Commit Graph

1862 Commits

Author SHA1 Message Date
David Sherwood b2a5f0029f Fix test failures caused by 0aff1798b5 2021-07-26 11:40:26 +01:00
David Sherwood 0aff1798b5 [Analysis] Add simple cost model for strict (in-order) reductions
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:

  1. Tree-wise. This is the typical fast-math reduction that involves
  continually splitting a vector up into halves and adding each
  half together until we get a scalar result. This is the default
  behaviour for integers, whereas for floating point we only do this
  if reassociation is allowed.
  2. Ordered. This now allows us to estimate the cost of performing
  a strict vector reduction by treating it as a series of scalar
  operations in lane order. This is the case when FP reassociation
  is not permitted. For scalable vectors this is more difficult
  because at compile time we do not know how many lanes there are,
  and so we use the worst case maximum vscale value.

I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.

New tests have been added here:

  Analysis/CostModel/AArch64/reduce-fadd.ll
  Analysis/CostModel/AArch64/sve-intrinsics.ll
  Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
  Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll

Differential Revision: https://reviews.llvm.org/D105432
2021-07-26 10:26:06 +01:00
Nico Weber b1777b04dc Revert "[VPlan] Add recipe for first-order rec phis, make splicing explicit."
Makes clang crash: https://reviews.llvm.org/D105008#2903350
This reverts commit d2a73fb44e.

Also revert a minor formatting follow-up:
This reverts commit 82834a6732.
2021-07-25 17:39:28 -04:00
Caroline Concatto 5a4de84d55 [LoopVectorize] Fix crash for predicated instruction with scalable VF
This patch avoids computing discounts for predicated instructions  when the
VF is scalable.
There is no support for vectorization of loops with division because the
vectorizer cannot guarantee that zero divisions will not happen.

This loop now does not use VF scalable

```
for (long long i = 0; i < n; i++)
    if (cond[i])
      a[i] /= b[i];
```

Differential Revision: https://reviews.llvm.org/D101916
2021-07-22 12:48:27 +01:00
Simon Pilgrim 1c9bec727a [InstCombine] Fold (gep (oneuse(gep Ptr, Idx0)), Idx1) -> (gep Ptr, (add Idx0, Idx1)) (PR51069)
As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.

I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.

https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)

Differential Revision: https://reviews.llvm.org/D106450
2021-07-22 10:58:51 +01:00
Kerry McLaughlin be753b207f Revert "[LV] Use lookThroughAnd with logical reductions"
Reverting patch due to buildbot failures.

This reverts commit e22a599672.
2021-07-21 15:16:00 +01:00
Simon Pilgrim ca9b60f9de [LoopVectorize] Regenerate sve-vector-reverse.ll test checks 2021-07-21 15:14:04 +01:00
Kerry McLaughlin e22a599672 [LV] Use lookThroughAnd with logical reductions
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-21 09:56:00 +01:00
Florian Hahn d2a73fb44e
[VPlan] Add recipe for first-order rec phis, make splicing explicit.
This patch adds a VPFirstOrderRecurrencePHIRecipe, to further untangle
VPWidenPHIRecipe into distinct recipes for distinct use cases/lowering.
See D104989 for a new recipe for reduction phis.

This patch also introduces a new `FirstOrderRecurrenceSplice`
VPInstruction opcode, which is used to make the forming of the vector
recurrence value explicit in VPlan. This more accurately models def-uses
in VPlan and also simplifies code-generation. Now, the vector recurrence
values are created at the right place during VPlan-codegeneration,
rather than during post-VPlan fixups.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D105008
2021-07-20 16:14:17 +02:00
Mindong Chen e908e063d1 [LoopUtils] Fix incorrect RT check bounds of loop-invariant mem accesses
This fixes the lower and upper bound calculation of a
RuntimeCheckingPtrGroup when it has more than one loop
invariant pointers. Resolves PR50686.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D104148
2021-07-19 19:38:24 +08:00
Mindong Chen f3814ed3e9 [LV] Re-generate check lines of some fragile tests (NFC)
Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D105438
2021-07-19 19:38:24 +08:00
Florian Hahn 156b431c66
[LV] Add test with ptr induction used as scalar and vector.
Test case inspired by D105199.
2021-07-19 13:15:17 +02:00
Kerry McLaughlin 49d73130ca [LV] Avoid scalable vectorization for loops containing alloca
This patch returns an Invalid cost from getInstructionCost() for alloca
instructions if the VF is scalable, as otherwise loops which contain
these instructions will crash when attempting to scalarize the alloca.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D105824
2021-07-16 11:47:13 +01:00
Sander de Smalen 239d01fa88 Reland "[LV] Print remark when loop cannot be vectorized due to invalid costs."
The original patch was:
  https://reviews.llvm.org/D105806

There were some issues with undeterministic behaviour of the sorting
function, which led to scalable-call.ll passing and/or failing. This
patch fixes the issue by numbering all instructions in the array first,
and using that number as the order, which should provide a consistent
ordering.

This reverts commit a607f64118.
2021-07-16 10:52:01 +01:00
Philip Reames 95346ba877 [LV] Enable vectorization of multiple exit loops w/computable exit counts
This change enables vectorization of multiple exit loops when the exit count is statically computable. That requirement - shared with the rest of LV - in turn requires each exit to be analyzeable and to dominate the latch.

The majority of work to support this was done in a set of previous patches. In particular,, 72314466 avoids having multiple edges from the middle block to the exits, and 4b33b2387 which added support for non-latch single exit and multiple exits with a single exiting block. As a result, this change is basically just removing a bailout and adjusting some tests now that the prerequisite work is done and has stuck in tree for a bit.

Differential Revision: https://reviews.llvm.org/D105817
2021-07-15 08:53:51 -07:00
Sander de Smalen a607f64118 Revert "[LV] Print remark when loop cannot be vectorized due to invalid costs."
This reverts commit efaf3099c8.
This reverts commit dc7bdc1e71.

Reverting patches due to buildbot failures.
2021-07-15 15:21:57 +01:00
Sander de Smalen dc7bdc1e71 [LV] Fix determinism for failing scalable-call.ll test.
The sort function for emitting an OptRemark was not deterministic,
which caused scalable-call.ll to fail on some buildbots. This patch
fixes that.

This patch also fixes an issue where `Instruction::comesBefore()`
is called when two Instructions are in different basic blocks,
which would otherwise cause an assertion failure.
2021-07-15 13:16:59 +01:00
Sander de Smalen efaf3099c8 [LV] Print remark when loop cannot be vectorized due to invalid costs.
This patch emits remarks for instructions that have invalid costs for
a given set of vectorization factors. Some example output:

  t.c:4:19: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1): load
      dst[i] = sinf(src[i]);
                    ^
  t.c:4:14: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1, vscale x 2, vscale x 4): call to llvm.sin.f32
      dst[i] = sinf(src[i]);
               ^
  t.c:4:12: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1): store
      dst[i] = sinf(src[i]);
             ^

Reviewed By: fhahn, kmclaughlin

Differential Revision: https://reviews.llvm.org/D105806
2021-07-14 17:11:33 +01:00
Sander de Smalen eac1670739 [CostModel][AArch64] Make loads/stores of <vscale x 1 x eltty> invalid.
At the moment, <vscale x 1 x eltty> are not yet fully handled by the
code-generator, so to avoid vectorizing loops with that VF, we mark the
cost for these types as invalid.
The reason for not adding a new "TTI::getMinimumScalableVF" is because
the type is supposed to be a type that can be legalized. It partially is,
although the support for these types need some more work.

Reviewed By: paulwalker-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D103882
2021-07-14 16:44:22 +01:00
Simon Pilgrim ae0d73ac3b [CostModel][X86] Adjust fptosi/fptoui SSE/AVX legalized costs based on llvm-mca reports.
Update (mainly) vXf32/vXf64 -> vXi8/vXi16 fptosi/fptoui costs based on the worst case costs from the script in D103695.

Move to using legalized types wherever possible, which allows us to prune the cost tables.
2021-07-12 20:38:25 +01:00
Sander de Smalen d2e4ccc790 [LV] Ignore candidate VFs with invalid costs.
This follows on from discussion on the mailing-list:
  https://lists.llvm.org/pipermail/llvm-dev/2021-June/151047.html

to interpret an Invalid cost as 'infinitely expensive', as this
simplifies some of the legalization issues with scalable vectors.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D105473
2021-07-12 09:58:22 +01:00
Alexey Bataev 0d74fd3fdf [SLP][COST][X86]Improve cost model for masked gather.
Revived D101297 in its original form + added some changes in X86
legalization cehcking for masked gathers.

This solution is the most stable and the most correct one. We have to
check the legality before trying to build the masked gather in SLP.
Without this check we have incorrect cost (for SLP) in case if the masked gather
is not legal/slower than the gather. And we're missing some
vectorization opportunities.

This can be fixed in the cost model, but in this case we need to add
special checks for the cost of GEPs for ScatterVectorize node, add
special check for small trees, etc., i.e. there are a lot of corner
cases here and there, which insrease code base and make it harder to
maintain the code.

> Can't we rely on cost model to deal with this? This can be profitable for futher vectorization, when we can start from such gather loads as seed.

The question from D101297. Actually, no, it can't. Actually, simple
gather may give us better result, especially after we started
vectorization of insertelements. Plus, like I said before, the cost for
non-legal masked gathers leads to missed vectorization opportunities.

Differential Revision: https://reviews.llvm.org/D105042
2021-07-08 11:53:30 -07:00
Philip Reames 723144665b [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 4)
Resubmit after the following changes:

* Fix a latent bug related to unrolling with required epilogue (see e49d65f). I believe this is the cause of the prior PPC buildbot failure.
* Disable non-latch exits for epilogue vectorization to be safe (9ffa90d)
* Split out assert movement (600624a) to reduce churn if this gets reverted again.

Previous commit message (try 3)

Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll

Previous commit message...

This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac).  The original commit caused a PPC build bot failure we never really got to the bottom of.  I can't reproduce the issue, and the bot owner was non-responsive.  In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025.  My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.

Original commit message follows...

If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-07-07 07:44:35 -07:00
Dylan Fleming 7215dcfe36 [SVE] Fix ShuffleVector cast<FixedVectorType> in truncateToMinimalBitwidths
Depends on D104239

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D105341
2021-07-07 15:30:10 +01:00
Dylan Fleming 7586b47fb6 [SVE] Fix cast<FixedVectorType> in truncateToMinimalBitwidths
Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D104239
2021-07-07 09:58:05 +01:00
Florian Hahn ef0d147cdc
Recommit "[VPlan] Add VPReductionPHIRecipe (NFC)." and follow-ups.
This reverts commit 706bbfb35b.

The committed version moves the definition of VPReductionPHIRecipe out
of an ifdef only intended for ::print helpers. This should resolve the
build failures that caused the revert
2021-07-06 14:15:42 +01:00
Kerry McLaughlin a7512401e5 [LV] Prevent vectorization with unsupported element types.
This patch adds a TTI function, isElementTypeLegalForScalableVector, to query
whether it is possible to vectorize a given element type. This is called by
isLegalToVectorizeInstTypesForScalable to reject scalable vectorization if
any of the instruction types in the loop are unsupported, e.g:

  int foo(__int128_t* ptr, int N)
    #pragma clang loop vectorize_width(4, scalable)
    for (int i=0; i<N; ++i)
      ptr[i] = ptr[i] + 42;

This example currently crashes if we attempt to vectorize since i128 is not a
supported type for scalable vectorization.

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D102253
2021-07-06 13:06:21 +01:00
Florian Hahn 706bbfb35b
Revert "[VPlan] Add VPReductionPHIRecipe (NFC)." and follow-ups
This reverts commit 3fed6d443f,
bbcbf21ae6 and
6c3451cd76.

The changes causing build failures with certain configurations, e.g.
https://lab.llvm.org/buildbot/#/builders/67/builds/3365/steps/6/logs/stdio

    lib/libLLVMVectorize.a(LoopVectorize.cpp.o): In function `llvm::VPRecipeBuilder::tryToCreateWidenRecipe(llvm::Instruction*, llvm::ArrayRef<llvm::VPValue*>, llvm::VFRange&, std::unique_ptr<llvm::VPlan, std::default_delete<llvm::VPlan> >&) [clone .localalias.8]':
    LoopVectorize.cpp:(.text._ZN4llvm15VPRecipeBuilder22tryToCreateWidenRecipeEPNS_11InstructionENS_8ArrayRefIPNS_7VPValueEEERNS_7VFRangeERSt10unique_ptrINS_5VPlanESt14default_deleteISA_EE+0x63b): undefined reference to `vtable for llvm::VPReductionPHIRecipe'
    collect2: error: ld returned 1 exit status
2021-07-06 12:10:03 +01:00
Florian Hahn 6c3451cd76
[VPlan] Add VPReductionPHIRecipe (NFC).
This patch is a first step towards splitting up VPWidenPHIRecipe into
separate recipes for the 3 distinct cases they model:

    1. reduction phis,
    2. first-order recurrence phis,
    3. pointer induction phis.

This allows untangling the code generation and allows us to reduce the
reliance on LoopVectorizationCostModel during VPlan code generation.

Discussed/suggested in D100102, D100113, D104197.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104989
2021-07-06 11:25:28 +01:00
Florian Hahn 0bb9c05b1e
[LV] Extend FIXME in test add in 91ee1e3799. 2021-07-05 15:56:03 +01:00
Florian Hahn 91ee1e3799
[LV] Add initial test cases with small clamped indices. 2021-07-05 15:51:12 +01:00
Sjoerd Meijer ee752134ac [AArch64] Cost-model i8 vector loads/stores
Loads of <4 x i8> vectors were modeled as extremely expensive. And while we
don't have a load instruction that supports this, it isn't that expensive to
create a vector of i8 elements. The codegen for this was fixed/optimised in
D105110. This now tweaks the cost model and enables SLP vectorisation of my
motivating case loadi8.ll.

Differential Revision: https://reviews.llvm.org/D103629
2021-07-05 11:25:10 +01:00
Simon Pilgrim cdca1785d3 [CostModel][X86] Adjust uitofp(vXi64) SSE/AVX legalized costs based on llvm-mca reports.
Update v4i64 -> v4f32/v4f64 uitofp costs based on the worst case costs from the script in D103695.

Fixes a few regressions before we start adding AVX costs for legalized types.
2021-07-02 13:09:00 +01:00
Simon Pilgrim 0af9b25aff [LoopVectorize][X86] Regenerate conversion-cost.ll tests 2021-07-01 15:34:20 +01:00
Philip Reames e49d65f36d [LV] Fix bug when unrolling (only) a loop with non-latch exit
If we unroll a loop in the vectorizer (without vectorizing), and the cost model requires a epilogue be generated for correctness, the code generation must actually do so.

The included test case on an unmodified opt will access memory one past the expected bound.  As a result, this patch is fixing a latent miscompile.

Differential Revision: https://reviews.llvm.org/D103700
2021-06-29 08:04:26 -07:00
Florian Hahn 47215e1c62
[LV] Fix crash when target instruction for sinking is dead.
This patch fixes a crash when the target instruction for sinking is
dead. In that case, no recipe is created and trying to get the recipe
for it results in a crash. To ensure all sink targets are alive, find &
use the first previous alive instruction.

Note that the case where the sink source is dead is already handled.

Found by
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=35320

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104603
2021-06-29 13:31:22 +01:00
David Sherwood 303b6d5e98 [LoopVectorize] Add support for scalable vectorization of invariant stores
Previously in setCostBasedWideningDecision if we encountered an
invariant store we just assumed that we could scalarize the store
and called getUniformMemOpCost to get the associated cost.
However, for scalable vectors this is not an option because it is
not currently possibly to scalarize the store. At the moment we
crash in VPReplicateRecipe::execute when trying to scalarize the
store.

Therefore, I have changed setCostBasedWideningDecision so that if
we are storing a scalable vector out to a uniform address and the
target supports scatter instructions, then we should use those
instead.

Tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-inv-store.ll

Differential Revision: https://reviews.llvm.org/D104624
2021-06-29 11:56:09 +01:00
Philip Reames 716d2fedbf Precommit miscompile test from D103700 2021-06-28 16:00:42 -07:00
Kerry McLaughlin f99672568f [LoopVectorize] Fix strict reductions where VF = 1
Currently we will allow loops with a fixed width VF of 1 to vectorize
if the -enable-strict-reductions flag is set. However, the loop vectorizer
will not use ordered reductions if `VF.isScalar()` and the resulting
vectorized loop will be out of order.

This patch removes `VF.isVector()` when checking if ordered reductions
should be used. Also, instead of converting the FAdds to reductions if the
VF = 1, operands of the FAdds are changed such that the order is preserved.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D104533
2021-06-28 11:27:10 +01:00
Florian Hahn 80aa7e147e
[VPlan] Merge predicated-triangle regions, after sinking.
Sinking scalar operands into predicated-triangle regions may allow
merging regions. This patch adds a VPlan-to-VPlan transform that tries
to merge predicate-triangle regions after sinking.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D100260
2021-06-28 11:10:38 +01:00
Florian Hahn f1a6430272
[VPlan] Track both incoming values for first-order recurrence phis.
This patch updates VPWidenPHI recipes for first-order recurrences to
also track the incoming value from the back-edge. Similar to D99294,
which did the same for reductions.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104197
2021-06-27 14:29:35 +01:00
Florian Hahn f6ba845da3
[VPlan] Fix indentation of check lines in sinking test (NFC). 2021-06-24 16:39:16 +01:00
Florian Hahn 833bdbe93c
[LV] Support sinking recipe in replicate region after another region.
This patch handles sinking a replicate region after another replicate
region. In that case, we can connect the sink region after the target
region. This properly handles the case for which an assertion has been
added in 337d765282.

Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=34842.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D103514
2021-06-24 13:58:42 +01:00
Eli Friedman 8f3d16905d [ScalarEvolution] Ensure backedge-taken counts are not pointers.
A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.

The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.

The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.

The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring.  It should eventually be fixed by future
improvements to isImpliedCond.

See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.

Differential Revision: https://reviews.llvm.org/D103656
2021-06-21 16:24:16 -07:00
Bjorn Pettersson 4c7f820b2b Update @llvm.powi to handle different int sizes for the exponent
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.

The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.

One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.

Differential Revision: https://reviews.llvm.org/D99439
2021-06-17 09:38:28 +02:00
Florian Hahn 9e77526d46
[VPlan] Add additional tests for region merging.
Add additional tests suggested in D100260.

Also drop the unneeded `indvars.` prefix from induction phi name.
2021-06-14 11:25:06 +01:00
Mindong Chen 8449af41e5 [LoopVectorize] precommit pr50686.ll for D104148 2021-06-14 13:58:25 +08:00
Florian Hahn 0d9e8f5f4b
[VPlan] Add more sinking/merging tests with predicated loads/stores. 2021-06-12 15:36:51 +01:00
Joachim Meyer 4f01122c3f [LV] Parallel annotated loop does not imply all loads can be hoisted.
As noted in https://bugs.llvm.org/show_bug.cgi?id=46666, the current behavior of assuming if-conversion safety if a loop is annotated parallel (`!llvm.loop.parallel_accesses`), is not expectable, the documentation for this behavior was since removed from the LangRef again, and can lead to invalid reads.
This was observed in POCL (https://github.com/pocl/pocl/issues/757) and would require similar workarounds in current work at hipSYCL.

