clang-format seem to handle this just fine.
Differential Revision: https://reviews.llvm.org/D43528
llvm-svn: 325629
It is currently in InputSectionBase. Only InputSections are used in
ICF, so Repl should be move to InputSection to clear the class
hierarchy or, like this patch does, to SectionBase for convenience.
The convenience of having it on the base class is that we can just
access the replacement without having to first check if it is an
InputSection. It is a bit less code and a bit faster as some of this
code is very hot.
I got up to 1.77% improvement in clang-gdb-index and no regressions
according to lnt.
llvm-svn: 320654
Having a SectionBase method check Repl is inconsistent with how we
handle other section information.
For example, if a section is replaced, Sec->Live is false and it is
natural for Sec->getOutputSection() to be null.
It is the symbol that is moved to the replacement section.
llvm-svn: 320599
We have a lot of "if (MIPS)" conditions in lld because the MIPS' ABI
is different at various places than other arch's ABIs at where it
don't have to be different, but we at least want to reduce MIPS-ness
from the regular classes.
llvm-svn: 317525
Now that DefinedRegular is the only remaining derived class of
Defined, we can merge the two classes.
Differential Revision: https://reviews.llvm.org/D39667
llvm-svn: 317448
Common symbols are now represented with a DefinedRegular that points
to a BssSection, even during symbol resolution.
Differential Revision: https://reviews.llvm.org/D39666
llvm-svn: 317447
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370
SymbolBody and Symbol were separated classes due to a historical reason.
Symbol used to be a pointer to a SymbolBody, and the relationship
between Symbol and SymbolBody was n:1.
r2681780 changed that. Since that patch, SymbolBody and Symbol are
allocated next to each other to improve memory locality, and they have
1:1 relationship now. So, the separation of Symbol and SymbolBody no
longer makes sense.
This patch merges them into one class. In order to avoid updating too
many places, I chose SymbolBody as a unified name. I'll rename it Symbol
in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D39406
llvm-svn: 317006
DSO is short for dynamic shared object, so the function name was a
little confusing because it sounded like it didn't work when we were
a creating statically-linked executable or something.
What we mean by "DSO" here is the current output file that we are
creating. Thus the new name. Alternatively, we could call it the current
ELF module, but "module" is a overloaded word, so I avoided that.
llvm-svn: 316809
Summary:
The COFF linker and the ELF linker have long had similar but separate
Error.h and Error.cpp files to implement error handling. This change
introduces new error handling code in Common/ErrorHandler.h, changes the
COFF and ELF linkers to use it, and removes the old, separate
implementations.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: smeenai, jyknight, emaste, sdardis, nemanjai, nhaehnle, mgorny, javed.absar, kbarton, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39259
llvm-svn: 316624
Convert all common symbols to regular symbols after scan.
This means that the downstream code does not to handle common symbols as a special case.
Differential Revision: https://reviews.llvm.org/D38137
llvm-svn: 314495
This fixes pr34301.
As the bug points out, we want to keep some relocations with undefined
weak symbols. This means that we cannot always claim that these
symbols are not preemptible as we do now.
Unfortunately, we cannot also just always claim that they are
preemptible. Doing so would, for example, cause us to try to create a
plt entry when we don't even have a dynamic symbol table.
What almost works is to say that weak undefined symbols are
preemptible if and only if we have a dynamic symbol table. Almost
because we don't want to fail the build trying to create a copy
relocation to a weak undefined.
llvm-svn: 313372
This should fix the lto bootstrap.
It is somewhat hard to remember about lazy symbols deep down in the
link. It might be worth it replacing them with undefined symbols once
we are done adding files.
llvm-svn: 313103
https://reviews.llvm.org/rL312796 meant that references to garbage collected common symbols would cause a segfault.
This change fixes the behaviour for references to stripped common symbols.
Differential Revision: https://reviews.llvm.org/D37718
llvm-svn: 313086
to separate commons based on file name patterns. The following linker script
construct does not work because commons are allocated before section placement
is done and the only synthesized BssSection that holds all commons has no file
associated with it:
SECTIONS { .common_0 : { *file0.o(COMMON) }}
This patch changes the allocation of commons to create a section per common
symbol and let the section logic do the layout.
Differential revision: https://reviews.llvm.org/D37489
llvm-svn: 312796
Liveness is usually a notion of input sections, but this patch adds
"liveness" bit to common symbols because they don't belong to any
input section.
This patch is based on https://reviews.llvm.org/D36520
Differential Revision: https://reviews.llvm.org/D36546
llvm-svn: 310617
This is probably a small optimization, but the main motivation is
having a way of fixing pr34053 that doesn't require a hash lookup in
isPreempitible.
llvm-svn: 310602
With this Symbol has the same size as before, but DefinedRegular goes
from 72 to 64 bytes.
