Currently, SymbolFileDWARFDebugMap works on the assumption that there is
only one compile unit per object file. This patch documents this
limitation (when using the general SymbolFile API), and allows users of
the concrete SymbolFileDWARFDebugMap class to find out about these extra
compile units.
Differential Revision: https://reviews.llvm.org/D136114
In D134378, we'll need the clang AST to be able to construct the qualified in some cases.
This makes logging in one place slightly less informative.
Reviewed By: dblaikie, Michael137
Differential Revision: https://reviews.llvm.org/D135979
It's fine right now, but will break as soon as someone else declares a
PluginProperties class in the same way.
Also tighten up the scope of the anonymous namespaces surrounding the
other PluginProperties classes.
Profiles show that `SymbolFileDWARF::FindFunctions` is both high firing (many thousands of calls) and fast running (35 µs mean).
Timers like this are noise and load for profiling systems, and can be removed.
rdar://100326595
Differential Revision: https://reviews.llvm.org/D134922
Now that we display an error when users try to get variables, but something in the debug info is preventing variables from showing up, track this with a new bool in each module's statistic information named "debugInfoHadVariableErrors".
This patch modifies the code to track when we have variable errors in a module and adds accessors to get/set this value. This value is used in the module statistics and we added a test to verify this value gets set correctly.
Differential Revision: https://reviews.llvm.org/D134508
When debugging using Fission (-gsplit-dwarf), we can sometimes have issues loading .dwo files if they are missing or if the path was relative and we were unable to locate the file. We can also skip loading due to DWO ID mismatch or if a .dwp file doesn't contain a matching .dwo file. Also .dwo files could be updated due to a recompile and if the user debugs an executable that was linked against the old .dwo file, it could fail to load the information.
This patch adds a m_dwo_error to DWARFUnit that can be get/set and will cause "frame variable" to show errors when there are .dwo/.dwp issues informing the user about the error.
Differential Revision: https://reviews.llvm.org/D134252
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
When fission is enabled, we were indexing the skeleton CU _and_ the .dwo CU. Issues arise when users enable compiler options that add extra data to the skeleton CU (like -fsplit-dwarf-inlining) and there can end up being types in the skeleton CU due to template parameters. We never want to index this information since the .dwo file has the real definition, and we really don't want function prototypes from this info since all parameters are removed. The index doesn't work correctly if it does index the skeleton CU as the DIE offset will assume it is from the .dwo file, so even if we do index the skeleton CU, the index entries will try and grab information from the .dwo file using the wrong DIE offset which can cause errors to be displayed or even worse, if the DIE offsets is valid in the .dwo CU, the wrong DIE will be used.
We also fix DWO ID detection to use llvm::Optional<uint64_t> to make sure we can load a .dwo file with a DWO ID of zero.
Differential Revision: https://reviews.llvm.org/D131437
This reverts commit 967df65a36.
This fixes test/Shell/SymbolFile/NativePDB/find-functions.cpp. When
looking up functions with the PDB plugins, if we are looking for a
full function name, we should use `GetName` to populate the `name`
field instead of `GetLookupName` since `GetName` has the more
complete information.
Context:
When setting a breakpoint by name, we invoke Module::FindFunctions to
find the function(s) in question. However, we use a Module::LookupInfo
to first process the user-provided name and figure out exactly what
we're looking for. When we actually perform the function lookup, we
search for the basename. After performing the search, we then filter out
the results using Module::LookupInfo::Prune. For example, given
a:🅱️:foo we would first search for all instances of foo and then filter
out the results to just names that have a:🅱️:foo in them. As one can
imagine, this involves a lot of debug info processing that we do not
necessarily need to be doing. Instead of doing one large post-processing
step after finding each instance of `foo`, we can filter them as we go
to save time.
Some numbers:
Debugging LLDB and placing a breakpoint on
llvm::itanium_demangle::StringView::begin without this change takes
approximately 70 seconds and resolves 31,920 DIEs. With this change,
placing the breakpoint takes around 30 seconds and resolves 8 DIEs.
Differential Revision: https://reviews.llvm.org/D129682
Resubmission of https://reviews.llvm.org/D130309 with the 2 patches that fixed the linux buildbot, and new windows fixes.
The FileSpec APIs allow users to modify instance variables directly by getting a non const reference to the directory and filename instance variables. This makes it impossible to control all of the times the FileSpec object is modified so we can clear cached member variables like m_resolved and with an upcoming patch caching if the file is relative or absolute. This patch modifies the APIs of FileSpec so no one can modify the directory or filename instance variables directly by adding set accessors and by removing the get accessors that are non const.
Many clients were using FileSpec::GetCString(...) which returned a unique C string from a ConstString'ified version of the result of GetPath() which returned a std::string. This caused many locations to use this convenient function incorrectly and could cause many strings to be added to the constant string pool that didn't need to. Most clients were converted to using FileSpec::GetPath().c_str() when possible. Other clients were modified to use the newly renamed version of this function which returns an actualy ConstString:
ConstString FileSpec::GetPathAsConstString(bool denormalize = true) const;
This avoids the issue where people were getting an already uniqued "const char *" that came from a ConstString only to put the "const char *" back into a "ConstString" object. By returning the ConstString instead of a "const char *" clients can be more efficient with the result.