The question remains why this was initially added and what the implications of removing this optimization would be.
Do we need an alternative mechanism to propagate the information about legality of if-conversion?
Or is the idea that conditional loads in `#pragma clang loop vectorize(assume_safety)` can be executed unmasked without additional checks flawed in general?
I think this implication is not part of what a user of that pragma (and corresponding metadata) would expect and thus dangerous.

Only two additional tests failed, which are adapted in this patch. Depending on the further direction force-ifcvt.ll should be removed or further adapted.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D103907
2021-06-10 23:37:57 +02:00
Kerry McLaughlin 5db52751a5 [CostModel] Return an invalid cost for memory ops with unsupported types
Fixes getTypeConversion to return `TypeScalarizeScalableVector` when a scalable vector
type cannot be legalized by widening/splitting. When this is the method of legalization
found, getTypeLegalizationCost will return an Invalid cost.

The getMemoryOpCost, getMaskedMemoryOpCost & getGatherScatterOpCost functions already call
getTypeLegalizationCost and will now also return an Invalid cost for unsupported types.

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D102515
2021-06-08 12:07:36 +01:00
Kerry McLaughlin 14eeccfe9a [LoopVectorize] Don't use strict reductions when reordering is allowed
If the `-enable-strict-reductions` flag is set to true, then currently we will
always choose to vectorize the loop with strict in-order reductions. This is
not necessary where we allow the reordering of FP operations, such as
when loop hints are passed via metadata.

This patch moves useOrderedReductions so that we can also check whether
loop hints allow reordering, in which case we should use the default
behaviour of vectorizing with unordered reductions.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D103814
2021-06-08 10:39:29 +01:00
Philip Reames 3c6e419198 [SCEV] Properly guard reasoning about infinite loops being UB on mustprogress
Noticed via code inspection. We changed the semantics of the IR when we added mustprogress, and we appear to have not updated this location.

Differential Revision: https://reviews.llvm.org/D103834
2021-06-07 14:47:36 -07:00
Florian Hahn 1465e7770b
[VPlan] Print successors of VPRegionBlocks.
The non-DOT printing does not include the successors of VPregionBlocks.
This patch use the same style for printing successors as for
VPBasicBlock.

I think the printing of successors could be a bit improved further, as
at the moment it is hard to ensure a check line matches all successors.
But that can be done as follow-up.

Reviewed By: a.elovikov

Differential Revision: https://reviews.llvm.org/D103515
2021-06-07 17:57:21 +01:00
Florian Hahn 8344e215ec
[LV] Update more target-specific tests after 23c2f2e6b2. 2021-06-07 12:13:21 +01:00
Florian Hahn 23c2f2e6b2
[LV] Mark increment of main vector loop induction variable as NUW.
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.

If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.

This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.

At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.

Note that this could probably be further improved by using information
from the original IV.

Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g

Part of a set of fixes required for PR50412.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D103255
2021-06-07 10:47:52 +01:00
Eli Friedman 925cd6b467 Regenerate a few tests related to SCEV.
In preparation for https://reviews.llvm.org/D103656
2021-06-04 13:35:00 -07:00
Sander de Smalen d41cb6bb26 [LV] Build and cost VPlans for scalable VFs.
This patch uses the calculated maximum scalable VFs to build VPlans,
cost them and select a suitable scalable VF.

Reviewed By: paulwalker-arm

Differential Revision: https://reviews.llvm.org/D98722
2021-06-02 14:47:47 +01:00
Douglas Yung 18225d4576 Mark test as requiring asserts. 2021-06-01 02:01:01 -07:00
Florian Hahn aa00b1d763
[LV] Try to sink users recursively for first-order recurrences.
Update isFirstOrderRecurrence to  explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.

Fixes PR44286 (and another PR or two).

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D84951
2021-05-31 19:55:33 +01:00
Juneyoung Lee 7161bb87c9 [InsCombine] Fix a few remaining vec transforms to use poison instead of undef
This is a patch that replaces shufflevector and insertelement's placeholder value with poison.

Underlying motivation is to fix the semantics of shufflevector with undef mask to return poison instead
(D93818)
The consensus has been made in the late 2020 via mailing list as well as the thread in https://bugs.llvm.org/show_bug.cgi?id=44185 .

This patch is a simple syntactic change to the existing code, hence directly pushed as a commit.
2021-05-31 18:47:09 +09:00
Luke c4c3869554 [RISCV] Enable interleaved vectorization for RVV
Enable interleaved vectorization for RVV.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D101469
2021-05-29 11:03:27 +08:00
Florian Hahn ec1f6f7e3f
Revert "[LAA] Support pointer phis in loop by analyzing each incoming pointer."
This reverts commit 1ed7f8ede5.

This change can cause loop-distribute to crash in some cases. Revert
until I have more time to wrap up a fix.

See  PR50296, PR5028 and D102266.
2021-05-28 10:33:52 +01:00
Florian Hahn 38641ddf3e
[VPlan] Do not sink uniform recipes in sinkScalarOperands.
For uniform ReplicateRecipes, only the first lane should be used, so
sinking them would mean we have to compute the value of the first lane
multiple times. Also, at the moment, sinking them causes a crash because
the value of the first lane is re-used by all users.

Reported post-commit for D100258.
2021-05-27 14:07:48 +01:00
Kerry McLaughlin 9f76a85260 [LoopVectorize] Enable strict reductions when allowReordering() returns false
When loop hints are passed via metadata, the allowReordering function
in LoopVectorizationLegality will allow the order of floating point
operations to be changed:

  bool allowReordering() const {
    // When enabling loop hints are provided we allow the vectorizer to change
    // the order of operations that is given by the scalar loop. This is not
    // enabled by default because can be unsafe or inefficient.

The -enable-strict-reductions flag introduced in D98435 will currently only
vectorize reductions in-loop if hints are used, since canVectorizeFPMath()
will return false if reordering is not allowed.

This patch changes canVectorizeFPMath() to query whether it is safe to
vectorize the loop with ordered reductions if no hints are used. For
testing purposes, an additional flag (-hints-allow-reordering) has been
added to disable the reordering behaviour described above.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D101836
2021-05-26 13:59:12 +01:00
Kerry McLaughlin 6b0fe3c63b [NFC] Add CHECK lines for unordered FP reductions
An additional RUN line has been added to both strict-fadd.ll &
scalable-strict-fadd.ll to ensure the correct behaviour of these
tests where `-enable-strict-reductions` is false.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D103015
2021-05-26 11:00:20 +01:00
serge-sans-paille 4ab3041acb Revert "[NFC] remove explicit default value for strboolattr attribute in tests"
This reverts commit bda6e5bee0.

See https://lab.llvm.org/buildbot/#/builders/109/builds/15424 for instance
2021-05-24 19:43:40 +02:00
serge-sans-paille bda6e5bee0 [NFC] remove explicit default value for strboolattr attribute in tests
Since d6de1e1a71, no attributes is quivalent to
setting attribute to false.

This is a preliminary commit for https://reviews.llvm.org/D99080
2021-05-24 19:31:04 +02:00
Florian Hahn 65d3dd7c88
[VPlan] Add first VPlan version of sinkScalarOperands.
This patch adds a first VPlan-based implementation of sinking of scalar
operands.

The current version traverse a VPlan once and processes all operands of
a predicated REPLICATE recipe. If one of those operands can be sunk,
it is moved to the block containing the predicated REPLICATE recipe.
Continue with processing the operands of the sunk recipe.

The initial version does not re-process candidates after other recipes
have been sunk. It also cannot partially sink induction increments at
the moment. The VPlan only contains WIDEN-INDUCTION recipes and if the
induction is used for example in a GEP, only the first lane is used and
in the lowered IR the adds for the other lanes can be sunk into the
predicated blocks.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D100258
2021-05-24 15:29:58 +01:00
Sander de Smalen 1e6630311c NFC: cleaned up and renamed scalable-vf-analysis.ll -> scalable-vectorization.ll
* Removes unnecessary loop hints.
* Use RUN line with '-scalable-vectorization=preferred' instead of 'on'
  for the maximize-bandwidth behaviour. This prepares the test for enabling
  scalable vectorization; With a forced instruction-cost of 1, 'on' will
  always favour fixed-width VF to be chosen, whereas with 'preferred'
  we can check that the maximize-bandwidth option in combination with
  scalable-vectorization=preferred actually picks a scalable VF.
* Renamed to scalable-vectorization.ll, because a follow-up patch will
  test more than just analysis.
2021-05-23 19:53:51 +01:00
Simon Pilgrim 2fca555866 [CostModel][X86] Improve fneg costs
These are always lowered as xor ops, so are always cheap
2021-05-21 17:23:45 +01:00
Luke 1595994b28 [RISCV] Add legality check for vectorizing reduction
Check if it is legal to vectorize reduction.

Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D99509
2021-05-20 17:45:46 +08:00
Sander de Smalen 4f86aa650c [LV] Add -scalable-vectorization=<option> flag.
This patch adds a new option to the LoopVectorizer to control how
scalable vectors can be used.

Initially, this suggests three levels to control scalable
vectorization, although other more aggressive options can be added in
the future.

The possible options are:
- Disabled:   Disables vectorization with scalable vectors.
- Enabled:    Vectorize loops using scalable vectors or fixed-width
              vectors, but favors fixed-width vectors when the cost
              is a tie.
- Preferred:  Like 'Enabled', but favoring scalable vectors when the
              cost-model is inconclusive.

Reviewed By: paulwalker-arm, vkmr

Differential Revision: https://reviews.llvm.org/D101945
2021-05-19 10:40:56 +01:00
Florian Hahn fff84d3a2e
[LV] Add test which sinks a load a across an aliasing store. 2021-05-18 12:25:57 +01:00
Sander de Smalen 81fdc73e5d [LV] Return both fixed and scalable Max VF from computeMaxVF.
This patch introduces a new class, MaxVFCandidates, that holds the
maximum vectorization factors that have been computed for both scalable
and fixed-width vectors.

This patch is intended to be NFC for fixed-width vectors, although
considering a scalable max VF (which is disabled by default) pessimises
tail-loop elimination, since it can no longer determine if any chosen VF
(less than fixed/scalable MaxVFs) is guaranteed to handle all vector
iterations if the trip-count is known. This issue will be addressed in
a future patch.

Reviewed By: fhahn, david-arm

Differential Revision: https://reviews.llvm.org/D98721
2021-05-18 08:03:48 +01:00
Philip Reames ed9d70781b Revert "[LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 3)"
This reverts commit 6d3e3ae8a9.

Still seeing PPC build bot failures, and one arm self host bot failing.  I'm officially stumped, and need help from a bot owner to reduce.
2021-05-17 20:53:28 -07:00
Philip Reames 6d3e3ae8a9 [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 3)
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll

Previous commit message...

This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac).  The original commit caused a PPC build bot failure we never really got to the bottom of.  I can't reproduce the issue, and the bot owner was non-responsive.  In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025.  My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.

Original commit message follows...

If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-05-17 16:59:25 -07:00
Philip Reames d16da7343d Revert "[LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute"
This reverts commit c23ce54b36.  I apparently missed some newly added non-x86 tests.
2021-05-17 16:49:32 -07:00
Philip Reames c23ce54b36 [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac).  The original commit caused a PPC build bot failure we never really got to the bottom of.  I can't reproduce the issue, and the bot owner was non-responsive.  In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025.  My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.

Original commit message follows...

If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-05-17 16:33:56 -07:00
Florian Hahn 68d52f0dbe
[LV] Add another more complex first-order recurrence sinking test. 2021-05-14 21:26:34 +01:00
Florian Hahn c62f984814
[LV] Add a few more complex first-order recurrence tests. 2021-05-14 17:27:17 +01:00
Florian Hahn bdada7546e
[VPlan] Adjust assert in splitBlock to allow splitting at end.
SplitAt should only be dereferenced in the assert if it does not point
to the end of the block. This fixes a crash in the added test case.
2021-05-13 13:36:35 +01:00
David Sherwood b7a11274f9 [LoopVectorize] Fix scalarisation crash in widenPHIInstruction for scalable vectors
In InnerLoopVectorizer::widenPHIInstruction there are cases where we have
to scalarise a pointer induction variable after vectorisation. For scalable
vectors we already deal with the case where the pointer induction variable
is uniform, but we currently crash if not uniform. For fixed width vectors
we calculate every lane of the scalarised pointer induction variable for a
given VF, however this cannot work for scalable vectors. In this case I
have added support for caching the whole vector value for each unrolled
part so that we can always extract an arbitrary element. Additionally, we
still continue to cache the known minimum number of lanes too in order
to improve code quality by avoiding an extractelement operation.

I have adapted an existing test `pointer_iv_mixed` from the file:

  Transforms/LoopVectorize/consecutive-ptr-uniforms.ll

and added it here for scalable vectors instead:

  Transforms/LoopVectorize/AArch64/sve-widen-phi.ll

Differential Revision: https://reviews.llvm.org/D101294
2021-05-12 11:02:11 +01:00
Florian Hahn faebc6bf10
[VPlan] Register recipe for instr if the simplified value is recipe.
If the simplified VPValue is a recipe, we need to register it for Instr,
in case it needs to be recorded. The way this is handled in general may
change soon, following some post-commit comments.

This fixes PR50298.
2021-05-11 14:32:34 +01:00
Florian Hahn 93a9a8a8d9
[VecLib] Add support for vector fns from Darwin's libsystem.
This patch adds support for Darwin's libsystem math vector functions to
TLI. Darwin's libsystem provides a range of vector functions for libm
functions.

This initial patch only adds the 2 x double and 4 x float versions,
which are available on both X86 and ARM64. On X86, wider vector versions
are supported as well.

Reviewed By: jroelofs

Differential Revision: https://reviews.llvm.org/D101856
2021-05-10 21:19:58 +01:00
Florian Hahn 2bf34c0a93
[VPlan] Add test for sink scalars and merging using VPlan.
Add a couple of tests with scalars that can be sunk to their predicated
users.

This pre-commits tests for D100258.
2021-05-08 16:47:48 +01:00
Caroline Concatto cf06c8eee3 [LoopVectorize][SVE] Remove assert for scalable vector in InnerLoopVectorizer::fixReduction
The function fixReduction used to assert/crash for scalable vector when
a vector reduce could be done with a smaller vector.
This patch removes this assertion as it is safe to use scalable vector for
vector reduce and truncate.

Differential Revision: https://reviews.llvm.org/D101260
2021-05-07 09:37:37 +01:00
David Green 4979c90458 [LV] Account for tripcount when calculation vectorization profitability
The loop vectorizer will currently assume a large trip count when
calculating which of several vectorization factors are more profitable.
That is often not a terrible assumption to make as small trip count
loops will usually have been fully unrolled. There are cases however
where we will try to vectorize them, and especially when folding the
tail by masking can incorrectly choose to vectorize loops that are not
beneficial, due to the folded tail rounding the iteration count up for
the vectorized loop.

The motivating example here has a trip count of 5, so either performs 5
scalar iterations or 2 vector iterations (with VF=4). At a high enough
trip count the vectorization becomes profitable, but the rounding up to
2 vector iterations vs only 5 scalar makes it unprofitable.

This adds an alternative cost calculation when we know the max trip
count and are folding tail by masking, rounding the iteration count up
to the correct number for the vector width. We still do not account for
anything like setup cost or the mixture of vector and scalar loops, but
this is at least an improvement in a few cases that we have had
reported.

Differential Revision: https://reviews.llvm.org/D101726
2021-05-06 12:36:46 +01:00
Kerry McLaughlin 8c9742bd23 [SVE][LoopVectorize] Add support for scalable vectorization of first-order recurrences
Adds support for scalable vectorization of loops containing first-order recurrences, e.g:
```
for(int i = 0; i < n; i++)
  b[i] =  a[i] + a[i - 1]
```
This patch changes fixFirstOrderRecurrence for scalable vectors to take vscale into
account when inserting into and extracting from the last lane of a vector.
CreateVectorSplice has been added to construct a vector for the recurrence, which
returns a splice intrinsic for scalable types. For fixed-width the behaviour
remains unchanged as CreateVectorSplice will return a shufflevector instead.

The tests included here are the same as test/Transform/LoopVectorize/first-order-recurrence.ll

Reviewed By: david-arm, fhahn

Differential Revision: https://reviews.llvm.org/D101076
2021-05-06 11:35:39 +01:00
Juneyoung Lee 8a156d1c27 [InstCombine] Fully disable select to and/or i1 folding
This is a patch that disables the poison-unsafe select -> and/or i1 folding.

It has been blocking D72396 and also has been the source of a few miscompilations
described in llvm.org/pr49688 .
D99674 conditionally blocked this folding and successfully fixed the latter one.
The former one was still blocked, and this patch addresses it.

Note that a few test functions that has `_logical` suffix are now deoptimized.
These are created by @nikic to check the impact of disabling this optimization
by copying existing original functions and replacing and/or with select.

I can see that most of these are poison-unsafe; they can be revived by introducing
freeze instruction. I left comments at fcmp + select optimizations (or-fcmp.ll, and-fcmp.ll)
because I think they are good targets for freeze fix.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D101191
2021-05-06 09:29:52 +09:00
Philip Reames 80e8025083 [LV] Workaround PR49900 (a crash due to analyzing partially mutated IR)
LoopVectorize has a fairly deeply baked in design problem where it will try to query analysis (primarily SCEV, but also ValueTracking) in the midst of mutating IR. In particular, the intermediate IR state does not represent the semantics of the original (or final) program.

Fixing this for real is hard, but all of the cases seen so far share a common symptom. In cases seen to date, the analysis being queried is the computation of the original loop's trip count. We can fix this particular instance of the issue by simply computing the trip count early, and caching it.

I want to be really clear that this is nothing but a workaround. It does nothing to fix the root issue, and at best, delays the time until we have to fix this for real. Florian and I have discussed an eventual solution in the review comments for https://reviews.llvm.org/D100663, but it's a lot of work.

Test taken from https://reviews.llvm.org/D100663.

Differential Revision: https://reviews.llvm.org/D101487
2021-05-05 09:56:28 -07:00
Florian Hahn ccebf7a109
[VPlan] Properly handle sinking of replicate regions.
This patch updates the code that sinks recipes required for first-order
recurrences to properly handle replicate-regions. At the moment, the
code would just move the replicate recipe out of its replicate-region,
producing an invalid VPlan.

When sinking a recipe in a replicate-region, we have to sink the whole
region. To do that, we first need to split the block at the target
recipe and move the region in between.

This patch also adds a splitAt helper to VPBasicBlock to split a
VPBasicBlock at a given iterator.

