This reverts commit 8ef3fd8d59.
I mentioned that GlobalAlias was not handled. It turns out GlobalAlias has to be handled in the same patch (as opposed to in a follow-up),
as otherwise clang codegen of C5/D5 constructor/destructor would regress (https://reviews.llvm.org/D135427#3869003).
@Ayal suggested a better named helper than using `!getDef()` to check if
a value is invariant across all parts.
The property we are using here is that the VPValue is defined outside
any vector loop region. There's a TODO left to handle recipes defined in
pre-header blocks.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D133666
This patch extends the load merge/widen in AggressiveInstCombine() to handle reverse load patterns.
Differential Revision: https://reviews.llvm.org/D135137
Followup to D135962 to rename remaining uses of
FunctionModRefBehavior to MemoryEffects. Does not touch API names
yet, but also updates variables names FMRB/MRB to ME, to match the
new type name.
Generalized the cost model estimation. Improved cost model estimation
for repeated scalars (no need to count their cost anymore), improved
cost model for extractelement instructions.
cpu2017
511.povray_r 0.57
520.omnetpp_r -0.98
521.wrf_r -0.01
525.x264_r 3.59 <+
526.blender_r -0.12
531.deepsjeng_r -0.07
538.imagick_r -1.42
Geometric mean: 0.21
Differential Revision: https://reviews.llvm.org/D115757
Generalized the cost model estimation. Improved cost model estimation
for repeated scalars (no need to count their cost anymore), improved
cost model for extractelement instructions.
cpu2017
511.povray_r 0.57
520.omnetpp_r -0.98
521.wrf_r -0.01
525.x264_r 3.59 <+
526.blender_r -0.12
531.deepsjeng_r -0.07
538.imagick_r -1.42
Geometric mean: 0.21
Differential Revision: https://reviews.llvm.org/D115757
Fixes an SROA crash.
Fallout from opaque pointers since with typed pointers we'd bail out at the bitcast.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D136119
Moving an instruction can invalidate the cached block dispositions of
the corresponding SCEV. Invalidate the cached dispositions.
Also fixes a copy-paste error in forgetBlockAndLoopDispositions where
the start expression S was removed from BlockDispositions in the loop
but not the current values. This was also exposed by the new test case.
Fixes#58439.
When SimplifyLibCalls fail to optimize printf and sprintf it add
NoUndef/NonNull/Dereferenceable attributes. This patch add the same attributes
if SimplifyLibCalls optimize printf/sprintf into the integer only
iprintf/siprintf.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D136140
When unrolling, the exit values in LCSSA phis will get updated.
Invalidate cached SCEV values for those phis in case SCEV looked through
a exit phi.
Fixes#58340.
If the arithmetic for indices of inbounds GEPs overflows, the result is
poison. This means it is also OK for the coefficients to overflow. GEP
decomposition is limited to cases where the index size is <= 64 bit,
which can be represented by int64_t used for the coefficients in the
constraint system.
This reverts commit 233659c7ae.
I see some sanitizer build bot failures. Not sure if it is change
causing it, but let's see if a revert returns the bots to green...
We can't assume that operand 0 is the negated operand because
the matcher handles "fsub -0.0, X" (and also +0.0 with FMF).
By capturing the extract within the match, we avoid the bug
and make the transform more robust (can't assume that this
pass will only see canonical IR).
Relative to the previous attempt, this is rebased over the
InstSimplify fix in ac74e7a780,
which addresses the miscompile reported in PR58401.
-----
foldOpIntoPhi() currently only folds operations into the phi if all
but one operands constant-fold. The two exceptions to this are freeze
and select, where we allow more general simplification.
This patch makes foldOpIntoPhi() generally simplification based and
removes all the instruction-specific logic. We just try to simplify
the instruction for each operand, and for the (potentially) one
non-simplified operand, we move it into the new block with adjusted
operands.
This fixes https://github.com/llvm/llvm-project/issues/57448, which
was my original motivation for the change.