I also find this a bit easier to read. There are fewer places
initializing File for example.
This has a small but measurable speed improvement on all tests (1%
max).
llvm-svn: 310142
With fix for undefined weak symbols in executable.
Original commit message:
This is PR32112. Previously when we linked executable with
--unresolved-symbols=ignore-all and undefined symbols, like:
_start:
callq und@PLT
we did not create relocations, though it looks in that case
we should delegate handling of such symbols to runtime linker,
hence should emit them. Patch fixes that.
Differential revision: https://reviews.llvm.org/D35724
llvm-svn: 309796
Before we were doing it with --export-dynamic. That seems incorrect.
The intention of --export-dynamic is to export symbols *defined* in
the executable.
llvm-svn: 309605
This is PR32112. Previously when we linked executable with
--unresolved-symbols=ignore-all and undefined symbols, like:
_start:
callq und@PLT
we did not create relocations, though it looks in that case
we should delegate handling of such symbols to runtime linker,
hence should emit them. Patch fixes that.
Differential revision: https://reviews.llvm.org/D35724
llvm-svn: 309252
PT_TLS is a type of program header, so we wouldn't expect to see
one in an object file. This error should probably be referring to
the fact that we didn't see a section with the flag SHF_TLS, which
would normally cause us to create a PT_TLS program header.
Differential Revision: https://reviews.llvm.org/D35395
llvm-svn: 307983
This is PR28414.
Previously LLD was unable to link following:
(failed with undefined symbol bar)
Version script:
SOME_VERSION { global: *; };
.global _start
.global bar
.symver _start, bar@@SOME_VERSION
_start:
jmp bar
Manual has next description:
.symver name, name2@@nodename
In this case, the symbol name must exist and be defined within the file being assembled. It is similar to name2@nodename.
The difference is name2@@nodename will also be used to resolve references to name2 by the linker
https://sourceware.org/binutils/docs/as/Symver.html
Patch implements that. If we have name@@ver symbol and name is undefined, name@@ver is used to resolve references to name.
If name is defined then multiple definition error is emited, that is consistent with what bfd do.
Differential revision: https://reviews.llvm.org/D33680
llvm-svn: 307077
We could have add this function either Symbol or SymbolBody. I added it
to Symbol at first. But I noticed that if I've added it to SymbolBody,
we could've removed SymbolBody::setName(). So I'll do that in this patch.
llvm-svn: 306590
Most "reserved" symbols are in ElfSym and it looks like there's no
reason to not do the same thing for _GLOBAL_OFFSET_TABLE_. This should
help https://reviews.llvm.org/D34618 too.
llvm-svn: 306292
Before InputSectionBase had an OutputSection pointer, but that was not
always valid. For example, if it was a merge section one actually had
to look at MergeSec->OutSec.
This was brittle and caused bugs like the one fixed by r304260.
We now have a single Parent pointer that points to an OutputSection
for InputSection, but to a SyntheticSection for merge sections and
.eh_frame. This makes it impossible to accidentally access an invalid
OutSec.
llvm-svn: 304338
GNU linkers define __bss_start symbol.
Patch teaches LLD to do that. This is PR32051.
Below is part of standart ld.bfd script:
.data1 : { *(.data1) }
_edata = .; PROVIDE (edata = .);
. = .;
__bss_start = .;
.bss :
{
Currently LLD can emit up to 3 .bss* sections as one of testcase shows.
Implementation inserts this symbol before first .bss* output section.
Differential revision: https://reviews.llvm.org/D30419
llvm-svn: 299528
Was fixed, details on review page.
Original commit message:
That removes CopyRelSection class completely, making
Bss/BssRelRo to be just regular synthetics.
This is splitted from D30541 and polished.
Difference from D30541 that all logic of SharedSymbol
converting to DefinedRegular was removed for now and
probably will be posted as separate patch.
Differential revision: https://reviews.llvm.org/D30892
llvm-svn: 298062
That removes CopyRelSection class completely, making
Bss/BssRelRo to be just regular synthetics.
This is splitted from D30541 and polished.
Difference from D30541 that all logic of SharedSymbol
converting to DefinedRegular was removed for now and
probably will be posted as separate patch.
Differential revision: https://reviews.llvm.org/D30892
llvm-svn: 297814
With this we have a single section hierarchy. It is a bit less code,
but the main advantage will be in a future patch being able to handle
foo = symbol_in_obj;
in a linker script. Currently that fails since we try to find the
output section of symbol_in_obj. With this we should be able to just
return an InputSection from the expression.
llvm-svn: 297313
In compare with D30458, this makes Bss/BssRelRo to be pure
synthetic sections.
That removes CopyRelSection class completely, making
Bss/BssRelRo to be just regular synthetics.