Fixes PR50009.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D100751
2021-05-04 22:36:01 +01:00
Florian Hahn 4ba8720f88
[VPlan] Representing backedge def-use feeding reduction phis.
This patch updates the code handling reduction recipes to also keep
track of the incoming value from the latch in the recipe. This is needed
to model the def-use chains completely in VPlan, so that it is possible
to replace the incoming value with an arbitrary VPValue.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D99294
2021-05-04 16:33:22 +01:00
Sander de Smalen 9931ae645e Reland "[LV] Calculate max feasible scalable VF."
Relands https://reviews.llvm.org/D98509

This reverts commit 51d648c119.
2021-05-04 15:44:41 +01:00
Juneyoung Lee e639bccefd run update_test_checks.py for the tests in D101191 (NFC)
This is an NFC that reruns update_test_checks.py on the tests that are
going to be updated in D101191.
2021-05-02 13:11:57 +09:00
Sander de Smalen 51d648c119 Revert "[LV] Calculate max feasible scalable VF."
Temporarily reverting this patch due to some unexpected issue found
by one of the PPC buildbots.

This reverts commit 584e9b6e4b.
2021-04-29 16:04:37 +01:00
Sjoerd Meijer 837fded984 Follow up of rGddb3b26a1269: added 'requires asserts' to test case. 2021-04-29 08:34:24 +01:00
Bardia Mahjour ddb3b26a12 [LV] Consider Loop Unroll Hints When Making Interleave Decisions
This patch causes the loop vectorizer to not interleave loops that have
nounroll loop hints (llvm.loop.unroll.disable and llvm.loop.unroll_count(1)).
Note that if a particular interleave count is being requested
(through llvm.loop.interleave_count), it will still be honoured, regardless
of the presence of nounroll hints.

Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D101374
2021-04-28 17:27:52 -04:00
Florian Hahn 1ed7f8ede5
[LAA] Support pointer phis in loop by analyzing each incoming pointer.
SCEV does not look through non-header PHIs inside the loop. Such phis
can be analyzed by adding separate accesses for each incoming pointer
value.

This results in 2 more loops vectorized in SPEC2000/186.crafty and
avoids regressions when sinking instructions before vectorizing.

Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D101286
2021-04-28 20:19:40 +01:00
David Sherwood 00e65f3345 [LoopVectorize][SVE] Fix crash when vectorising FP negation
This patch fixes a crash encountered when vectorising the following loop:

 void foo(float *dst, float *src, long long n) {
   for (long long i = 0; i < n; i++)
     dst[i] = -src[i];
 }

using scalable vectors. I've added a test to

 Transforms/LoopVectorize/AArch64/sve-basic-vec.ll

as well as cleaned up the other tests in the same file.

Differential Revision: https://reviews.llvm.org/D98054
2021-04-28 15:22:35 +01:00
David Sherwood 6998f8ae2d [LoopVectorize] Simplify scalar cost calculation in getInstructionCost
This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.

  unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
  return N * TTI.getArithmeticInstrCost(...

After some investigation it seems that there are only these cases that occur
in practice:

1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast/PHI with scalar uses, or b) this is an update to an induction
variable that remains scalar.

I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. PHI nodes are costed separately and were never previously
multiplied by VF. For all other cases I have added an assert that none of
the users needs scalarising, which didn't fire in any unit tests.

Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.

I have also added a new test for the case when a pointer PHI feeds directly
into a store that will be scalarised as we were previously never testing it.

Differential Revision: https://reviews.llvm.org/D99718
2021-04-28 13:41:07 +01:00
Sander de Smalen 584e9b6e4b [LV] Calculate max feasible scalable VF.
This patch also refactors the way the feasible max VF is calculated,
although this is NFC for fixed-width vectors.

After this change scalable VF hints are no longer truncated/clamped
to a shorter scalable VF, nor does it drop the 'scalable flag' from
the suggested VF to vectorize with a similar VF that is fixed.

Instead, the hint is ignored which means the vectorizer is free
to find a more suitable VF, using the CostModel to determine the
best possible VF.

Reviewed By: c-rhodes, fhahn

Differential Revision: https://reviews.llvm.org/D98509
2021-04-28 12:30:00 +01:00
Kerry McLaughlin 9cc217ab36 [LoopVectorize] Prevent multiple Phis being generated with in-order reductions
When using the -enable-strict-reductions flag where UF>1 we generate multiple
Phi nodes, though only one of these is used as an input to the vector.reduce.fadd
intrinsics. The unused Phi nodes are removed later by instcombine.

This patch changes widenPHIInstruction/fixReduction to only generate
one Phi, and adds an additional test for unrolling to strict-fadd.ll

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D100570
2021-04-28 11:29:01 +01:00
David Sherwood 6968520c3b Revert "[LoopVectorize] Simplify scalar cost calculation in getInstructionCost"
This reverts commit 4afeda9157.
2021-04-27 15:46:03 +01:00
David Sherwood 4afeda9157 [LoopVectorize] Simplify scalar cost calculation in getInstructionCost
This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.

  unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
  return N * TTI.getArithmeticInstrCost(...

After some investigation it seems that there are only these cases that occur
in practice:

1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast/PHI with scalar uses, or b) this is an update to an induction
variable that remains scalar.

I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. PHI nodes are costed separately and were never previously
multiplied by VF. For all other cases I have added an assert that none of
the users needs scalarising, which didn't fire in any unit tests.

Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.

I have also added a new test for the case when a pointer PHI feeds directly
into a store that will be scalarised as we were previously never testing it.

Differential Revision: https://reviews.llvm.org/D99718
2021-04-27 15:26:15 +01:00
Florian Hahn a950f66de2
[LV,LAA] Add test cases with pointer phis in loops.
Pre-commits tests for D101286.
2021-04-27 13:49:32 +01:00
David Sherwood cf7276820c [NFC] Add scalable vectorisation tests for int/FP <> int/FP conversions
We can already vectorize loops that involve int<>int, fp<>fp, int<>fp
and fp<>int conversions, however we didn't previously have any tests
for them. This patch adds some tests for each conversion type.

Differential Revision: https://reviews.llvm.org/D99951
2021-04-26 11:01:14 +01:00
David Sherwood a458b7855e [AArch64] Add AArch64TTIImpl::getMaskedMemoryOpCost function
When vectorising for AArch64 targets if you specify the SVE attribute
we automatically then treat masked loads and stores as legal. Also,
since we have no cost model for masked memory ops we believe it's
cheap to use the masked load/store intrinsics even for fixed width
vectors. This can lead to poor code quality as the intrinsics will
currently be scalarised in the backend. This patch adds a basic
cost model that marks fixed-width masked memory ops as significantly
more expensive than for scalable vectors.

Tests for the cost model are added here:

  Transforms/LoopVectorize/AArch64/masked-op-cost.ll

Differential Revision: https://reviews.llvm.org/D100745
2021-04-26 11:00:03 +01:00
Joe Ellis 2c551aedcf [LoopVectorize] Fix bug where predicated loads/stores were dropped
This commit fixes a bug where the loop vectoriser fails to predicate
loads/stores when interleaving for targets that support masked
loads and stores.

Code such as:

     1  void foo(int *restrict data1, int *restrict data2)
     2  {
     3    int counter = 1024;
     4    while (counter--)
     5      if (data1[counter] > data2[counter])
     6        data1[counter] = data2[counter];
     7  }

... could previously be transformed in such a way that the predicated
store implied by:

    if (data1[counter] > data2[counter])
       data1[counter] = data2[counter];

... was lost, resulting in miscompiles.

This bug was causing some tests in llvm-test-suite to fail when built
for SVE.

Differential Revision: https://reviews.llvm.org/D99569
2021-04-22 15:05:54 +00:00
Alexey Bataev 673e2f1b70 [COST][AARCH64] Improve cost of reverse shuffles for AArch64.
Introduced the cost of thre reverse shuffles for AArch64, currently just
copied the costs for PermuteSingleSrc.

Differential Revision: https://reviews.llvm.org/D100871
2021-04-20 13:47:56 -07:00
Roman Lebedev a1d283b71e
[NFC][LoopVectorize] Autogenerate check lines in pr45259.ll
We might as well test all of the codegen here.
2021-04-20 21:29:21 +03:00
Alexey Bataev 683dc41695 Update tests checks, NFC. 2021-04-20 10:20:15 -07:00
Sander de Smalen 86729538bd [LV] Let selectVectorizationFactor reason directly on VectorizationFactor.
Rather than maintaining two separate values, a `float` for the per-lane
cost and a Width for the VF, maintain a single VectorizationFactor which
comprises the two and also removes the need for converting an integer value
to float.

This simplifies the query when asking if one VF is more profitable than
another when we want to extend this for scalable vectors (which may
require additional options to determine if e.g. a scalable VF of the
some cost, is more profitable than a fixed VF of the same cost).

The patch isn't entirely NFC because it also fixes an issue in
selectEpilogueVectorizationFactor, where the cost passed to ProfitableVFs
no longer truncates the floating-point cost from `float` to `unsigned` to
then perform the calculation on the truncated cost. It now does
a cost comparison with the correct precision.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D100121
2021-04-20 09:54:45 +01:00
Roman Lebedev df9597cf5a
[X86][CostModel] X86TTIImpl::getShuffleCost(): subvector insertions are cheap
This is similar to the subvector extractions,
except that the 0'th subvector isn't free to insert,
because we generally don't know whether or not
the upper elements need to be preserved:
https://godbolt.org/z/rsxP5W4sW

This is needed to avoid regressions in D100684

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D100698
2021-04-19 13:24:58 +03:00
Kerry McLaughlin 62ee638a87 [NFC] Add tests for scalable vectorization of loops with in-order reductions
D98435 added support for in-order reductions and included tests for fixed-width
vectorization with the -enable-strict-reductions flag.

This patch adds similar tests to verify support for scalable vectorization of loops
with in-order reductions.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D100385
2021-04-19 11:15:55 +01:00
Roman Lebedev f3953a8aba
[NFC][LoopVectorize] Autogenerate check lines in X86/gather_scatter.ll test 2021-04-18 10:26:16 +03:00
Philip Reames ff55d01a8e [nofree] Restrict semantics to memory visible to caller
This patch clarifies the semantics of the nofree function attribute to make clear that it provides an "as if" semantic. That is, a nofree function is guaranteed not to free memory which existed before the call, but might allocate and then deallocate that same memory within the lifetime of the callee.

This is the result of the discussion on llvm-dev under the thread "Ambiguity in the nofree function attribute".

The most important part of this change is the LangRef wording. The rest is minor comment changes to emphasize the new semantics where code was accidentally consistent, and fix one place which wasn't consistent. That one place is currently narrowly used as it is primarily part of the ongoing (and not yet enabled) deref-at-point semantics work.

Differential Revision: https://reviews.llvm.org/D100141
2021-04-16 11:38:55 -07:00
Kerry McLaughlin 93f54fae9d [NFC] Remove the -instcombine flag from strict-fadd.ll
This also fixes a CHECK line in @fadd_strict_unroll which ensures the
changes made to fixReduction() to support in-order reductions with
unrolling are being tested correctly.
2021-04-15 15:10:48 +01:00
David Sherwood ea14df695e [SVE][LoopVectorize] Fix crash in InnerLoopVectorizer::widenPHIInstruction
There were a few places in widenPHIInstruction where calculations of
offsets were failing to take the runtime calculation of VF into
account for scalable vectors. I've fixed those cases in this patch
as well as adding an assert that we should not be scalarising for
scalable vectors.

Tests are added here:

  Transforms/LoopVectorize/AArch64/sve-widen-phi.ll

Differential Revision: https://reviews.llvm.org/D99254
2021-04-15 10:51:49 +01:00
Roman Lebedev a36bb7fd76
[InstCombine] (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the or is actually an add
https://alive2.llvm.org/ce/z/Coc5yf
2021-04-11 18:08:08 +03:00
Roman Lebedev d1ebdbff12
[NFC][LoopVectorize] Autogenerate interleaved-accesses.ll 2021-04-11 18:08:08 +03:00
Thomas Preud'homme 623475248a [test, LoopVectorize] Fix use of var defined in CHECK-NOT
LLVM test Transforms/LoopVectorize/pr34681.ll tries to check for the
absence of a sequence of instructions with several CHECK-NOT with one of
those directives using a variable defined in another. However CHECK-NOT
are checked independently so that is using a variable defined in a
pattern that should not occur in the input.

This commit only checks for the absence of icmp ne 1 which rules out the
presence of the whole sequence and does not involve an undefined
variable.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D99582
2021-04-09 10:01:57 +01:00
David Green 8675ef100f [LV] Logical and/or select costs
D99674 stopped the folding of certain select operations into and/or, due
to incorrect folding in the presence of poison. D97360 added some costs
to attempt to account for the change, but only worked at the getUserCost
level, not the getCmpSelInstrCost that the vectorizer will use directly.
This adds similar logic into the vectorizer to handle these logical
and/or selects, treating them like and/or directly.

This fixes 60% performance regressions from code like the attached test
case.

Differential Revision: https://reviews.llvm.org/D99884
2021-04-08 10:39:47 +01:00
David Green 1a4d3d0bca [LV] Add a logical and/or select cost test. NFC 2021-04-08 10:27:06 +01:00
Sander de Smalen 672f673004 [SVE] Remove checks for warnings in scalable-vector tests.
After D98856 these tests will by default break (fatal_error) if any of
the wrong interfaces are used, so there's no longer a need to have a
RUN line that checks for a warning message emitted by the compiler.
2021-04-07 15:59:32 +01:00
Kerry McLaughlin 7344f3d39a [LoopVectorize] Add strict in-order reduction support for fixed-width vectorization
Previously we could only vectorize FP reductions if fast math was enabled, as this allows us to
reorder FP operations. However, it may still be beneficial to vectorize the loop by moving
the reduction inside the vectorized loop and making sure that the scalar reduction value
be an input to the horizontal reduction, e.g:

  %phi = phi float [ 0.0, %entry ], [ %reduction, %vector_body ]
  %load = load <8 x float>
  %reduction = call float @llvm.vector.reduce.fadd.v8f32(float %phi, <8 x float> %load)

This patch adds a new flag (IsOrdered) to RecurrenceDescriptor and makes use of the changes added
by D75069 as much as possible, which already teaches the vectorizer about in-loop reductions.
For now in-order reduction support is off by default and controlled with the `-enable-strict-reductions` flag.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D98435
2021-04-06 14:45:34 +01:00
Kerry McLaughlin 857b8a73da [LoopVectorize] Change the identity element for FAdd
Changes getRecurrenceIdentity to always return a neutral value of -0.0 for FAdd.

Reviewed By: dmgreen, spatel

Differential Revision: https://reviews.llvm.org/D98963
2021-04-06 12:13:43 +01:00
Sanjay Patel 7a4abc07dd [LoopVectorize] auto-generate complete checks; NFC
We can't see how much overhead/redundancy is being
created with the partial checks.

To make it smaller and easier to read, I reduced the
vectorization factor because that does not add new
information - it just duplicates things.
2021-04-01 11:55:41 -04:00
Philip Reames e2c6621e63 [deref-at-point] restrict inference of dereferenceability based on allocsize attribute
Support deriving dereferenceability facts from allocation sites with known object sizes while correctly accounting for any possibly frees between allocation and use site. (At the moment, we're conservative and only allowing it in functions where we know we can't free.)

This is part of the work on deref-at-point semantics. I'm making the change unconditional as the miscompile in this case is way too easy to trip by accident, and the optimization was only recently added (by me).

There will be a follow up patch wiring through TLI since that should now be doable without introducing widespread miscompiles.

Differential Revision: https://reviews.llvm.org/D95815
2021-04-01 08:34:40 -07:00
David Sherwood e3a13304fc [NFC] Add tests for scalable vectorization of loops with large stride acesses
This patch just adds tests that we can vectorize loop such as these:

  for (i = 0; i < n; i++)
    dst[i * 7] += 1;

and

  for (i = 0; i < n; i++)
    if (cond[i])
      dst[i * 7] += 1;

using scalable vectors, where we expect to use gathers and scatters in the
vectorized loop. The vector of pointers used for the gather is identical
to those used for the scatter so there should be no memory dependences.

Tests are added here:

  Transforms/LoopVectorize/AArch64/sve-large-strides.ll

Differential Revision: https://reviews.llvm.org/D99192
2021-04-01 10:25:06 +01:00
Sander de Smalen 7108b2dec1 [SVE] Fix LoopVectorizer test scalalable-call.ll
This marks FSIN and other operations to EXPAND for scalable
vectors, so that they are not assumed to be legal by the cost-model.

Depends on D97470

Reviewed By: dmgreen, paulwalker-arm

Differential Revision: https://reviews.llvm.org/D97471
2021-03-31 14:52:49 +01:00
Thomas Preud'homme 8b5b03c279 [test, LoopVectorize] Fix use of var defined in CHECK-NOT
LLVM test Transforms/LoopVectorize/X86/x86-pr39099.ll tries to check for
the absence of a sequence of instructions with several CHECK-NOT with
one of those directives using a variable defined in another. However
CHECK-NOT are checked independently so that is using a variable defined
in a pattern that should not occur in the input.

This commit only checks for the absence of a widened load which rules
out the presence of the whole sequence and does not involve an undefined
variable.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D99583
2021-03-30 15:32:30 +01:00
David Sherwood a08c7736a7 [LoopVectorize] Add support for scalable vectorization of induction variables
This patch adds support for the vectorization of induction variables when
using scalable vectors, which required the following changes:

1. Removed assert from InnerLoopVectorizer::getStepVector.
2. Modified InnerLoopVectorizer::createVectorIntOrFpInductionPHI to use
   a runtime determined value for VF and removed an assert.
3. Modified InnerLoopVectorizer::buildScalarSteps to work for scalable
   vectors. I did this by calculating the full vector value for each Part
   of the unroll factor (UF) and caching this in the VP state. This means
   that we are always able to extract an arbitrary element from the vector
   if necessary. In addition to this, I also permitted the caching of the
   individual lane values themselves for the known minimum number of elements
   in the same way we do for fixed width vectors. This is a further
   optimisation that improves the code quality since it avoids unnecessary
   extractelement operations when extracting the first lane.
4. Added an assert to InnerLoopVectorizer::widenPHIInstruction, since while
   testing some code paths I noticed this is currently broken for scalable
   vectors.

Various tests to support different cases have been added here:

  Transforms/LoopVectorize/AArch64/sve-inductions.ll

Differential Revision: https://reviews.llvm.org/D98715
2021-03-30 11:13:31 +01:00
Florian Hahn c773d0f973
Recommit "[LV] Move runtime pointer size check to LVP::plan()."
Re-apply 25fbe803d4, with a small update to emit the right remark
class.

Original message:
    [LV] Move runtime pointer size check to LVP::plan().

    This removes the need for the remaining doesNotMeet check and instead
    directly checks if there are too many runtime checks for vectorization
    in the planner.

    A subsequent patch will adjust the logic used to decide whether to
    vectorize with runtime to consider their cost more accurately.

    Reviewed By: lebedev.ri
2021-03-29 16:14:27 +01:00
Florian Hahn 485c8ce733
Revert "[LV] Move runtime pointer size check to LVP::plan()."
This reverts commit 25fbe803d4.