The patch:
- Removes the non const GetDirectory() and GetFilename() get accessors
- Adds set accessors to replace the above functions: SetDirectory() and SetFilename().
- Adds ClearDirectory() and ClearFilename() to replace usage of the FileSpec::GetDirectory().Clear()/FileSpec::GetFilename().Clear() call sites
- Fixed all incorrect usage of FileSpec::GetCString() to use FileSpec::GetPath().c_str() where appropriate, and updated other call sites that wanted a ConstString to use the newly returned ConstString appropriately and efficiently.
Differential Revision: https://reviews.llvm.org/D130549
The FileSpect APIs allow users to modify instance variables directly by getting a non const reference to the directory and filename instance variables. This makes it impossibly to control all of the times the FileSpec object is modified so we can clear the cache. This patch modifies the APIs of FileSpec so no one can modify the directory or filename directly by adding set accessors and by removing the get accessors that are non const.
Many clients were using FileSpec::GetCString(...) which returned a unique C string from a ConstString'ified version of the result of GetPath() which returned a std::string. This caused many locations to use this convenient function incorrectly and could cause many strings to be added to the constant string pool that didn't need to. Most clients were converted to using FileSpec::GetPath().c_str() when possible. Other clients were modified to use the newly renamed version of this function which returns an actualy ConstString:
ConstString FileSpec::GetPathAsConstString(bool denormalize = true) const;
This avoids the issue where people were getting an already uniqued "const char *" that came from a ConstString only to put the "const char *" back into a "ConstString" object. By returning the ConstString instead of a "const char *" clients can be more efficient with the result.
The patch:
- Removes the non const GetDirectory() and GetFilename() get accessors
- Adds set accessors to replace the above functions: SetDirectory() and SetFilename().
- Adds ClearDirectory() and ClearFilename() to replace usage of the FileSpec::GetDirectory().Clear()/FileSpec::GetFilename().Clear() call sites
- Fixed all incorrect usage of FileSpec::GetCString() to use FileSpec::GetPath().c_str() where appropriate, and updated other call sites that wanted a ConstString to use the newly returned ConstString appropriately and efficiently.
Differential Revision: https://reviews.llvm.org/D130309
The case comes out of how BOLT handles transformation of
DW_AT_low_pc/DW_AT_high_pc into DW_AT_low_pc/DW_AT_high_pc
with latter being 0.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D127889
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
This ensures that the user is aware that many commands will not work
correctly.
We print the warning only once (per module) to avoid spamming the user
with potentially thousands of error messages.
Differential Revision: https://reviews.llvm.org/D120892
We have using namespace llvm::dwarf in dwarf.h header globally. Replacing that
with a using namespace within lldb_private::dwarf and moving to a
using namespace lldb_private::dwarf in .cpp files and fully qualified names
in the few header files.
Differential Revision: https://reviews.llvm.org/D120836
This allows `image lookup -a ... -v` to print variables only if the given
address is covered by the valid ranges of the variables. Since variables created
in dwarf plugin always has empty scope range, print the variable if it has
empty scope.
Differential Revision: https://reviews.llvm.org/D119963
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
std::chrono::duration types are not thread-safe, and they cannot be
concurrently updated from multiple threads. Currently, we were doing
such a thing (only) in the DWARF indexing code
(DWARFUnit::ExtractDIEsRWLocked), but I think it can easily happen that
someone else tries to update another statistic like this without
bothering to check for thread safety.
This patch changes the StatsDuration type from a simple typedef into a
class in its own right. The class stores the duration internally as
std::atomic<uint64_t> (so it can be updated atomically), but presents it
to its users as the usual chrono type (duration<float>).
Differential Revision: https://reviews.llvm.org/D117474
Remove the Mangled::operator! and Mangled::operator void* where the
comments in header and implementation files disagree and replace them
with operator bool.
This fix PR52702 as https://reviews.llvm.org/D106837 used the buggy
Mangled::operator! in Symbol::SynthesizeNameIfNeeded. For example,
consider the symbol "puts" in a hello world C program:
// Inside Symbol::SynthesizeNameIfNeeded
(lldb) p m_mangled
(lldb_private::Mangled) $0 = (m_mangled = None, m_demangled = "puts")
(lldb) p !m_mangled
(bool) $1 = true # should be false!!
This leads to Symbol::SynthesizeNameIfNeeded overwriting m_demangled
part of Mangled (in this case "puts").
In conclusion, this patch turns
callq 0x401030 ; symbol stub for: ___lldb_unnamed_symbol36
back into
callq 0x401030 ; symbol stub for: puts .
Differential Revision: https://reviews.llvm.org/D116217
Symbol table parsing has evolved over the years and many plug-ins contained duplicate code in the ObjectFile::GetSymtab() that used to be pure virtual. With this change, the "Symbtab *ObjectFile::GetSymtab()" is no longer virtual and will end up calling a new "void ObjectFile::ParseSymtab(Symtab &symtab)" pure virtual function to actually do the parsing. This helps centralize the code for parsing the symbol table and allows the ObjectFile base class to do all of the common work, like taking the necessary locks and creating the symbol table object itself. Plug-ins now just need to parse when they are asked to parse as the ParseSymtab function will only get called once.