Differential Revision: https://reviews.llvm.org/D134954
LoopFlatten has been in the code base off by default for years, but this
enables it to run by default. Downstream this has been running for
years, so it has been exposed to quite some code. Then around the time
we switched to the NPM, several fixes went in related to updating the
MemorySSA state and we moved it to a loop pass manager, which both
helped preventing rerunning certain analysis passes, and thus helped a
bit with compile-times.
About compile-times, adding a pass isn't free, but this should see only
very minor increases. The pass is relatively simple and there shouldn't
be anything algorithmically expensive because all it does is looking at
inner/outer loops and it checks assumptions on loop increments and
indices. If we see increases, I expect this to mainly come from
invalidation of analysis info, and perhaps subsequent passes to trigger
and do more. Despite its simplicity/restrictions, it triggers in most
code-bases, which makes it worth to enable this by default.
Differential Revision: https://reviews.llvm.org/D109958
Another alternative to fix the thread identification problem in
coroutines.
We plan to fix this problem by unifying memory effecting attributes. See
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
But it may be a long-term project. And it is a pity that the coroutines
can't resume in different threads for years. So this one is temporary
fix. It may cause unnecessary performance regression for coroutines. But
correctness are more important. And this one is planned to be reverted
after we are able to unify the memory effecting attributes actually.
Reviewed By: jdoerfert, rjmccall
Differential Revision: https://reviews.llvm.org/D135550
Instead of duplicating the existing decomposition code for GEP indices
just use the existing code by calling the existing decompose function on
the index expression and multiply the result's coefficients by the scale of
the index.
This both reduces code duplication and generalizes the pattern we can
handle.
If both operands of an `add nsw` are known positive, it can be treated
the same as `add nuw` and added to the unsigned system.
https://alive2.llvm.org/ce/z/6gprff
If the divisor is a power-of-2 or negative-power-of-2 and the dividend
is known to have >= trailing zeros than the divisor, the division is exact:
https://alive2.llvm.org/ce/z/UGBksM (general proof)
https://alive2.llvm.org/ce/z/D4yPS- (examples based on regression tests)
This isn't the most direct optimization (we could create ashr in these
examples instead of relying on existing folds for exact divides), but
it's possible that there's a more general constraint than just a pow2
divisor, so this might be extended in the future.
This should solve issue #58348.
Differential Revision: https://reviews.llvm.org/D135970
This should be functionally equivalent - both calls are thin
wrappers around computeKnownBits(). We'll probably want to use
known-bits directly in follow-up patches because that could
determine "exact" for example (see issue #58348).
Support decomposition for `mul/shl nuw` with constant operand for unsigned
queries. Those expressions should not wrap in the unsigned sense and can
be added directly to the unsigned system.
makeLoopInvariant may recursively move its operands to make them
invariant, before moving the passed in instruction. Those recursively
moved instructions are currently missed when invalidating block and loop
dispositions.
To address this, move the invalidation code to Loop::makeLoopInvariant.
Fixes#58314.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D135909
`ProvenanceAnalysis::related()` was assuming that the order of parameters for `relatedCheck()` was not affecting
the result but this was not the case when both parameters were `PHINode`s.
Due to this assumption `ProvenanceAnalysis::related()` was ordering the parameters based on pointer value which resulted in
non-deterministic behavior.
To address this change `relatedPHI()` so that it gives the same result independent of the parameter order.
rdar://100325456
Differential Revision: https://reviews.llvm.org/D135376
Instead of checking whether a map entry exists to decide if we should
initialize it or add to it, we can rely on the map entry being constructed
and initialized to 0 before the addition happens.
For the std::max case, I've made a reference to the map entry to
avoid looking it up twice.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D135977
avoiding an assertion.
A BB with a nonzero count, whose successor blocks all have 0 counts, could
cause an assertion. Don't create any branch weights in this case.
Reviewed By: xur
Differential Revision: https://reviews.llvm.org/D134203
(A | B) & ~(A & B) --> A ^ B
https://alive2.llvm.org/ce/z/qpFMns
We already have the equivalent fold for real
logic instructions, but this pattern may occur
with selects too.
This is part of solving issue #58313.