This breaks a clang test which filters for the wrong remark type.
2021-03-29 14:41:53 +01:00
Florian Hahn 25fbe803d4
[LV] Move runtime pointer size check to LVP::plan().
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.

A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D98634
2021-03-29 14:12:29 +01:00
David Sherwood c39460cc4f Revert "[LoopVectorize] Simplify scalar cost calculation in getInstructionCost"
This reverts commit 240aa96cf2.
2021-03-26 11:36:53 +00:00
David Sherwood 240aa96cf2 [LoopVectorize] Simplify scalar cost calculation in getInstructionCost
This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.

  unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
  return N * TTI.getArithmeticInstrCost(...

After some investigation it seems that there are only these cases that occur
in practice:

1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast with scalar uses, or b) this is an update to an induction variable
that remains scalar.

I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. For all other cases I have added an assert that none of the
users needs scalarising, which didn't fire in any unit tests.

Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.

Differential Revision: https://reviews.llvm.org/D98512
2021-03-26 11:27:12 +00:00
Philip Reames 67e28173f1 Autogen test to account for tool output format change 2021-03-25 14:41:08 -07:00
Kerry McLaughlin 1f46499690 [SVE][LoopVectorize] Verify support for vectorizing loops with invariant loads
D95598 added a cost model for broadcast shuffle, which should enable loops
such as the following to vectorize, where the load of b[42] is invariant
and can be done using a scalar load + splat:

  for (int i=0; i<n; ++i)
    a[i] = b[i] + b[42];

This patch adds tests to verify that we can vectorize such loops.

Reviewed By: joechrisellis

Differential Revision: https://reviews.llvm.org/D98506
2021-03-25 14:10:21 +00:00
Craig Topper 512bae81cc [RISCV] Add basic cost modelling for fixed vector gather/scatter.
Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D99142
2021-03-24 11:14:14 -07:00
Florian Hahn 7fb6d9f958
[LV] Add 'fast' flag to test to make sure it will be vectorized.
This makes the test more robust with respect to when LV checks if the
floating point instructions in a loop can be vectorized.
2021-03-23 15:32:23 +00:00
Florian Hahn f759d512c8
[VPlan] Include name when printing after 93a9d2de8f.
The name is included when printing in DOT mode. Also print it in non-DOT
mode after 93a9d2de8f.

This will become more important to distinguish different plans once
VPlans are gradually refined.
2021-03-23 09:50:14 +00:00
Florian Hahn 42ec7a6f08
[VPlan] Add CHECK-LABEL to test/Transforms/LoopVectorize/vplan-printing.ll.
This patch adds CHECK-LABEL lines to
llvm/test/Transforms/LoopVectorize/vplan-printing.ll in order to make
failures slightly easier to diagnose.
2021-03-22 18:29:38 +00:00
David Green a2e0312cda [ARM] Tone down the MVE scalarization overhead
The scalarization overhead was set deliberately high for MVE, whilst the
codegen was new. It helps protect us against the negative ramifications
of mixing scalar and vector instructions. This decreases that,
especially for floating point where the cost of extracting/inserting
lane elements can be low. For integer the cost is still fairly high due
to the cross-register-bank copy, but is no longer n^2 in the length of
the vector.

In general, this will decrease the cost of scalarizing floats and long
integer vectors. i64 increase in cost, having a high cost before and
after this patch. For floats this allows up to start doing things like
vectorizing fdiv instructions, even if they are scalarized.

Differential Revision: https://reviews.llvm.org/D98245
2021-03-19 18:30:11 +00:00
Andrei Elovikov 93a9d2de8f [VPlan] Add plain text (not DOT's digraph) dumps
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
   inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
   LIT test would become too obscure. I can imagine that we'd want to CHECK
   against VPlan dumps after multiple transformations instead. That would be
   easier with plain text dumps than with DOT format.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D96628
2021-03-19 10:50:12 -07:00
Jeroen Dobbelaere 04790d9cfb Support intrinsic overloading on unnamed types
This patch adds support for intrinsic overloading on unnamed types.

This fixes PR38117 and PR48340 and will also be needed for the Full Restrict Patches (D68484).

The main problem is that the intrinsic overloading name mangling is using 's_s' for unnamed types.
This can result in identical intrinsic mangled names for different function prototypes.

This patch changes this by adding a '.XXXXX' to the intrinsic mangled name when at least one of the types is based on an unnamed type, ensuring that we get a unique name.

Implementation details:
- The mapping is created on demand and kept in Module.
- It also checks for existing clashes and recycles potentially existing prototypes and declarations.
- Because of extra data in Module, Intrinsic::getName needs an extra Module* argument and, for speed, an optional FunctionType* argument.
- I still kept the original two-argument 'Intrinsic::getName' around which keeps the original behavior (providing the base name).
-- Main reason is that I did not want to change the LLVMIntrinsicGetName version, as I don't know how acceptable such a change is
-- The current situation already has a limitation. So that should not get worse with this patch.
- Intrinsic::getDeclaration and the verifier are now using the new version.

Other notes:
- As far as I see, this should not suffer from stability issues. The count is only added for prototypes depending on at least one anonymous struct
- The initial count starts from 0 for each intrinsic mangled name.
- In case of name clashes, existing prototypes are remembered and reused when that makes sense.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D91250
2021-03-19 14:34:25 +01:00
Mehdi Amini 3614df3537 Revert "[VPlan] Add plain text (not DOT's digraph) dumps"
This reverts commit 6b053c9867.
The build is broken:

ld.lld: error: undefined symbol: llvm::VPlan::printDOT(llvm::raw_ostream&) const
>>> referenced by LoopVectorize.cpp
>>>               LoopVectorize.cpp.o:(llvm::LoopVectorizationPlanner::printPlans(llvm::raw_ostream&)) in archive lib/libLLVMVectorize.a
2021-03-18 19:20:39 +00:00
Andrei Elovikov 6b053c9867 [VPlan] Add plain text (not DOT's digraph) dumps
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
   inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
   LIT test would become too obscure. I can imagine that we'd want to CHECK
   against VPlan dumps after multiple transformations instead. That would be
   easier with plain text dumps than with DOT format.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D96628
2021-03-18 11:33:39 -07:00
Sanjay Patel c8893f3b78 [LoopVectorize] relax FMF constraint for FP induction
This makes the induction part of the loop vectorizer match the reduction part.
We do not need all of the fast-math-flags. For example, there are some that
clearly are not in play like arcp or afn.

If we want to make FMF constraints consistent across the IR optimizer, we
might want to add nsz too, but that's up for debate (users can't expect
associative FP math and preservation of sign-of-zero at the same time?).

The calling code was fixed to avoid miscompiles with:
1bee549737

Differential Revision: https://reviews.llvm.org/D98708
2021-03-18 08:11:22 -04:00
LemonBoy 4f024938e4 [LoopVectorize] Refine hasIrregularType predicate
The `hasIrregularType` predicate checks whether an array of N values of type Ty is "bitcast-compatible" with a <N x Ty> vector.
The previous check returned invalid results in some cases where there's some padding between the array elements: eg. a 4-element array of u7 values is considered as compatible with <4 x u7>, even though the vector is only loading/storing 28 bits instead of 32.

The problem causes LLVM to generate incorrect code for some targets: for AArch64 the vector loads/stores are lowered in terms of ubfx/bfi, effectively losing the top (N * padding bits).

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D97465
2021-03-17 17:03:47 +01:00
David Green 3c25c40d51 [LV] Account for the cost of predication of scalarized load/store
This adds the cost of an i1 extract and a branch to the cost in
getMemInstScalarizationCost when the instruction is predicated. These
predicated loads/store would generate blocks of something like:

    %c1 = extractelement <4 x i1> %C, i32 1
    br i1 %c1, label %if, label %else
  if:
    %sa = extractelement <4 x i32> %a, i32 1
    %sb = getelementptr inbounds float, float* %pg, i32 %sa
    %sv = extractelement <4 x float> %x, i32 1
    store float %sa, float* %sb, align 4
  else:

So this increases the cost by the extract and branch. This is probably
still too low in many cases due to the cost of all that branching, but
there is already an existing hack increasing the cost using
useEmulatedMaskMemRefHack. It will increase the cost of a memop if it is
a load or there are more than one store. This patch improves the cost
for when there is only a single store, and hopefully at some point in
the future the hack can be removed.

Differential Revision: https://reviews.llvm.org/D98243
2021-03-17 10:57:50 +00:00
Sanjay Patel d2eae990a1 [LoopVectorize] add FP induction test with minimal FMF; NFC 2021-03-16 12:05:34 -04:00
Caroline Concatto 3c03635d53 [SVE][LoopVectorize] Add support for scalable vectorization of loops with vector reverse
This patch adds support for reverse loop vectorization.
It is possible to vectorize the following loop:
```
  for (int i = n-1; i >= 0; --i)
    a[i] = b[i] + 1.0;
```
with fixed or scalable vector.
The loop-vectorizer will use 'reverse' on the loads/stores to make
sure the lanes themselves are also handled in the right order.
This patch adds support for scalable vector on IRBuilder interface to
create a reverse vector. The IR function
CreateVectorReverse lowers to experimental.vector.reverse for scalable vector
and keedp the original behavior for fixed vector using shuffle reverse.

Differential Revision: https://reviews.llvm.org/D95363
2021-03-16 07:51:59 +00:00
Roman Lebedev 78b8ce40ef
Reland [SCEV] Improve modelling for (null) pointer constants
This reverts commit 329aeb5db4,
and relands commit 61f006ac65.

This is a continuation of D89456.

As it was suggested there, now that SCEV models `PtrToInt`,
we can try to improve SCEV's pointer handling.
In particular, i believe, i will need this in the future
to further fix `SCEVAddExpr`operation type handling.

This removes special handling of `ConstantPointerNull`
from `ScalarEvolution::createSCEV()`, and add constant folding
into `ScalarEvolution::getPtrToIntExpr()`.
This way, `null` constants stay as such in SCEV's,
but gracefully become zero integers when asked.

Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D98147
2021-03-13 16:05:34 +03:00
Roman Lebedev 329aeb5db4
Temporairly evert "[SCEV] Improve modelling for (null) pointer constants"
This appears to have broken ubsan bot:
https://lab.llvm.org/buildbot/#/builders/85/builds/3062
https://reviews.llvm.org/D98147#2623549

It looks like LSR needs some kind of a change around insertion point handling.
Reverting until i have a fix.

This reverts commit 61f006ac65.
2021-03-13 09:10:28 +03:00
Roman Lebedev 61f006ac65
[SCEV] Improve modelling for (null) pointer constants
This is a continuation of D89456.

As it was suggested there, now that SCEV models `PtrToInt`,
we can try to improve SCEV's pointer handling.
In particular, i believe, i will need this in the future
to further fix `SCEVAddExpr`operation type handling.

This removes special handling of `ConstantPointerNull`
from `ScalarEvolution::createSCEV()`, and add constant folding
into `ScalarEvolution::getPtrToIntExpr()`.
This way, `null` constants stay as such in SCEV's,
but gracefully become zero integers when asked.

Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D98147
2021-03-12 22:11:58 +03:00
Florian Hahn 8904a82fa7
[LV] Fix name in CHECK pattern after fb3ca7076 2021-03-12 13:31:48 +00:00
Florian Hahn fb3ca70761
[LV] Account IV recipes being uniform in VPTransformState::get().
This patch fixes a crash when trying to get a scalar value using
VPTransformState::get() for uniform induction values or truncated
induction values. IVs and truncated IVs can be uniform and the updated
code accounts for that, fixing the crash.

This should fix
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=31981
2021-03-12 13:29:06 +00:00
Mauri Mustonen 0de8aeae72
[VPlan] Support to widen select intructions in VPlan native path
Add support to widen select instructions in VPlan native path by using a correct recipe when such instructions are encountered. This is already used by inner loop vectorizer.

Previously select instructions get handled by the wrong recipe and resulted in unreachable instruction errors like this one: https://bugs.llvm.org/show_bug.cgi?id=48139.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D97136
2021-03-10 20:59:53 +00:00
David Green fa450e98c5 [ARM] Test for predicated scalar memops. NFC
This test shows a case where we can potentially scalarize the store in a
predicated loop, creating a lot of instructions that would be much
slower than scalar.
2021-03-09 21:57:18 +00:00
Masoud Ataei 820f508b08 [PowerPC] Removing _massv place holder
Since P8 is the oldest machine supported by MASSV pass,
_massv place holder is removed and the oldest version of
MASSV functions is assumed. If the P9 vector specific is
detected in the compilation process, the P8 prefix will
be updated to P9.

Differential Revision: https://reviews.llvm.org/D98064
2021-03-08 21:43:24 +00:00
David Sherwood de3185647d [LoopVectorize][SVE] Add tests for vectorising conditional loads of invariant addresses
For loops of the form:

 void foo(int *a, int *cond, short *inv, long long n) {
   for (long long i=0; i<n; ++i) {
     if (cond[i])
       a[i] = *inv;
   }
 }

we can vectorise for SVE using masked gather loads where the array
of pointers is simply a vector splat of 'inv' and the mask comes
from the condition 'cond[i] != 0'.

This patch simply adds tests upstream to defend this capability.

Differential Revision: https://reviews.llvm.org/D98043
2021-03-08 08:38:31 +00:00
Mauri Mustonen 494b5ba364
[VPlan] Support to widen call intructions in VPlan native path
Add support to widen call instructions in VPlan native path by using a correct recipe when such instructions are encountered. This is already used by inner loop vectorizer.

Previously call instructions got handled by wrong recipes and resulted in unreachable instruction errors like this one: https://bugs.llvm.org/show_bug.cgi?id=48139.

Patch by Mauri Mustonen <mauri.mustonen@tuni.fi>

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D97278
2021-03-06 21:59:52 +00:00
Roman Lebedev b46c085d2b
[NFCI] SCEVExpander: emit intrinsics for integral {u,s}{min,max} SCEV expressions
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.

This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.

Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.

Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
2021-03-06 21:52:46 +03:00
David Sherwood fec0a0adac [SVE][LoopVectorize] Add support for extracting the last lane of a scalable vector
There are certain loops like this below:

  for (int i = 0; i < n; i++) {
    a[i] = b[i] + 1;
    *inv = a[i];
  }

that can only be vectorised if we are able to extract the last lane of the
vectorised form of 'a[i]'. For fixed width vectors this already works since
we know at compile time what the final lane is, however for scalable vectors
this is a different story. This patch adds support for extracting the last
lane from a scalable vector using a runtime determined lane value. I have
added support to VPIteration for runtime-determined lanes that still permit
the caching of values. I did this by introducing a new class called VPLane,
which describes the lane we're dealing with and provides interfaces to get
both the compile-time known lane and the runtime determined value. Whilst
doing this work I couldn't find any explicit tests for extracting the last
lane values of fixed width vectors so I added tests for both scalable and
fixed width vectors.

Differential Revision: https://reviews.llvm.org/D95139
2021-03-05 09:57:56 +00:00
Luke d28297ff68 [RISCV] Enable fixed-length vectorization of LoopVectorizer for RISC-V Vector
By implementing the method "unsigned RISCVTTIImpl::getRegisterBitWidth(bool Vector)",
fixed-length vectorization is enabled when possible. Without this method, the
"#pragma clang loop" directive is needed to enable vectorization(or the cost model
may inform LLVM that "Vectorization is possible but not beneficial").

Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D97549
2021-03-05 10:54:51 +08:00
Sanjay Patel 1bee549737 [LoopVectorize] propagate fast-math-flags from induction instructions
This code assumed that FP math was only permissable if it was
fully "fast", so it hard-coded "fast" when creating new instructions.

The underlying code already allows matching recurrences/reductions
that are only "reassoc", so this change should prevent the potential
miscompile seen in the test diffs (we created "fast" ops even though
none existed in the original code).

I don't know if we need to create the temporary IRBuilder objects
used here, so that could be follow-up clean-up.

There's an open question about whether we should require "nsz" in
addition to "reassoc" here. InstCombine uses that combo for its
reassociative folds, but I think codegen is not as strict.
2021-03-04 17:21:32 -05:00
Sanjay Patel 36a489d194 [Analysis][LoopVectorize] rename "Unsafe" variables/methods; NFC
Similar to b3a33553ae, but this shows a TODO and a potential
miscompile is already present.

We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.

I also removed one getter method by rolling the null check into
the access. Further simplification may be possible.

The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.

The new test shows that there is an existing bug somewhere in
the callers. We assumed that the original code was fully 'fast'
and so we produced IR with 'fast' even though it was just 'reassoc'.
2021-03-04 10:40:26 -05:00
Florian Hahn 0cb9d8acbc
[LV] Add test cases that require a larger number of RT checks.
Precommit tests cases for D75981.
2021-03-02 10:49:38 +00:00
Masoud Ataei 5fe0cab79e [PowerPC] Removing sqrtd2 and sqrtf4 from list of vectorizable function with MASSV
Under -O3 and -Ofast, the MASSV conversion prevents the sqrt call to be inlined.
Inline sqrt is faster than MASSV call on leppc.

Differential Revision: https://reviews.llvm.org/D97487
2021-03-01 15:42:19 +00:00
Florian Hahn 53dacb7b67
[LV] Generate RT checks up-front and remove them if required.
This patch updates LV to generate the runtime checks just after cost
modeling, to allow a more precise estimate of the actual cost of the
checks. This information will be used in future patches to generate
larger runtime checks in cases where the checks only make up a small
fraction of the expected scalar loop execution time.

The runtime checks are created up-front in a temporary block to allow better
estimating the cost and un-linked from the existing IR. After deciding to
vectorize, the checks are moved backed. If deciding not to vectorize, the
temporary block is completely removed.

This patch is similar in spirit to D71053, but explores a different
direction: instead of delaying the decision on whether to vectorize in
the presence of runtime checks it instead optimistically creates the
runtime checks early and discards them later if decided to not
vectorize. This has the advantage that the cost-modeling decisions
can be kept together and can be done up-front and thus preserving the
general code structure. I think delaying (part) of the decision to
vectorize would also make the VPlan migration a bit harder.

One potential drawback of this patch is that we speculatively
generate IR which we might have to clean up later. However it seems like
the code required to do so is quite manageable.

Reviewed By: lebedev.ri, ebrevnov

Differential Revision: https://reviews.llvm.org/D75980
2021-03-01 10:48:04 +00:00
Florian Hahn 6240f436dd
Recommit "[LV] Allow tryToCreateWidenRecipe to return a VPValue, use for blends."
This reverts the revert commit 437f0bbcd5.

It adds a new toVPRecipeResult, which forces VPRecipeOrVPValueTy to be
constructed with a VPRecipeBase *. This should address ambiguous
constructor issues for recipe sub-types that also inherit from VPValue.
2021-02-24 10:36:02 +00:00
Florian Hahn 437f0bbcd5
Revert "[LV] Allow tryToCreateWidenRecipe to return a VPValue, use for blends."
This reverts commit 4efa097eb4, because
some the compilers used for some bots do not support automatic
conversions to PointerUnion.
2021-02-23 16:57:21 +00:00
Florian Hahn 4efa097eb4
[LV] Allow tryToCreateWidenRecipe to return a VPValue, use for blends.
Generalize the return value of tryToCreateWidenRecipe to return either a
newly create recipe or an existing VPValue. Use this to avoid creating
unnecessary VPBlendRecipes.