This is a retry of the original patch https://reviews.llvm.org/D113965 which was reverted. There was a deadlock in the Manual DWARF indexing code during symbol preloading where the module was asked on the main thread to preload its symbols, and this would in turn cause the DWARF manual indexing to use a thread pool to index all of the compile units, and if there were relocations on the debug information sections, these threads could ask the ObjectFile to load section contents, which could cause a call to ObjectFileELF::RelocateSection() which would ask for the symbol table from the module and it would deadlock. We can't lock the module in ObjectFile::GetSymtab(), so the solution I am using is to use a llvm::once_flag to create the symbol table object once and then lock the Symtab object. Since all APIs on the symbol table use this lock, this will prevent anyone from using the symbol table before it is parsed and finalized and will avoid the deadlock I mentioned. ObjectFileELF::GetSymtab() was never locking the module lock before and would put off creating the symbol table until somewhere inside ObjectFileELF::GetSymtab(). Now we create it one time inside of the ObjectFile::GetSymtab() and immediately lock it which should be safe enough. This avoids the deadlocks and still provides safety.
Differential Revision: https://reviews.llvm.org/D114288
LLDB uses mangled name to construct a fully qualified name for global
variables. Sometimes DW_TAG_linkage_name attribute is missing from
debug info, so LLDB has to rely on parent entries to construct the
fully qualified name.
Currently, the fallback is handled when the parent DW_TAG is either
DW_TAG_compiled_unit or DW_TAG_partial_unit, which may not work well
for global constants in namespaces. For example:
namespace ns {
const int x = 10;
}
may produce the following debug info:
<1><2a>: Abbrev Number: 2 (DW_TAG_namespace)
<2b> DW_AT_name : (indirect string, offset: 0x5e): ns
<2><2f>: Abbrev Number: 3 (DW_TAG_variable)
<30> DW_AT_name : (indirect string, offset: 0x61): x
<34> DW_AT_type : <0x3c>
<38> DW_AT_decl_file : 1
<39> DW_AT_decl_line : 2
<3a> DW_AT_const_value : 10
Since the fallback didn't handle the case when parent tag is
DW_TAG_namespace, LLDB wasn't able to match the variable by its fully
qualified name "ns::x". This change fixes this by additional check
if the parent is a DW_TAG_namespace.
Reviewed By: werat, clayborg
Differential Revision: https://reviews.llvm.org/D112147
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master in these comments.
Reviewed By: clayborg, JDevlieghere
Differential Revision: https://reviews.llvm.org/D114123
The new key/value pairs that are added to each module's stats are:
"debugInfoByteSize": The size in bytes of debug info for each module.
"debugInfoIndexTime": The time in seconds that it took to index the debug info.
"debugInfoParseTime": The time in seconds that debug info had to be parsed.
At the top level we add up all of the debug info size, parse time and index time with the following keys:
"totalDebugInfoByteSize": The size in bytes of all debug info in all modules.
"totalDebugInfoIndexTime": The time in seconds that it took to index all debug info if it was indexed for all modules.
"totalDebugInfoParseTime": The time in seconds that debug info was parsed for all modules.
Differential Revision: https://reviews.llvm.org/D112501
Front-load the first_valid_code_address check, so that we avoid creating
the function object (instead of simply refusing to use it in queries).
Differential Revision: https://reviews.llvm.org/D112310
lldb/source/Plugins/SymbolFile/DWARF/SymbolFileDWARF.cpp:3635:10: error: moving a local object in a return statement prevents copy elision [-Werror,-Wpessimizing-move]
return std::move(merged);
^
This patch fixes a problem introduced by clang change
https://reviews.llvm.org/D95617 and described by
https://bugs.llvm.org/show_bug.cgi?id=50076#c6, where inlined functions
omit unused parameters both in the stack trace and in `frame var`
command. With this patch, the parameters are listed correctly in the
stack trace and in `frame var` command.
Specifically, we parse formal parameters from the abstract version of
inlined functions and use those formal parameters if they are missing
from the concrete version.
Differential Revision: https://reviews.llvm.org/D110571
specifically, ignore addresses that point before the first code section.
This resurrects D87172 with several notable changes:
- it fixes a bug where the early exits in InitializeObject left
m_first_code_address "initialized" to LLDB_INVALID_ADDRESS (0xfff..f),
which caused _everything_ to be ignored.
- it extends the line table fix to function parsing as well, where it
replaces a similar check which was checking the executable permissions
of the section. This was insufficient because some
position-independent elf executables can have an executable segment
mapped at file address zero. (What makes this fix different is that it
checks for the executable-ness of the sections contained within that
segment, and those will not be at address zero.)
- It uses a different test case, with an elf file with near-zero
addresses, and checks for both line table and function parsing.
Differential Revision: https://reviews.llvm.org/D112058