SharedSymbols involved in creating copy relocations are
converted to DefinedRegular, what also simplifies things.
Differential revision: https://reviews.llvm.org/D30541
llvm-svn: 297008
There are many special cases and a layer of abstraction or two in the
way, but the VA calculation in the typical case is actually very simple
and probably makes perfect sense even to somebody new to linkers.
Also, this line brings together many components and is a good place to
start understanding the linker (or improve one's existing
understanding).
llvm-svn: 296451
Naively it seemed at first like getVA had the responsibility of adding
the addend, and getSymVA had the responsibility of getting the symbol
VA.
So it was not obvious to me at first why getVA passes Addend to
getSymVA. In fact, it passes it as a mutable reference.
It turns out that it only matters for SHF_MERGE sections, and in
particular only for STT_SECTION symbols that are used as a hack for
reducing the number of local symbols (e.g. to avoid a local symbol for
each string in the string table).
llvm-svn: 296448
That function doesn't use any member of SymbolTableSection, so I
couldn't see a reason to make it a member of that class. The function
takes a SymbolBody, so it is more natural to make it a member of
SymbolBody.
llvm-svn: 296433
With the current design an InputSection is basically anything that
goes directly in a OutputSection. That includes plain input section
but also synthetic sections, so this should probably not be a
template.
llvm-svn: 295993
LLD is a multi-threaded program. errs() or outs() are not guaranteed
to be thread-safe (they are actually not).
LLD's message(), log() or error() are thread-safe. We should use them.
llvm-svn: 295787
This patch removes NeedsCopyOrPltAddr and instead add two variables,
NeedsCopy and NeedsPltAddr. This uses one more bit in Symbol class,
but the actual size doesn't increase because we had unused bits.
This should improve code readability.
llvm-svn: 295287
In the target dependent code we already always return a int64_t. In
the target independent code we carefully use uintX_t, which has the
same result given 2 complement rules.
This just simplifies the code to use int64_t everywhere.
llvm-svn: 295263
When we need a copy relocation we create a synthetic SHT_NOBITS
section that contains the right amount of ZI and assign it to either
.bss or .rel.ro.bss as appropriate. This allows the dynamic relocation
to be placed on the InputSection, removing the last case where a
dynamic relocation is stored as an offset from the OutputSection. This
has the side effect that we can run assignOffsets() after scanRelocs()
without losing the additional ZI needed for the copy relocations.
Differential Revision: https://reviews.llvm.org/D29637
llvm-svn: 294577
With a synthetic merge section we can have, for example, a single
.rodata section with stings, fixed sized constants and non merge
constants.
I can be simplified further by not setting Entsize, but that is
probably better done is a followup patch.
This should allow some cleanup in the linker script code now that
every output section command maps to just one output section.
llvm-svn: 294005
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
This is a recommit of r293283 with a fixed comparison predicate as
std::merge requires a strict weak ordering.
Differential revision: https://reviews.llvm.org/D29327
llvm-svn: 293757
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
Differential Revision: https://reviews.llvm.org/D29129
llvm-svn: 293283
Currently ld.lld -r allocates space for common symbols, whereas ld.bfd
-r doesn't. As a result the OpenBSD makefile bits for creating libraries
fail as they use ld -X -r to strip local symbols, which results in
duplicate symbol errors because space for the common symbols has been
allocated.
The diff also implements the --define-commons option such that allocation
of commons can be forced even if -r is used.
Patch by Mark Kettenis.
llvm-svn: 292878
LLD exports symbols that are also present in used shared libraries to
make sure they are preempted at runtime. That is a reasonable default,
but we must allow for it to be overwritten with linker script. If we
don't, libraries that expect to be able to hide a c++ delete operator
will fail.
This should fix the firebird build.
llvm-svn: 292146
When reserving copy relocation space for a shared symbol, scan the DSO's
program headers to see if the symbol is in a read-only segment. If so,
reserve space for that symbol in a new synthetic section named .bss.rel.ro
which will be covered by the relro program header.
This fixes the security issue disclosed on the binutils mailing list at:
https://sourceware.org/ml/libc-alpha/2016-12/msg00914.html
Differential Revision: https://reviews.llvm.org/D28272
llvm-svn: 291524
In a shared library an undefined symbol is implicitly imported. If the
symbol is called as a function a PLT entry is generated for it. When the
caller is a Thumb b.w a thunk to the PLT entry is needed as all PLT
entries are in ARM state.
This change allows undefined symbols to have thunks in the same way that
shared symbols may have thunks.
llvm-svn: 290951
DefinedSynthetic is not created for a real ELF object, so it doesn't
have to be a template function. It has a virtual st_value, which is
either 32 bit or 64 bit, but we can simply use 64 bit.
llvm-svn: 290241