Fixes PR44800.
2021-02-23 16:52:03 +00:00
David Green dd2dbf7ee2 [TTI] Change getOperandsScalarizationOverhead to take Type args
As a followup to D95291, getOperandsScalarizationOverhead was still
using a VF as a vector factor if the arguments were scalar, and would
assert on certain matrix intrinsics with differently sized vector
arguments. This patch removes the VF arg, instead passing the Types
through directly. This should allow it to more accurately compute the
cost without having to guess at which operands will be vectorized,
something difficult with more complex intrinsics.

This adjusts one SVE test as it is now calling the wrong intrinsic vs
veccall. Without invalid InstructCosts the cost of the scalarized
intrinsic is too low. This should get fixed when the cost of
scalarization is accounted for with scalable types.

Differential Revision: https://reviews.llvm.org/D96287
2021-02-23 13:04:59 +00:00
David Green bd4b61efbd [CostModel] Remove VF from IntrinsicCostAttributes
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.

Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.

Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.

Differential Revision: https://reviews.llvm.org/D95291
2021-02-23 13:03:26 +00:00
Florian Hahn c7ee57f1dc
[LV] Directly use incoming value for single VPBlendRecipes.
VPBlendRecipes with single incoming (value, mask) pair are no-ops. Use
the incoming value directly.
2021-02-22 16:10:08 +00:00
Florian Hahn 15a74b64df
[VPlan] Manage pairs of incoming (VPValue, VPBB) in VPWidenPHIRecipe.
This patch extends VPWidenPHIRecipe to manage pairs of incoming
(VPValue, VPBasicBlock) in the VPlan native path. This is made possible
because we now directly manage defined VPValues for recipes.

By keeping both the incoming value and block in the recipe directly,
code-generation in the VPlan native path becomes independent of the
predecessor ordering when fixing up non-induction phis, which currently
can cause crashes in the VPlan native path.

This fixes PR45958.

Reviewed By: sguggill

Differential Revision: https://reviews.llvm.org/D96773
2021-02-22 09:44:25 +00:00
Sanjay Patel 5b250a27ec [Analysis][LoopVectorize] do not form reductions of pointers
This is a fix for https://llvm.org/PR49215 either before/after
we make a verifier enhancement for vector reductions with D96904.

I'm not sure what the current thinking is for pointer math/logic
in IR. We allow icmp on pointer values. Therefore, we match min/max
patterns, so without this patch, the vectorizer could form a vector
reduction from that sequence.

But the LangRef definitions for min/max and vector reduction
intrinsics do not allow pointer types:
https://llvm.org/docs/LangRef.html#llvm-smax-intrinsic
https://llvm.org/docs/LangRef.html#llvm-vector-reduce-umax-intrinsic

So we would crash/assert at some point - either in IR verification,
in the cost model, or in codegen. If we do want to allow this kind
of transform, we will need to update the LangRef and all of those
parts of the compiler.

Differential Revision: https://reviews.llvm.org/D97047
2021-02-19 14:01:57 -05:00
David Green a1c34a9d6a [ARM] Correct vector predicate type in MVE getCmpSelInstrCost 2021-02-19 14:43:51 +00:00
Florian Hahn edc92a1c42
[LV] Remove VPCallback.
Now that all state for generated instructions is managed directly in
VPTransformState, VPCallBack is no longer needed. This patch updates the
last use of `getOrCreateScalarValue` to instead manage the value
directly in VPTransformState and removes VPCallback.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D95383
2021-02-19 12:50:41 +00:00
David Green 1a6744e3dc [ARM] Add larger than legal ICmp costs
A v8i32 compare will produce a v8i1 predicate, but during codegen the
v8i32 will be split into two v4i32, potentially requiring two v4i1
predicates to be merged into a single v8i1. Because this merging of two
v4i1's into a v8i1 is very expensive, we need to make the cost of the
compare equally high.

This patch adds the cost of that to ARMTTIImpl::getCmpSelInstrCost.
Because we don't know whether the user of the predicate can be split,
and the cost model is mostly pre-instruction, we may be pessimistic but
that should only be for larger and legal types. This also adds min/max
detection to the costmodel where it can be detected, to keep those in
line with the cost of simple min/max instructions. Otherwise for the
most part, costs that were already expensive have become more expensive.

Differential Revision: https://reviews.llvm.org/D96692
2021-02-18 11:42:17 +00:00
David Green 1fbb3287fc [ARM] MVE ICmp costing tests. NFC 2021-02-18 10:50:34 +00:00
Joseph Huber c3a3d20093 [LV] Add analysis remark for mixed precision conversions
Floating point conversions inside vectorized loops have performance
implications but are very subtle. The user could specify a floating
point constant, or call a function without realizing that it will
force a change in the vector width. An example of this behaviour is
seen in https://godbolt.org/z/M3nT6c . The vectorizer should indicate
when this happens becuase it is most likely unintended behaviour.

This patch adds a simple check for this behaviour by following floating
point stores in the original loop and checking if a floating point
conversion operation occurs.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D95539
2021-02-17 21:37:08 -05:00
Kerry McLaughlin ba1e150d03 [SVE] Add support for scalable vectorization of loops with int/fast FP reductions
This patch enables scalable vectorization of loops with integer/fast reductions, e.g:

```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
  sum += a[i];
}
```

A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.

Reviewed By: david-arm, fhahn, dmgreen

Differential Revision: https://reviews.llvm.org/D95245
2021-02-16 13:50:06 +00:00
Florian Hahn 54a14c264a
[VPlan] Manage scalarized values using VPValues.
This patch updates codegen to use VPValues to manage the generated
scalarized instructions.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D92285
2021-02-16 09:04:10 +00:00
Kerry McLaughlin 5fe1593438 [LoopVectorizer] Require no-signed-zeros-fp-math=true for fmin/fmax
Currently, setting the `no-nans-fp-math` attribute to true will allow
loops with fmin/fmax to vectorize, though we should be requiring that
`no-signed-zeros-fp-math` is also set.

This patch adds the check for no-signed-zeros at the function level and includes
tests to make sure we don't vectorize functions with only one of the attributes
associated.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D96604
2021-02-15 13:47:05 +00:00
Juneyoung Lee ed253ef772 [LoopVectorize] Fix VPRecipeBuilder::createEdgeMask to correctly generate the mask
This patch fixes pr48832 by correctly generating the mask when a poison value is involved.

Consider this CFG (which is a part of the input):

```
for.body:                                         ; preds = %for.cond
  br i1 true, label %cond.false, label %land.rhs

land.rhs:                                         ; preds = %for.body
  br i1 poison, label %cond.end, label %cond.false

cond.false:                                       ; preds = %for.body, %land.rhs
  br label %cond.end

cond.end:                                         ; preds = %land.rhs, %cond.false
  %cond = phi i32 [ 0, %cond.false ], [ 1, %land.rhs ]

```

The path for.body -> land.rhs -> cond.end should be taken when 'select i1 false, i1 poison, i1 false' holds (which means it's never taken); but VPRecipeBuilder::createEdgeMask was emitting 'and i1 false, poison' instead.
The former one successfully blocks poison propagation whereas the latter one doesn't, making the condition poison and thus causing the miscompilation.

SimplifyCFG has a similar bug (which didn't expose a real-world bug yet), and a patch for this is also ongoing (see https://reviews.llvm.org/D95026).

Reviewed By: bjope

Differential Revision: https://reviews.llvm.org/D95217
2021-02-14 21:12:34 +09:00
Kerry McLaughlin fea06efe7c [SVE][LoopVectorize] Support for vectorization of loops with function calls
Changes `getScalarizationOverhead` to return an invalid cost for scalable VFs
and adds some simple tests for loops containing a function for which
there is a vectorized variant available.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D96356
2021-02-12 13:47:43 +00:00
Sanjay Patel 79b1b4a581 [Vectorizers][TTI] remove option to bypass creation of vector reduction intrinsics
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247

So I think it is safe to now remove this complication from IR.

Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.

I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.

If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.

Differential Revision: https://reviews.llvm.org/D96552
2021-02-12 08:13:50 -05:00
Florian Hahn d5387ec267
[LV] Add tests showing suboptimal vectorization for narrow types.
This patch adds additional test cases showing missing/sub-optimal
vectorization for loops which contain small and wider memory ops on
AArch64.
2021-02-11 17:24:28 +00:00
Craig Topper 18ff7e045a [RISCV] Make the min and max vector width command line options more consistent and check their relationship to each other. 2021-02-09 10:47:23 -08:00
Jinsong Ji 9202806241 Revert "[CostModel] Remove VF from IntrinsicCostAttributes"
This reverts commit 502a67dd7f.

This expose a failure in test-suite build on PowerPC,
revert to unblock buildbot first,
Dave will re-commit in https://reviews.llvm.org/D96287.

Thanks Dave.
2021-02-09 02:14:14 +00:00
Hsiangkai Wang a5b07a221a [RISCV] Initial support of LoopVectorizer for RISC-V Vector.
Define an option -riscv-vector-bits-max to specify the maximum vector
bits for vectorizer. Loop vectorizer will use the value to check if it
is safe to use the whole vector registers to vectorize the loop.

It is not the optimum solution for loop vectorizing for scalable vector.
It assumed the whole vector registers will be used to vectorize the code.
If it is possible, we should configure vl to do vectorize instead of
using whole vector registers.

We only consider LMUL = 1 in this patch.

This patch just an initial work for loop vectorizer for RISC-V Vector.

Differential Revision: https://reviews.llvm.org/D95659
2021-02-09 06:32:18 +08:00
Simon Pilgrim 22302b2be0 [LoopVectorize][ARM] Regenerate mve-gather-scatter-tailpred.ll test
Fix codegen after rG7fe41ac3dff2d44c3d2c31b28554fbe4a86eaa6c
2021-02-05 12:32:45 +00:00
Adrian Kuegel 7fe41ac3df Revert "[LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute"
This reverts commit 3e5ce49e53.

Tests started failing on PPC, for example:
http://lab.llvm.org:8011/#/builders/105/builds/5569
2021-02-05 12:51:03 +01:00
David Green 502a67dd7f [CostModel] Remove VF from IntrinsicCostAttributes
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.

Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.

Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.

Differential Revision: https://reviews.llvm.org/D95291
2021-02-05 09:34:24 +00:00
Philip Reames 4cb7d03481 Add missing test update from 3e5ce49
Sorry for the build break, apparently forgot to build ARM target.
2021-02-04 18:04:24 -08:00
Philip Reames 3e5ce49e53 [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCI-ish prep work, but the changes are a bit too involved for me to feel comfortable tagging the change that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-02-04 17:28:30 -08:00
Sanjay Patel 916c4121c1 [LoopVectorize] add test for fake min/max; NFC
This goes with the dyn_cast fix:
0fa61304d2

That was made after noticing that the assert was over-reaching here:
bbed5f2f8a ( D95690 )
2021-02-03 09:24:57 -05:00
David Sherwood d4d4ceeb8f [SVE][LoopVectorize] Add masked load/store and gather/scatter support for SVE
This patch updates IRBuilder::CreateMaskedGather/Scatter to work
with ScalableVectorType and adds isLegalMaskedGather/Scatter functions
to AArch64TargetTransformInfo. In addition I've fixed up
isLegalMaskedLoad/Store to return true for supported scalar types,
since this is what the vectorizer asks for.

In LoopVectorize.cpp I've changed
LoopVectorizationCostModel::getInterleaveGroupCost to return an invalid
cost for scalable vectors, since currently this relies upon using shuffle
vector for reversing vectors. In addition, in
LoopVectorizationCostModel::setCostBasedWideningDecision I have assumed
that the cost of scalarising memory ops is infinitely expensive.

I have added some simple masked load/store and gather/scatter tests,
including cases where we use gathers and scatters for conditional invariant
loads and stores.

Differential Revision: https://reviews.llvm.org/D95350
2021-02-02 09:52:39 +00:00
Gil Rapaport d475030dc2 [SCEV] Apply loop guards to divisibility tests
Extend applyLoopGuards() to take into account conditions/assumes proving some
value %v to be divisible by D by rewriting %v to (%v / D) * D. This lets the
loop unroller and the loop vectorizer identify more loops as not requiring
remainder loops.

Differential Revision: https://reviews.llvm.org/D95521
2021-02-02 08:09:39 +02:00
Sanjay Patel bbed5f2f8a [LoopVectorize] improve IR fast-math-flags propagation in reductions
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.

There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.

Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.

Differential Revision: https://reviews.llvm.org/D95690
2021-02-01 16:21:36 -05:00
Cullen Rhodes 8cda227432 [LV] Fix crash when computing max VF too early
D90687 introduced a crash:

  llvm::LoopVectorizationCostModel::computeMaxVF(llvm::ElementCount, unsigned int):
    Assertion `WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
    "No decisions should have been taken at this point"' failed.

when compiling the following C code:

  typedef struct {
  char a;
  } b;

  b *c;
  int d, e;

  int f() {
    int g = 0;
    for (; d; d++) {
      e = 0;
      for (; e < c[d].a; e++)
        g++;
    }
    return g;
  }

with:

  clang -Os -target hexagon -mhvx -fvectorize -mv67 testcase.c -S -o -

This occurred since prior to D90687 computeFeasibleMaxVF would only be
called in computeMaxVF when a scalar epilogue was allowed, but now it's
always called. This causes the assert above since computeFeasibleMaxVF
collects all viable VFs larger than the default MaxVF, and for each VF
calculates the register usage which results in analysis being done the
assert above guards against. This can occur in computeFeasibleMaxVF if
TTI.shouldMaximizeVectorBandwidth and this target hook is implemented in
the hexagon backend to always return true.

Reported by @iajbar.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94869
2021-02-01 12:14:59 +00:00
Sanjay Patel ab93c18c12 [LoopVectorize] use IR fast-math-flags exclusively (not FP function attributes)
I am trying to untangle the fast-math-flags propagation logic
in the vectorizers (see a6f022127 for SLP).

The loop vectorizer has a mix of checking FP function attributes,
IR-level FMF, and just wrong assumptions.

I am trying to avoid regressions while fixing this, and I think
the IR-level logic is good enough for that, but it's hard to say
for sure. This would be the 1st step in the clean-up.

The existing test that I changed to include 'fast' actually shows
a miscompile: the function only had the equivalent of nnan, but we
created new instructions that had fast (all FMF set). This is
similar to the example in https://llvm.org/PR35538

Differential Revision: https://reviews.llvm.org/D95452
2021-01-27 14:17:11 -05:00
Sanjay Patel 00773ef78a [LoopVectorize] add test for fmin/fmax FMF propagation; NFC
The existing test has less FMF than we might expect if
our FMF was fixed (on all FP values), so this additional
test is intended to check propagation in a more "normal"
example.
2021-01-26 11:22:51 -05:00
David Green 4cc94b7313 [CostModel] Tests for showing the cost of intrinsics from the vectorizer. NFC 2021-01-24 14:47:15 +00:00
David Sherwood 2e080eb00a [SVE] Add support for scalable vectorization of loops with selects and cmps
I have removed an unnecessary assert in LoopVectorizationCostModel::getInstructionCost
that prevented a cost being calculated for select instructions when using
scalable vectors. In addition, I have changed AArch64TTIImpl::getCmpSelInstrCost
to only do special cost calculations for fixed width vectors and fall
back to the base version for scalable vectors.

I have added a simple cost model test for cmps and selects:

  test/Analysis/CostModel/sve-cmpsel.ll

and some simple tests that show we vectorize loops with cmp and select:

  test/Transforms/LoopVectorize/AArch64/sve-basic-vec.ll

Differential Revision: https://reviews.llvm.org/D95039
2021-01-22 09:48:13 +00:00
Arthur Eubanks 6699029b67 [NewPM][opt] Run the "default" AA pipeline by default
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.

PR48779

Initially reverted due to BasicAA running analyses in an unspecified
order (multiple function calls as parameters), fixed by fetching
analyses before the call to construct BasicAA.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D95117
2021-01-21 21:08:54 -08:00
Arthur Eubanks ba9b4ea4ee Revert "[NewPM][opt] Run the "default" AA pipeline by default"
This reverts commit be611431cd.

Other/new-pm-lto-defaults.ll failing
2021-01-21 20:16:34 -08:00
Arthur Eubanks be611431cd [NewPM][opt] Run the "default" AA pipeline by default
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.

PR48779

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D95117
2021-01-21 19:46:38 -08:00
David Green 39db5753f9 [LV][ARM] Inloop reduction cost modelling
This adds cost modelling for the inloop vectorization added in
745bf6cf44. Up until now they have been modelled as the original
underlying instruction, usually an add. This happens to works OK for MVE
with instructions that are reducing into the same type as they are
working on. But MVE's instructions can perform the equivalent of an
extended MLA as a single instruction:

  %sa = sext <16 x i8> A to <16 x i32>
  %sb = sext <16 x i8> B to <16 x i32>
  %m = mul <16 x i32> %sa, %sb
  %r = vecreduce.add(%m)
  ->
  R = VMLADAV A, B

There are other instructions for performing add reductions of
v4i32/v8i16/v16i8 into i32 (VADDV), for doing the same with v4i32->i64
(VADDLV) and for performing a v4i32/v8i16 MLA into an i64 (VMLALDAV).
The i64 are particularly interesting as there are no native i64 add/mul
instructions, leading to the i64 add and mul naturally getting very
high costs.

Also worth mentioning, under NEON there is the concept of a sdot/udot
instruction which performs a partial reduction from a v16i8 to a v4i32.
They extend and mul/sum the first four elements from the inputs into the
first element of the output, repeating for each of the four output
lanes. They could possibly be represented in the same way as above in
llvm, so long as a vecreduce.add could perform a partial reduction. The
vectorizer would then produce a combination of in and outer loop
reductions to efficiently use the sdot and udot instructions. Although
this patch does not do that yet, it does suggest that separating the
input reduction type from the produced result type is a useful concept
to model. It also shows that a MLA reduction as a single instruction is
fairly common.

This patch attempt to improve the costmodelling of in-loop reductions
by:
 - Adding some pattern matching in the loop vectorizer cost model to
   match extended reduction patterns that are optionally extended and/or
   MLA patterns. This marks the cost of the reduction instruction correctly
   and the sext/zext/mul leading up to it as free, which is otherwise
   difficult to tell and may get a very high cost. (In the long run this
   can hopefully be replaced by vplan producing a single node and costing
   it correctly, but that is not yet something that vplan can do).
 - getExtendedAddReductionCost is added to query the cost of these
   extended reduction patterns.
 - Expanded the ARM costs to account for these expanded sizes, which is a
   fairly simple change in itself.
 - Some minor alterations to allow inloop reduction larger than the highest
   vector width and i64 MVE reductions.
 - An extra InLoopReductionImmediateChains map was added to the vectorizer
   for it to efficiently detect which instructions are reductions in the
   cost model.
 - The tests have some updates to show what I believe is optimal
   vectorization and where we are now.

Put together this can greatly improve performance for reduction loop
under MVE.

Differential Revision: https://reviews.llvm.org/D93476
2021-01-21 21:03:41 +00:00
David Green dfac521da1 [ARM] Fix vector saddsat costs.
It turns out the vectorizer calls the getIntrinsicInstrCost functions
with a scalar return type and vector VF. This updates the costmodel to
handle that, still producing the correct vector costs.

A vectorizer test is added to show it vectorizing at the correct factor
again.
2021-01-21 15:30:39 +00:00
Florian Hahn eee2e8813f
[LV] Add test cases with multiple exits which require versioning.
This adds some test coverage for
caafdf07bb, which relaxed an assertion
to only require a unique exit block.
2021-01-20 11:48:48 +00:00
Jeroen Dobbelaere 121cac01e8 [noalias.decl] Look through llvm.experimental.noalias.scope.decl
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93042
2021-01-19 20:09:42 +01:00
Florian Hahn 83aa93e995
[VectorUtils] Do not try to add indices matching tombstone/empty values.
Keys matching the tombstone/empty special values cannot be inserted in a
DenseMap. Under some circumstances, LV tries to add members to an
interleave group that match the special values. Skip adding such
members. This is unlikely to have any impact in practice, because
interleave groups with such indices are very likely to not be
vectorized, due to gaps.

This issue has been surfaced by fuzzing, see
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11638
2021-01-18 11:18:28 +00:00
Philip Reames 8356610f8d [test] pre commit a couple more tests for vectorizing multiple exit loops 2021-01-17 20:29:13 -08:00
Philip Reames 7011086dc1 [test] Autogen a loop vectorizer test to make future changes visible 2021-01-17 20:03:22 -08:00
Philip Reames 9f61fbd75a [LV] Relax assumption that LCSSA implies single entry
This relates to the ongoing effort to support vectorization of multiple exit loops (see D93317).

The previous code assumed that LCSSA phis were always single entry before the vectorizer ran. This was correct, but only because the vectorizer allowed only a single exiting edge. There's nothing in the definition of LCSSA which requires single entry phis.

A common case where this comes up is with a loop with multiple exiting blocks which all reach a common exit block. (e.g. see the test updates)

Differential Revision: https://reviews.llvm.org/D93725
2021-01-12 12:34:52 -08:00
Florian Hahn eb0371e403 [VPlan] Unify value/recipe printing after VPDef transition.
This patch unifies the way recipes and VPValues are printed after the
transition to VPDef.

VPSlotTracker has been updated to iterate over all recipes and all
their defined values to number those. There is no need to number
values in Value2VPValue.

It also updates a few places that only used slot numbers for
VPInstruction. All recipes now can produce numbered VPValues.
2021-01-11 14:42:46 +00:00
Philip Reames 86d6f7e90a Precommit tests requested for D93725 2021-01-10 12:29:34 -08:00
Philip Reames 377dcfd5c1 [Tests] Auto update a vectorizer test to simplify future diff 2021-01-10 12:23:22 -08:00
David Green a36a2864c0 [ARM][LV] Additional loop invariant reduction test. NFC 2021-01-08 15:15:08 +00:00
Cullen Rhodes 1e7efd397a [LV] Legalize scalable VF hints
In the following loop:

  void foo(int *a, int *b, int N) {
    for (int i=0; i<N; ++i)
      a[i + 4] = a[i] + b[i];
  }

The loop dependence constrains the VF to a maximum of (4, fixed), which
would mean using <4 x i32> as the vector type in vectorization.
Extending this to scalable vectorization, a VF of (4, scalable) implies
a vector type of <vscale x 4 x i32>. To determine if this is legal
vscale must be taken into account. For this example, unless
max(vscale)=1, it's unsafe to vectorize.

For SVE, the number of bits in an SVE register is architecturally
defined to be a multiple of 128 bits with a maximum of 2048 bits, thus
the maximum vscale is 16. In the loop above it is therefore unfeasible
to vectorize with SVE. However, in this loop:

  void foo(int *a, int *b, int N) {
    #pragma clang loop vectorize_width(X, scalable)
    for (int i=0; i<N; ++i)
      a[i + 32] = a[i] + b[i];
  }

As long as max(vscale) multiplied by the number of lanes 'X' doesn't
exceed the dependence distance, it is safe to vectorize. For SVE a VF of
(2, scalable) is within this constraint, since a vector of <16 x 2 x 32>
will have no dependencies between lanes. For any number of lanes larger
than this it would be unsafe to vectorize.

This patch extends 'computeFeasibleMaxVF' to legalize scalable VFs
specified as loop hints, implementing the following behaviour:
  * If the backend does not support scalable vectors, ignore the hint.
  * If scalable vectorization is unfeasible given the loop
    dependence, like in the first example above for SVE, then use a
    fixed VF.
  * Accept scalable VFs if it's safe to do so.
  * Otherwise, clamp scalable VFs that exceed the maximum safe VF.

Reviewed By: sdesmalen, fhahn, david-arm

Differential Revision: https://reviews.llvm.org/D91718
2021-01-08 10:49:44 +00:00
David Green 72fb5ba079 [LV] Don't sink into replication regions
The new test case here contains a first order recurrences and an
instruction that is replicated. The first order recurrence forces an
instruction to be sunk _into_, as opposed to after the replication
region. That causes several things to go wrong including registering
vector instructions multiple times and failing to create dominance
relations correctly.

Instead we should be sinking to after the replication region, which is
what this patch makes sure happens.

Differential Revision: https://reviews.llvm.org/D93629
2021-01-08 09:50:10 +00:00
Gil Rapaport 7ddbe0cb90 [LV] Merge tests into a single file (NFC)
In response to https://reviews.llvm.org/D94088#inline-879268
2021-01-07 09:04:07 +02:00
Peter Waller 3e357ecd44 [llvm][NFC] Disallow all warnings in TypeSize tests
This is a follow-up to a request from a reviewer [0]. The text may change in
the future and these tests should not produce any warning output.

[0] https://reviews.llvm.org/D91806#inline-879243

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D94161
2021-01-06 17:17:07 +00:00
Juneyoung Lee 4a8e6ed2f7 [SLP,LV] Use poison constant vector for shufflevector/initial insertelement
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94061
2021-01-06 11:22:50 +09:00
Florian Hahn 8a47e6252a
[VPlan] Re-add interleave group members to plan.
Creating in-loop reductions relies on IR references to map
IR values to VPValues after interleave group creation.

Make sure we re-add the updated member to the plan, so the look-ups
still work as expected

This fixes a crash reported after D90562.
2021-01-05 15:06:47 +00:00
Gil Rapaport d9c0b128e3 [SCEV] Simplify trunc to zero based on known bits
Let getTruncateExpr() short-circuit to zero when the value being truncated is
known to have at least as many trailing zeros as the target type.

Differential Revision: https://reviews.llvm.org/D93973
2021-01-03 13:57:12 +02:00
Gil Rapaport d8af310063 [LV] Add missed optimization fold-tail test
The loop vectorizer avoids folding the tail for loop's whose trip-count is
known to SCEV to be divisible by VF. In this case the assumption providing this
information is not taken into account, so the tail is needlessly folded.
2021-01-02 14:00:15 +02:00
Florian Hahn d9f306aa52
[LV] Fix crash when generating remarks with multi-exit loops.
If DoExtraAnalysis is true (e.g. because remarks are enabled), we
continue with the analysis rather than exiting. Update code to
conditionally check if the ExitBB has phis or not a single predecessor.
Otherwise a nullptr is dereferenced with DoExtraAnalysis.
2021-01-01 13:54:41 +00:00
Sanjay Patel 5ced712e98 [LoopVectorizer] add test to show wrong FMF propagation; NFC 2020-12-30 15:13:57 -05:00
Juneyoung Lee 9b29610228 Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.

Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)

The order is swapped, but in terms of correctness it is still fine.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D93923
2020-12-30 22:36:08 +09:00
Roman Lebedev d4c0abb4a3
[SimplifyCFG] Teach FoldCondBranchOnPHI() to preserve DomTree 2020-12-30 00:48:11 +03:00
Juneyoung Lee 278aa65cc4 [IR] Let IRBuilder's CreateVectorSplat/CreateShuffleVector use poison as placeholder
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93793
2020-12-30 04:21:04 +09:00
Philip Reames 4b33b23877 Reapply "[LV] Vectorize (some) early and multiple exit loops"" w/fix for builder
This reverts commit 4ffcd4fe9a thus restoring e4df6a40da.

The only change from the original patch is to add "llvm::" before the call to empty(iterator_range).  This is a speculative fix for the ambiguity reported on some builders.
2020-12-28 10:13:28 -08:00
Arthur Eubanks 4ffcd4fe9a Revert "[LV] Vectorize (some) early and multiple exit loops"
This reverts commit e4df6a40da.

Breaks Windows bots, e.g. http://45.33.8.238/win/30472/step_4.txt
and http://lab.llvm.org:8011/#/builders/83/builds/2078/steps/5/logs/stdio
2020-12-28 10:05:41 -08:00
Philip Reames e4df6a40da [LV] Vectorize (some) early and multiple exit loops
This patch is a major step towards supporting multiple exit loops in the vectorizer. This patch on it's own extends the loop forms allowed in two ways:

    single exit loops which are not bottom tested
    multiple exit loops w/ a single exit block reached from all exits and no phis in the exit block (because of LCSSA this implies no values defined in the loop used later)

The restrictions on multiple exit loop structures will be removed in follow up patches; disallowing cases for now makes the code changes smaller and more obvious. As before, we can only handle loops with entirely analyzable exits. Removing that restriction is much harder, and is not part of currently planned efforts.

The basic idea here is that we can force the last iteration to run in the scalar epilogue loop (if we have one). From the definition of SCEV's backedge taken count, we know that no earlier iteration can exit the vector body. As such, we can leave the decision on which exit to be taken to the scalar code and generate a bottom tested vector loop which runs all but the last iteration.

The existing code already had the notion of requiring one iteration in the scalar epilogue, this patch is mainly about generalizing that support slightly, making sure we don't try to use this mechanism when tail folding, and updating the code to reflect the difference between a single exit block and a unique exit block (very mechanical).

Differential Revision: https://reviews.llvm.org/D93317
2020-12-28 09:40:42 -08:00
Juneyoung Lee 9d70dbdc2b [InstCombine] use poison as placeholder for undemanded elems
Currently undef is used as a don’t-care vector when constructing a vector using a series of insertelement.
However, this is problematic because undef isn’t undefined enough.
Especially, a sequence of insertelement can be optimized to shufflevector, but using undef as its placeholder makes shufflevector a poison-blocking instruction because undef cannot be optimized to poison.
This makes a few straightforward optimizations incorrect, such as:

```
;  https://bugs.llvm.org/show_bug.cgi?id=44185

define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
  %xv = insertelement <4 x float> %q, float %x, i32 2
  %r = shufflevector <4 x float> %y, <4 x float> %xv, <4 x i32> { 0, 6, 2, undef }
  ret <4 x float> %r ; %r[3] is undef
}
=>
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
  %r = insertelement <4 x float> %y, float %x, i32 1
  ret <4 x float> %r ; %r[3] = %y[3], incorrect if %y[3] = poison
}

Transformation doesn't verify!
ERROR: Target is more poisonous than source
```

I’d like to suggest
1. Using poison as insertelement’s placeholder value (IRBuilder::CreateVectorSplat should be patched too)
2. Updating shufflevector’s semantics to return poison element if mask is undef

Note that poison is currently lowered into UNDEF in SelDag, so codegen part is okay.
m_Undef() matches PoisonValue as well, so existing optimizations will still fire.

The only concern is hidden miscompilations that will go incorrect when poison constant is given.
A conservative way is copying all tests having `insertelement undef` & replacing it with `insertelement poison` & run Alive2 on it, but it will create many tests and people won’t like it. :(

Instead, I’ll simply locally maintain the tests and run Alive2.
If there is any bug found, I’ll report it.

Relevant links: https://bugs.llvm.org/show_bug.cgi?id=43958 , http://lists.llvm.org/pipermail/llvm-dev/2019-November/137242.html

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93586
2020-12-28 08:58:15 +09:00
Florian Hahn 0ea3749b3c
[LV] Set up branch from middle block earlier.
Previously the branch from the middle block to the scalar preheader & exit
was being set-up at the end of skeleton creation in completeLoopSkeleton.
Inserting SCEV or runtime checks may result in LCSSA phis being created,
if they are required. Adjusting branches afterwards may break those
PHIs.

To avoid this, we can instead create the branch from the middle block
to the exit after we created the middle block, so we have the final CFG
before potentially adjusting/creating PHIs.

This fixes a crash for the included test case. For the non-crashing
case, this is almost a NFC with respect to the generated code. The
only change is the order of the predecessors of the involved branch
targets.

Note an assertion was moved from LoopVersioning() to
LoopVersioning::versionLoop. Adjusting the branches means loop-simplify
form may be broken before constructing LoopVersioning. But LV only uses
LoopVersioning to annotate the loop instructions with !noalias metadata,
which does not require loop-simplify form.

This is a fix for an existing issue uncovered by D93317.
2020-12-27 18:21:12 +00:00
Philip Reames f106b281be [tests] precommit a test mentioned in review for D93317 2020-12-22 09:47:19 -08:00
Gil Rapaport a56280094e [LV] Avoid needless fold tail
When the trip-count is provably divisible by the maximal/chosen VF, folding the
loop's tail during vectorization is redundant. This commit extends the existing
test for constant trip-counts to any trip-count known to be divisible by
maximal/selected VF by SCEV.

Differential Revision: https://reviews.llvm.org/D93615
2020-12-22 10:25:20 +02:00
Arthur Eubanks 1a883484af [test] Fix reg-usage.ll under NPM
The -O2 isn't used in the test.
2020-12-20 15:41:29 -08:00
Roman Lebedev c043f5055e
[SimplifyCFG] Teach FoldBranchToCommonDest() to preserve DomTree, part 1
... for conditional branch case
2020-12-20 00:18:36 +03:00
Roman Lebedev b43b77ff9b
[NFCI][SimlifyCFG] simplifyOnce(): also perform DomTree validation
And that exposes that a number of tests don't *actually* manage to
maintain DomTree validity, which is inline with my observations.

Once again, SimlifyCFG pass currently does not require/preserve DomTree
by default, so this is effectively NFC.
2020-12-20 00:18:32 +03:00
Florian Hahn a74941da71
Revert "[BasicAA] Handle two unknown sizes for GEPs"
Temporarily revert commit 8b1c4e310c.

After 8b1c4e310c the compile-time for `MultiSource/Benchmarks/MiBench/consumer-lame`
dramatically increases with -O3 & LTO, causing issues for builders with
that configuration.

I filed PR48553 with a smallish reproducer that shows a 10-100x compile
time increase.
2020-12-18 17:59:12 +00:00
Roman Lebedev 164e0847a5
[SimplifyCFG] DeleteDeadBlock() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-18 00:37:21 +03:00
Cullen Rhodes 1fd3a04775 [LV] Disable epilogue vectorization for scalable VFs
Epilogue vectorization doesn't support scalable vectorization factors
yet, disable it for now.

Reviewed By: sdesmalen, bmahjour

Differential Revision: https://reviews.llvm.org/D93063
2020-12-17 12:14:03 +00:00
Roman Lebedev 5cce4aff18
[SimplifyCFG] TryToSimplifyUncondBranchFromEmptyBlock() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-17 01:03:49 +03:00
Roman Lebedev 49dac4aca0
[SimplifyCFG] MergeBlockIntoPredecessor() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-17 01:03:49 +03:00
Roman Lebedev aa2009fe78
[NFCI][SimplifyCFG] Mark all the SimplifyCFG tests that already don't invalidate DomTree as such
First step after e113317958,
in these tests, DomTree is valid afterwards, so mark them as such,
so that they don't regress.

In further steps, SimplifyCFG transforms shall taught to preserve DomTree,
in as small steps as possible.
2020-12-17 01:03:49 +03:00
Philip Reames a048e2fa1d [tests] fix an accidental target dependence added in 99ac8868 2020-12-15 11:07:30 -08:00
Philip Reames 99ac8868cf [tests][LV] precommit tests for D93317 2020-12-15 10:53:34 -08:00
Florian Hahn 0e0295fd61
[LV] Pass explicit vector width to not require a X86 target. 2020-12-15 12:52:22 +00:00
Florian Hahn 8a7e770638
[LV] Add reduction test, which exposed a crash in a pending patch. 2020-12-15 09:42:00 +00:00
David Green ab97c9bdb7 [LV] Fix scalar cost for tail predicated loops
When it comes to the scalar cost of any predicated block, the loop
vectorizer by default regards this predication as a sign that it is
looking at an if-conversion and divides the scalar cost of the block by
2, assuming it would only be executed half the time. This however makes
no sense if the predication has been introduced to tail predicate the
loop.

Original patch by Anna Welker

Differential Revision: https://reviews.llvm.org/D86452
2020-12-12 14:21:40 +00:00
David Green f6e885ad2a [ARM] Test for showing scalar vector costs. NFC 2020-12-12 11:43:14 +00:00
Florian Hahn 0519722930
[LV] Precommit test for PR48429. 2020-12-11 19:56:48 +00:00
Nikita Popov 8b1c4e310c [BasicAA] Handle two unknown sizes for GEPs
If we have two unknown sizes and one GEP operand and one non-GEP
operand, then we currently simply return MayAlias. The comment says
we can't do anything useful ... but we can! We can still check that
the underlying objects are different (and do so for the GEP-GEP case).

To reduce the compile-time impact, this a) checks this early, before
doing the relatively expensive GEP decomposition that will not be
used and b) doesn't do the check if the other operand is a phi or
select. In that case, the phi/select will already recurse, so this
would just do two slightly different recursive walks that arrive at
the same roots.

Compile-time is still a bit of a mixed bag: https://llvm-compile-time-tracker.com/compare.php?from=624af932a808b363a888139beca49f57313d9a3b&to=845356e14adbe651a553ed11318ddb5e79a24bcd&stat=instructions
On average this is a small improvement, but sqlite with ThinLTO has
a 0.5% regression (lencod has a 1% improvement).

The BasicAA test case checks this by using two memsets with unknown
size. However, the more interesting case where this is useful is
the LoopVectorize test case, as analysis of accesses in loops tends
to always us unknown sizes.

Differential Revision: https://reviews.llvm.org/D92401
2020-12-11 18:45:53 +01:00
Sander de Smalen d568cff696 [LoopVectorizer][SVE] Vectorize a simple loop with with a scalable VF.
* Steps are scaled by `vscale`, a runtime value.
* Changes to circumvent the cost-model for now (temporary)
  so that the cost-model can be implemented separately.

This can vectorize the following loop [1]:

   void loop(int N, double *a, double *b) {
     #pragma clang loop vectorize_width(4, scalable)
     for (int i = 0; i < N; i++) {
       a[i] = b[i] + 1.0;
     }
   }

[1] This source-level example is based on the pragma proposed
separately in D89031. This patch only implements the LLVM part.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D91077
2020-12-09 11:25:21 +00:00
Bardia Mahjour 4c70b6ee45 [LV] Make optimal-epilog-vectorization-profitability.ll more robust
Add a CHECK to properly limit the scope of CHECK-NOTs
2020-12-08 12:35:08 -05:00
Arthur Eubanks dc93a8d1e2 [test] Fix Transforms/LoopVectorize under NPM
The -enable-new-pm=1 translation caused loop-vectorize to run on all
functions, then instcombine, rather than all passes on one function then
the next. This caused the output of -debug-only and -print-after to be
interleaved in an unexpected way.
2020-12-07 21:48:21 -08:00
Bardia Mahjour 4db9b78c81 [LV] Epilogue Vectorization with Optimal Control Flow - Default Enablement
This patch enables epilogue vectorization by default per reviewer requests.

Differential Revision: https://reviews.llvm.org/D89566
2020-12-07 14:29:36 -05:00
Jinsong Ji b49b8f096c [PowerPC][Clang] Remove QPX support
Clean up QPX code in clang missed in https://reviews.llvm.org/D83915

Reviewed By: #powerpc, steven.zhang

Differential Revision: https://reviews.llvm.org/D92329
2020-12-07 10:15:39 -05:00
Alexey Bataev e7fc561843 [TEST]Autogenerate test checks, NFC. 2020-12-04 11:01:58 -08:00
Philip Reames 0129cd5035 Use deref facts derived from minimum object size of allocations
This change should be fairly straight forward. If we've reached a call, check to see if we can tell the result is dereferenceable from information about the minimum object size returned by the call.

To control compile time impact, I'm only adding the call for base facts in the routine. getObjectSize can also do recursive reasoning, and we don't want that general capability here.

As a follow up patch (without separate review), I will plumb through the missing TLI parameter. That will have the effect of extending this to known libcalls - malloc, new, and the like - whereas currently this only covers calls with the explicit allocsize attribute.

Differential Revision: https://reviews.llvm.org/D90341
2020-12-03 15:01:14 -08:00
Philip Reames 0c866a3d6a [LoopVec] Support non-instructions as argument to uniform mem ops
The initial step of the uniform-after-vectorization (lane-0 demanded only) analysis was very awkwardly written. It would revisit use list of each pointer operand of a widened load/store. As a result, it was in the worst case O(N^2) where N was the number of instructions in a loop, and had restricted operand Value types to reduce the size of use lists.

This patch replaces the original algorithm with one which is at most O(2N) in the number of instructions in the loop. (The key observation is that each use of a potentially interesting pointer is visited at most twice, once on first scan, once in the use list of *it's* operand. Only instructions within the loop have their uses scanned.)

In the process, we remove a restriction which required the operand of the uniform mem op to itself be an instruction.  This allows detection of uniform mem ops involving global addresses.

Differential Revision: https://reviews.llvm.org/D92056
2020-12-03 14:51:44 -08:00
Simon Pilgrim a8034fc1ad [LoopVectorize] Fix optimal-epilog-vectorization-limitations.ll test on non-debug build bots
Add "REQUIRES: asserts" as the test uses the "--debug-only" switch

Should fix the clang-with-thin-lto-ubuntu buildbot failure
2020-12-02 18:00:42 +00:00
Bardia Mahjour a7e2c26939 [LV] Epilogue Vectorization with Optimal Control Flow (Recommit)
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.

Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D89566
2020-12-02 10:09:56 -05:00
David Sherwood 71bd59f0cb [SVE] Add support for scalable vectors with vectorize.scalable.enable loop attribute
In this patch I have added support for a new loop hint called
vectorize.scalable.enable that says whether we should enable scalable
vectorization or not. If a user wants to instruct the compiler to
vectorize a loop with scalable vectors they can now do this as
follows:

  br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !2
  ...
  !2 = !{!2, !3, !4}
  !3 = !{!"llvm.loop.vectorize.width", i32 8}
  !4 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}

Setting the hint to false simply reverts the behaviour back to the
default, using fixed width vectors.

Differential Revision: https://reviews.llvm.org/D88962
2020-12-02 13:23:43 +00:00
Bardia Mahjour c94af03f7f Revert "[LV] Epilogue Vectorization with Optimal Control Flow"
This reverts commit 9c5504adce.
Reverting to investigate build failure in http://lab.llvm.org:8011/#/builders/98/builds/1461/steps/9
2020-12-01 12:50:36 -05:00
Bardia Mahjour 9c5504adce [LV] Epilogue Vectorization with Optimal Control Flow
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.

Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D89566
2020-12-01 12:04:29 -05:00
Cullen Rhodes cba4accda0 [LV] Clamp VF hint when unsafe
In the following loop the dependence distance is 2 and can only be
vectorized if the vector length is no larger than this.

  void foo(int *a, int *b, int N) {
    #pragma clang loop vectorize(enable) vectorize_width(4)
    for (int i=0; i<N; ++i) {
      a[i + 2] = a[i] + b[i];
    }
  }

However, when specifying a VF of 4 via a loop hint this loop is
vectorized. According to [1][2], loop hints are ignored if the
optimization is not safe to apply.

This patch introduces a check to bail of vectorization if the user
specified VF is greater than the maximum feasible VF, unless explicitly
forced with '-force-vector-width=X'.

[1] https://llvm.org/docs/LangRef.html#llvm-loop-vectorize-and-llvm-loop-interleave
[2] https://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations

Reviewed By: sdesmalen, fhahn, Meinersbur

Differential Revision: https://reviews.llvm.org/D90687
2020-12-01 11:30:34 +00:00
Sjoerd Meijer f44ba25135 ExtractValue instruction costs
Instruction ExtractValue wasn't handled in
LoopVectorizationCostModel::getInstructionCost(). As a result, it was modeled
as a mul which is not really accurate. Since it is free (most of the times),
this now gets a cost of 0 using getInstructionCost.

This is a follow-up of D92208, that required changing this regression test.
In a follow up I will look at InsertValue which also isn't handled yet.

Differential Revision: https://reviews.llvm.org/D92317
2020-12-01 10:42:23 +00:00
Florian Hahn fe83adb05a
[VPlan] Use VPUser to manage VPPredInstPHIRecipe operand (NFC).
VPPredInstPHIRecipe is one of the recipes that was missed during the
initial conversion. This patch adjusts the recipe to also manage its
operand using VPUser.
2020-11-30 13:09:58 +00:00
Sjoerd Meijer 5110ff0817 [AArch64][CostModel] Fix cost for mul <2 x i64>
This was modeled to have a cost of 1, but since we do not have a MUL.2d this is
scalarized into vector inserts/extracts and scalar muls.

Motivating precommitted test is test/Transforms/SLPVectorizer/AArch64/mul.ll,
which we don't want to SLP vectorize.

Test Transforms/LoopVectorize/AArch64/extractvalue-no-scalarization-required.ll
unfortunately needed changing, but the reason is documented in
LoopVectorize.cpp:6855:

  // The cost of executing VF copies of the scalar instruction. This opcode
  // is unknown. Assume that it is the same as 'mul'.

which I will address next as a follow up of this.

Differential Revision: https://reviews.llvm.org/D92208
2020-11-30 11:36:55 +00:00
Florian Hahn 4bc9b909d7
[VPlan] Use VPValue and VPUser ops to print VPReplicateRecipe. 2020-11-29 18:28:27 +00:00
David Green d939ba4c68 [ARM] MVE qabs vectorization test. NFC 2020-11-27 12:21:11 +00:00
David Green e0c479cd0e [VPlan] Switch VPWidenRecipe to be a VPValue
Similar to other patches, this makes VPWidenRecipe a VPValue. Because of
the way it interacts with the reduction code it also slightly alters the
way that VPValues are registered, removing the up front NeedDef and
using getOrAddVPValue to create them on-demand if needed instead.

Differential Revision: https://reviews.llvm.org/D88447
2020-11-25 08:25:06 +00:00
David Green 00a6601136 [VPlan] Turn VPReductionRecipe into a VPValue
This converts the VPReductionRecipe into a VPValue, like other
VPRecipe's in preparation for traversing def-use chains. It also makes
it a VPUser, now storing the used VPValues as operands.

It doesn't yet change how the VPReductionRecipes are created. It will
need to call replaceAllUsesWith from the original recipe they replace,
but that is not done yet as VPWidenRecipe need to be created first.

Differential Revision: https://reviews.llvm.org/D88382
2020-11-25 08:25:05 +00:00
Ayal Zaks 32d9a386bf [LV] Keep Primary Induction alive when folding tail by masking
Fix PR47390.

The primary induction should be considered alive when folding tail by masking,
because it will be used by said masking; even when it may otherwise appear
useless: feeding only its own 'bump', which is correctly considered dead, and
as the 'bump' of another induction variable, which may wrongfully want to
consider its bump = the primary induction, dead.

Differential Revision: https://reviews.llvm.org/D92017
2020-11-24 15:12:54 +02:00
Yichao Yu 4bc88a0e9a Enable support for floating-point division reductions
Similar to fsub, fdiv can also be vectorized using fmul.

Also http://llvm.org/viewvc/llvm-project?view=revision&revision=215200

Differential Revision: https://reviews.llvm.org/D34078

Co-authored-by: Jameson Nash <jameson@juliacomputing.com>
2020-11-23 20:00:58 -05:00
Philip Reames d6239b3ea6 [test] pre-comit test for D91451 2020-11-23 15:36:08 -08:00
Philip Reames b06a2ad94f [LoopVectorizer] Lower uniform loads as a single load (instead of relying on CSE)
A uniform load is one which loads from a uniform address across all lanes. As currently implemented, we cost model such loads as if we did a single scalar load + a broadcast, but the actual lowering replicates the load once per lane.

This change tweaks the lowering to use the REPLICATE strategy by marking such loads (and the computation leading to their memory operand) as uniform after vectorization. This is a useful change in itself, but it's real purpose is to pave the way for a following change which will generalize our uniformity logic.

In review discussion, there was an issue raised with coupling cost modeling with the lowering strategy for uniform inputs.  The discussion on that item remains unsettled and is pending larger architectural discussion.  We decided to move forward with this patch as is, and revise as warranted once the bigger picture design questions are settled.

Differential Revision: https://reviews.llvm.org/D91398
2020-11-23 15:32:17 -08:00
Sanjay Patel e32bd35120 [CostModel] mostly remove cost-kind predicate for intrinsics in basic TTI implementation
This is re-applying a combination of f7eac51b9b and 8ec7ea3ddc as one patch
to avoid regressions now that we have better testing in place.

Those were reverted with 32dd5870ee because of crashing in experimental intrinsics.
That bug should be fixed with 7ae346434.

Paraphrased original commit messages:

This is the last step in removing cost-kind as a consideration in the
basic class model for intrinsics.
See D89461 for the start of that.
Subsequent commits dealt with each of the special-case intrinsics that
had customization here in the basic class. This should remove a barrier
to retrying D87188 (canonicalization to the abs intrinsic).

The ARM and x86 cost diffs seen here may be wrong because the
target-specific overrides have their own bugs, but we hope this is
less wrong - if something has a significant throughput cost, then it
should have a significant size / blended cost too by default.

The only behavioral diff in current regression tests is shown in the
x86 scatter-gather test (which is misplaced or broken because it runs
the entire -O3 pipeline) - we unrolled less, and we assume that is
a improvement.

Exception: in general, we want the *size* cost for a scalar call to be
cheap even if the other costs are expensive - we expect it to just be
a branch with some optional stack manipulation.

It is likely that we will want to carve out some
exceptions/overrides to this rule as follow-up patches for
calls that have some general and/or target-specific difference
to the expected lowering.

This was noticed as a regression in unrolling, so we have a test
for that now along with a couple of direct cost model tests.

If the assumed scalarization costs for the oversized vector
calls are not realistic, that would be another follow-up
refinement of the cost models.

Differential Revision: https://reviews.llvm.org/D90554
2020-11-20 11:21:10 -05:00
Eric Christopher 32dd5870ee Temporarily Revert "[CostModel] remove cost-kind predicate for intrinsics in basic TTI implementation"
as it's causing crashes in the optimizer. A reduced testcase has been posted as a follow-up.

This reverts commit f7eac51b9b.

Temporarily Revert "[CostModel] make default size cost for libcalls small (again)" as it depends upon the primary revert.

This reverts commit 8ec7ea3ddc.

Temporarily Revert "[CostModel] add tests for math library calls; NFC" as it depends upon the primary revert.

This reverts commit df09f82599.

Temporarily Revert "[LoopUnroll] add test for full unroll that is sensitive to cost-model; NFC" as it depends upon the primary revert.

This reverts commit 618d555e8d.
2020-11-19 22:10:23 -08:00
Sanjay Patel 4e68bc0999 Revert "[InstCombine] add multi-use demanded bits fold for add with low-bit mask"
This reverts commit e56103d250.
There is a stage2 msan failure blamed on this commit:
http://lab.llvm.org:8011/#/builders/74/builds/888/steps/9/logs/stdio
2020-11-16 14:48:09 -05:00
Sanjay Patel e56103d250 [InstCombine] add multi-use demanded bits fold for add with low-bit mask
I noticed an add example like the one from D91343, so here's a similar patch.
The logic is based on existing code for the single-use demanded bits fold.
But I only matched a constant instead of using compute known bits on the
operands because that was the motivating patterni that I noticed.

I think this will allow removing a special-case (but incomplete) dedicated
fold within visitAnd(), but I need to untangle the existing code to be sure.

https://rise4fun.com/Alive/V6fP

  Name: add with low mask
  Pre: (C1 & (-1 u>> countLeadingZeros(C2))) == 0
  %a = add i8 %x, C1
  %r = and i8 %a, C2
  =>
  %r = and i8 %x, C2

Differential Revision: https://reviews.llvm.org/D91415
2020-11-15 15:09:49 -05:00
Florian Hahn 0c119ba8a8 [VPlan] Use VPValue def for VPWidenGEPRecipe.
This patch turns VPWidenGEPRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84683
2020-11-15 15:12:47 +00:00
Florian Hahn a70b511e78 Recommit "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts the revert commit c8d73d939f.

It includes a fix for cases where we missed inserting VPValues
for some selects, which should fix PR48142.
2020-11-14 20:00:25 +00:00
Philip Reames d4e81cd9dd [Tests][LoopVect] Exercise basic uniform memory operand logic 2020-11-12 20:34:31 -08:00
Sanjay Patel 9e0c35655b [LoopVectorize] regenerate test checks; NFC 2020-11-12 17:15:46 -05:00
Florian Hahn c8d73d939f Revert "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts commit a8e50f1c6e.

This reportedly breaks building the Linux kernel.
  https://bugs.llvm.org/show_bug.cgi?id=48142
2020-11-10 22:50:46 +00:00
Florian Hahn a8e50f1c6e
[VPlan] Use VPValue def for VPWidenSelectRecipe.
This patch turns VPWidenSelectRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84682
2020-11-10 19:39:37 +00:00
Sanjay Patel f7eac51b9b [CostModel] remove cost-kind predicate for intrinsics in basic TTI implementation
This is the last step in removing cost-kind as a consideration in the basic class model for intrinsics.
See D89461 for the start of that.
Subsequent commits dealt with each of the special-case intrinsics that had customization here in the
basic class. This should remove a barrier to retrying
D87188 (canonicalization to the abs intrinsic).

The ARM and x86 cost diffs seen here may be wrong because the target-specific overrides have their own
bugs, but we hope this is less wrong - if something has a significant throughput cost, then it should
have a significant size / blended cost too by default.

The only behavioral diff in current regression tests is shown in the x86 scatter-gather test (which is
misplaced or broken because it runs the entire -O3 pipeline) - we unrolled less, and we assume that is
a improvement.

Differential Revision: https://reviews.llvm.org/D90554
2020-11-10 08:19:31 -05:00
Joe Ellis 462dd4f803 [SVE][AArch64] Improve specificity of vectorization legality TypeSize test
The test was using -O2, where -loop-vectorize will suffice.

Reviewed By: fpetrogalli

Differential Revision: https://reviews.llvm.org/D90685
2020-11-10 10:55:25 +00:00
Florian Hahn f0d76275cb
[VPlan] Print result value for loads in VPWidenMemoryInst (NFC).
For loads, print the result value.
2020-11-09 14:01:29 +00:00
Florian Hahn fec64de261
[VPlan] Use VPValue def for VPWidenCall.
This patch turns VPWidenCall into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84681
2020-11-09 13:29:41 +00:00
Simon Pilgrim 28fc173819 [LoopVectorize] Remove unused check-prefixes 2020-11-09 12:18:20 +00:00
Simon Pilgrim 8a34e30d33 [LoopVectorize][AMDGPU] Regenerate packed-math test checks 2020-11-09 12:18:20 +00:00
Simon Moll d3b33a7810 [VE][TTI] don't advertise vregs/vops
Claim to not have any vector support to dissuade SLP, LV and friends
from generating SIMD IR for the VE target.  We will take this back once
vector isel is stable.

Reviewed By: kaz7, fhahn

Differential Revision: https://reviews.llvm.org/D90462
2020-11-06 11:12:10 +01:00
Simon Pilgrim f03be9df37 [LV][X86] Regenerate gather_scatter tests. NFCI.
Reduce diff in D90554
2020-11-02 11:57:37 +00:00
Arthur Eubanks 5c31b8b94f Revert "Use uint64_t for branch weights instead of uint32_t"
This reverts commit 10f2a0d662.

More uint64_t overflows.
2020-10-31 00:25:32 -07:00
Arthur Eubanks 10f2a0d662 Use uint64_t for branch weights instead of uint32_t
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.

Reviewed By: davidxl

Differential Revision: https://reviews.llvm.org/D88609
2020-10-30 10:03:46 -07:00
Nikita Popov 20b386aae0 [LoopUtils] Fix neutral value for vector.reduce.fadd
Use -0.0 instead of 0.0 as the start value. The previous use of 0.0
was fine for all existing uses of this function though, as it is
always generated with fast flags right now, and thus nsz.
2020-10-29 21:45:13 +01:00
Philip Reames 4e4abd16a7 [Deref] Use maximum trip count instead of exact trip count
When trying to prove that a memory access touches only dereferenceable memory across all iterations of a loop, use the maximum exit count rather than an exact one.  In many cases we can't prove exact exit counts whereas we can prove an upper bound.

The test included is for a single exit loop with a min(C,V) exit count, but the true motivation is support for multiple exits loops.  It's just really hard to write a test case for multiple exits because the vectorizer (the primary user of this API), bails far before this.  For multiple exits, this allows a mix of analyzeable and unanalyzable exits when only analyzeable exits are needed to prove deref.
2020-10-28 14:33:30 -07:00
Nico Weber 2a4e704c92 Revert "Use uint64_t for branch weights instead of uint32_t"
This reverts commit e5766f25c6.
Makes clang assert when building Chromium, see https://crbug.com/1142813
for a repro.
2020-10-27 09:26:21 -04:00
Florian Hahn f067bc3c0a [LoopRotation] Allow loop header duplication if vectorization is forced.
-Oz normally does not allow loop header duplication so this loop wouldn't be
vectorized.  However the vectorization pragma should override this and allow
for loop rotation.

rdar://problem/49281061

Original patch by Adam Nemet.

Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D59832
2020-10-27 09:28:01 +00:00
Arthur Eubanks e5766f25c6 Use uint64_t for branch weights instead of uint32_t
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.

Reviewed By: davidxl

Differential Revision: https://reviews.llvm.org/D88609
2020-10-26 20:24:04 -07:00
Joe Ellis 467e5cf40f [SVE][AArch64] Fix TypeSize warning in loop vectorization legality
The warning would fire when calling isDereferenceableAndAlignedInLoop
with a scalable load. Calling isDereferenceableAndAlignedInLoop with a
scalable load would result in the use of the now deprecated implicit
cast of TypeSize to uint64_t through the overloaded operator.

This patch fixes this issue by:

- no longer considering vector loads as candidates in
  canVectorizeWithIfConvert. This doesn't make sense in the context of
  identifying scalar loads to vectorize.

- making use of getFixedSize inside isDereferenceableAndAlignedInLoop --
  this removes the dependency on the deprecated interface, and will
  trigger an assertion error if the function is ever called with a
  scalable type.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D89798
2020-10-26 17:40:04 +00:00
Florian Hahn 1747aae9fc [LV] Add cost-model test for AArch64 select costs.
Currently, the cost of some compare/select patterns is overestimated on
AArch64.
2020-10-26 13:43:31 +00:00
Nikita Popov 0dda633317 [SCEV] Strength nowrap flags after constant folding
We should first try to constant fold the add expression and only
strengthen nowrap flags afterwards. This allows us to determine
stronger flags if e.g. only two operands are left after constant
folding (and thus "guaranteed no wrap region" code applies) or the
resulting operands are non-negative and thus nsw->nuw strengthening
applies.
2020-10-25 18:00:22 +01:00
Venkataramanan Kumar 57cdc52c4d Initial support for vectorization using Libmvec (GLIBC vector math library)
Differential Revision: https://reviews.llvm.org/D88154
2020-10-22 16:01:39 -04:00
Arthur Eubanks c76968d8b6 [test][NPM] Fix already-vectorized.ll under NPM
The NPM runs SpeculateAroundPHIs which breaks critical edges, causing a
branch we check for to not directly jump back to the same block.
2020-10-19 13:11:13 -07:00
Arthur Eubanks fce64578bc [NPM][test] Fix some LoopVectorize tests under NPM 2020-10-19 12:05:37 -07:00
Arthur Eubanks 65e5006962 [NPM][opt] Run -O# after other passes in legacy PM compatibility mode
Generally tests run -O# before other passes, not after.
2020-10-19 11:48:44 -07:00
Evgeniy Brevnov d0c95808e5 [LV] Unroll factor is expected to be > 0
LV fails with assertion checking that UF > 0. We already set UF to 1 if it is 0 except the case when IC > MaxInterleaveCount. The fix is to set UF to 1 for that case as well.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D87679
2020-10-14 16:48:17 +07:00
David Green be6e8e50f4 [LV] Tail folded inloop reductions.
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:

  x = select(mask, vecop, zero)
  v = vecreduce.add(x)
  c = add chain, v

Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.

Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.

Differential Revision: https://reviews.llvm.org/D84451
2020-10-11 16:58:34 +01:00
David Green 8f2cacae67 [LV] Extra predicated inloop reduction tests. NFC 2020-10-11 15:06:21 +01:00
David Green 6d8eea61b1 [AArch64][LV] Move vectorizer test to Transforms/LoopVectorize/AArch64. NFC 2020-10-10 10:15:43 +01:00
David Green 498f89d188 [LV] Collect dead induction truncates
We currently collect the ICmp and Add from an induction variable,
marking them as dead so that vplan values are not created for them. This
extends that to include any single use trunk from the ICmp, which allows
the Add to more readily be removed too.

This can help with costing vplan nodes, as the ICmp and Add are more
reliably removed and are not double-counted.

Differential Revision: https://reviews.llvm.org/D88873
2020-10-08 08:28:58 +01:00
Florian Hahn a73166a452 [LAA] Use DL to get element size for bound computation.
Currently LAA uses getScalarSizeInBits to compute the size of an element
when computing the end bound of an access.

This does not work as expected for pointers to pointers, because
getScalarSizeInBits will return 0 for pointer types.

By using DataLayout to get the size of the element we can also correctly
handle pointer element types.

Note the changes to the existing test, which seems to also use the wrong
offset for the end.

Fixes PR47751.

Reviewed By: anemet

Differential Revision: https://reviews.llvm.org/D88953
2020-10-07 18:57:07 +01:00
Amara Emerson 322d0afd87 [llvm][mlir] Promote the experimental reduction intrinsics to be first class intrinsics.
This change renames the intrinsics to not have "experimental" in the name.

The autoupgrader will handle legacy intrinsics.

Relevant ML thread: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

Differential Revision: https://reviews.llvm.org/D88787
2020-10-07 10:36:44 -07:00
Florian Hahn 20cfd5fa33 [LAA] Add test for PR47751, which currently uses wrong bounds. 2020-10-07 11:22:22 +01:00
Mauri Mustonen cef0de5eb5 [VPlan] Add vplan native path vectorization test case for inner loop reduction
Regarding this bug I posted earlier: https://bugs.llvm.org/show_bug.cgi?id=47035

After reading through LLVM source code and getting familiar with VPlan I was able to vectorize the code using by enabling VPlan native path. After talking with @fhahn he suggested that I contribute this as a test case. So here it is. I tried to follow the available guides how to do this best I could. I modified IR code by hand to have more clear variable names instead of numbers.

One thing what I'd like to get input from someone is that is current CHECK lines sufficient enough to verify that the inner loop has been vectorized properly?

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D87564
2020-10-06 10:11:58 +01:00
Wenlei He 89e8a8b223 Revert SVML support for sqrt
As was brought up in D87169 by @craig.topper we shouldn't map llvm.sqrt to svml since there is a faster native instruction.
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_p&expand=5824,5823,5356,5823,5825,5365,5356

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D88620
2020-10-05 08:13:11 -07:00
David Green ff86acbb79 [LV] Regenerate test. NFC
This just reruns the update script to add the new
[[LOOP0:!llvm.loop !.*]] checks to remove them from
other diffs.
2020-10-05 13:46:15 +01:00
Florian Hahn ef72591de9 [LV] Add another test case with unsinkable first-order recurrences. 2020-10-03 20:41:41 +01:00
Sjoerd Meijer 1696dd27fb [ARM][MVE] Enable tail-predication by default
We have been running tests/benchmarks downstream with tail-predication enabled
for some time now and this behaves as expected: we are not aware of any
correctness issues, and this performs better across the board than with
tail-predication disabled. Time to flip the switch!

Differential Revision: https://reviews.llvm.org/D88093
2020-09-28 14:01:23 +01:00
Florian Hahn d4ddf63fc4 [SCEV] Use loop guard info when computing the max BE taken count in howFarToZero.
For some expressions, we can use information from loop guards when
we are looking for a maximum. This patch applies information from
loop guards to the expression used to compute the maximum backedge
taken count in howFarToZero. It currently replaces an unknown
expression X with UMin(X, Y), if the loop is guarded by
X ult Y.

This patch is minimal in what conditions it applies, and there
are a few TODOs to generalize.

This partly addresses PR40961. We will also need an update to
LV to address it completely.

Reviewed By: reames

Differential Revision: https://reviews.llvm.org/D67178
2020-09-24 11:06:55 +01:00
Sam Parker 97a476eb56 [NFC][ARM] Tail fold test changes
Run update script on one test and add another.
2020-09-17 13:09:10 +01:00
Wenlei He 056534dc2b SVML support for log10, sqrt
Although LLVM supports vectorization of loops containing log10/sqrt, it did not support using SVML implementation of it. Added support so that when clang is invoked with -fveclib=SVML now an appropriate SVML library log2 implementation will be invoked.

Follow up on: https://reviews.llvm.org/D77114

Tests:
Added unit tests to svml-calls.ll, svml-calls-finite.ll. Can be run with llvm-lint.
Created a simple c++ file that tests log10/sqrt, and used clang+ to build it, and output final assembly.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D87169
2020-09-15 17:29:44 -07:00
David Green 08baa97923 [ARM] Enable tail predication for reduction tests. NFC 2020-09-14 14:26:10 +01:00
David Green 74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
Wenlei He d1be928d23 SVML support for log2
Although LLVM supports vectorization of loops containing log2, it did not support using SVML implementation of it. Added support so that when clang is invoked with -fveclib=SVML now an appropriate SVML library log2 implementation will be invoked.

Follow up on: https://reviews.llvm.org/D77114

Tests:
Added unit tests to svml-calls.ll, svml-calls-finite.ll. Can be run with llvm-lint.
Created a simple c++ file that tests log2, and used clang+ to build it, and output final assembly.

Reviewed By: wenlei, craig.topper

Differential Revision: https://reviews.llvm.org/D86730
2020-09-03 11:52:29 -07:00
Aaron Liu d7e16ca28f [LV] Interleave to expose ILP for small loops with scalar reductions.
Interleave for small loops that have reductions inside,
which breaks dependencies and expose.

This gives very significant performance improvements for some benchmarks.
Because small loops could be in very hot functions in real applications.

Differential Revision: https://reviews.llvm.org/D81416
2020-09-01 19:47:32 +00:00
Roman Lebedev c23aefd7c3
[NFC][InstCombine] visitPHINode(): cleanup PHI CSE instruction replacement
As @nikic is pointing out in https://reviews.llvm.org/rGbf21ce7b908e#inline-4647
this must be sufficient otherwise `EliminateDuplicatePHINodes()`
would have hit issues with it already.
2020-08-31 22:29:39 +03:00
Florian Hahn eb35ebb3a2 [LV] Update CFG before adding runtime checks.
addRuntimeChecks uses SCEVExpander, which relies on the DT/LoopInfo to
be up-to-date. Changing the CFG afterwards may invalidate some inserted
instructions, especially LCSSA phis.

Reorder the code to first update the CFG and then create the runtime
checks. This should not have any impact on the generated code, as we
adjust the CFG and generate runtime checks together.

Fixes PR47343.
2020-08-30 18:21:44 +01:00
Roman Lebedev bf21ce7b90
[InstCombine] Take 3: Perform trivial PHI CSE
The original take 1 was 6102310d81,
which taught InstSimplify to do that, which seemed better at time,
since we got EarlyCSE support for free.

However, it was proven that we can not do that there,
the simplified-to PHI would not be reachable from the original PHI,
and that is not something InstSimplify is allowed to do,
as noted in the commit ed90f15efb
that reverted it:
> It appears to cause compilation non-determinism and caused stage3 mismatches.

Then there was take 2 3e69871ab5,
which was InstCombine-specific, but it again showed stage2-stage3 differences,
and reverted in bdaa3f86a0.
This is quite alarming.

Here, let's try to change how we find existing PHI candidate:
due to the worklist order, and the way PHI nodes are inserted
(it may be inserted as the first one, or maybe not), let's look at *all*
PHI nodes in the block.

Effects on vanilla llvm test-suite + RawSpeed:
```
| statistic name                                     | baseline  | proposed  |      Δ |        % |    \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| asm-printer.EmittedInsts                           | 7942329   | 7942457   |    128 |    0.00% |    0.00% |
| assembler.ObjectBytes                              | 254295632 | 254312480 |  16848 |    0.01% |    0.01% |
| correlated-value-propagation.NumPhis               | 18412     | 18347     |    -65 |   -0.35% |    0.35% |
| early-cse.NumCSE                                   | 2183283   | 2183267   |    -16 |    0.00% |    0.00% |
| early-cse.NumSimplify                              | 550105    | 541842    |  -8263 |   -1.50% |    1.50% |
| instcombine.NumAggregateReconstructionsSimplified  | 73        | 4506      |   4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined                            | 3640311   | 3644419   |   4108 |    0.11% |    0.11% |
| instcombine.NumDeadInst                            | 1778204   | 1783205   |   5001 |    0.28% |    0.28% |
| instcombine.NumPHICSEs                             | 0         | 22490     |  22490 |    0.00% |    0.00% |
| instcombine.NumWorklistIterations                  | 2023272   | 2024400   |   1128 |    0.06% |    0.06% |
| instcount.NumCallInst                              | 1758395   | 1758802   |    407 |    0.02% |    0.02% |
| instcount.NumInvokeInst                            | 59478     | 59502     |     24 |    0.04% |    0.04% |
| instcount.NumPHIInst                               | 330557    | 330545    |    -12 |    0.00% |    0.00% |
| instcount.TotalBlocks                              | 1077138   | 1077220   |     82 |    0.01% |    0.01% |
| instcount.TotalFuncs                               | 101442    | 101441    |     -1 |    0.00% |    0.00% |
| instcount.TotalInsts                               | 8831946   | 8832606   |    660 |    0.01% |    0.01% |
| simplifycfg.NumHoistCommonCode                     | 24186     | 24187     |      1 |    0.00% |    0.00% |
| simplifycfg.NumInvokes                             | 4300      | 4410      |    110 |    2.56% |    2.56% |
| simplifycfg.NumSimpl                               | 1019813   | 999767    | -20046 |   -1.97% |    1.97% |
```
So it fires 22490 times, which is less than ~24k the take 1 did,
but more than what take 2 did (22228 times)
.
It allows foldAggregateConstructionIntoAggregateReuse() to actually work
after PHI-of-extractvalue folds did their thing. Previously SimplifyCFG
would have done this PHI CSE, of all places. Additionally, allows some
more `invoke`->`call` folds to happen (+110, +2.56%).

All in all, expectedly, this catches less things overall,
but all the motivational cases are still caught, so all good.
2020-08-29 18:21:24 +03:00
Roman Lebedev bdaa3f86a0
Revert "[InstCombine] Take 2: Perform trivial PHI CSE"
While the original variant with doing this in InstSimplify (rightfully)
caused questions and ultimately was detected to be a culprit
of stage2-stage3 mismatch, it was expected that
InstCombine-based implementation would be fine.

But apparently it's not, as
http://lab.llvm.org:8011/builders/clang-with-thin-lto-ubuntu/builds/24095/steps/compare-compilers/logs/stdio
suggests.

Which suggests that somewhere in InstCombine there is a loop
over nondeterministically sorted container, which causes
different worklist ordering.

This reverts commit 3e69871ab5.
2020-08-29 16:05:02 +03:00
Roman Lebedev 3e69871ab5
[InstCombine] Take 2: Perform trivial PHI CSE
The original take was 6102310d81,
which taught InstSimplify to do that, which seemed better at time,
since we got EarlyCSE support for free.

However, it was proven that we can not do that there,
the simplified-to PHI would not be reachable from the original PHI,
and that is not something InstSimplify is allowed to do,
as noted in the commit ed90f15efb
that reverted it :
> It appears to cause compilation non-determinism and caused stage3 mismatches.

However InstCombine already does many different optimizations,
so it should be a safe place to do it here.

Note that we still can't just compare incoming values ranges,
because there is no guarantee that these PHI's we'd simplify to
were already re-visited and sorted.
However coming up with a test is problematic.

Effects on vanilla llvm test-suite + RawSpeed:
```
| statistic name                                     | baseline  | proposed  |      Δ |        % |      |%| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instcombine.NumPHICSEs                             | 0         | 22228     |  22228 |    0.00% |    0.00% |
| asm-printer.EmittedInsts                           | 7942329   | 7942456   |    127 |    0.00% |    0.00% |
| assembler.ObjectBytes                              | 254295632 | 254313792 |  18160 |    0.01% |    0.01% |
| early-cse.NumCSE                                   | 2183283   | 2183272   |    -11 |    0.00% |    0.00% |
| early-cse.NumSimplify                              | 550105    | 541842    |  -8263 |   -1.50% |    1.50% |
| instcombine.NumAggregateReconstructionsSimplified  | 73        | 4506      |   4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined                            | 3640311   | 3666911   |  26600 |    0.73% |    0.73% |
| instcombine.NumDeadInst                            | 1778204   | 1783318   |   5114 |    0.29% |    0.29% |
| instcount.NumCallInst                              | 1758395   | 1758804   |    409 |    0.02% |    0.02% |
| instcount.NumInvokeInst                            | 59478     | 59502     |     24 |    0.04% |    0.04% |
| instcount.NumPHIInst                               | 330557    | 330549    |     -8 |    0.00% |    0.00% |
| instcount.TotalBlocks                              | 1077138   | 1077221   |     83 |    0.01% |    0.01% |
| instcount.TotalFuncs                               | 101442    | 101441    |     -1 |    0.00% |    0.00% |
| instcount.TotalInsts                               | 8831946   | 8832611   |    665 |    0.01% |    0.01% |
| simplifycfg.NumInvokes                             | 4300      | 4410      |    110 |    2.56% |    2.56% |
| simplifycfg.NumSimpl                               | 1019813   | 999740    | -20073 |   -1.97% |    1.97% |
```
So it fires ~22k times, which is less than ~24k the take 1 did.
It allows foldAggregateConstructionIntoAggregateReuse() to actually work
after PHI-of-extractvalue folds did their thing. Previously SimplifyCFG
would have done this PHI CSE, of all places. Additionally, allows some
more `invoke`->`call` folds to happen (+110, +2.56%).

All in all, expectedly, this catches less things overall,
but all the motivational cases are still caught, so all good.
2020-08-29 13:13:06 +03:00
Owen Anderson ed90f15efb Revert "[InstSimplify][EarlyCSE] Try to CSE PHI nodes in the same basic block"
This reverts commit 6102310d81.  It
appears to cause compilation non-determinism and caused stage3
mismatches.
2020-08-28 23:43:42 +00:00
Anna Welker 064981f0ce [ARM][MVE] Enable MVE gathers and scatters by default
Enable MVE gather/scatters by default, which requires some
minor adaptations in some tests.

Differential revision: https://reviews.llvm.org/D86776
2020-08-28 19:05:29 +01:00
Roman Lebedev 6102310d81
[InstSimplify][EarlyCSE] Try to CSE PHI nodes in the same basic block
Apparently, we don't do this, neither in EarlyCSE, nor in InstSimplify,
nor in (old) GVN, but do in NewGVN and SimplifyCFG of all places..

While i could teach EarlyCSE how to hash PHI nodes,
we can't really do much (anything?) even if we find two identical
PHI nodes in different basic blocks, same-BB case is the interesting one,
and if we teach InstSimplify about it (which is what i wanted originally,
https://reviews.llvm.org/D86530), we get EarlyCSE support for free.

So i would think this is pretty uncontroversial.

On vanilla llvm test-suite + RawSpeed, this has the following effects:
```
| statistic name                                     | baseline  | proposed  |      Δ |        % |    \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instsimplify.NumPHICSE                             | 0         | 23779     |  23779 |    0.00% |    0.00% |
| asm-printer.EmittedInsts                           | 7942328   | 7942392   |     64 |    0.00% |    0.00% |
| assembler.ObjectBytes                              | 273069192 | 273084704 |  15512 |    0.01% |    0.01% |
| correlated-value-propagation.NumPhis               | 18412     | 18539     |    127 |    0.69% |    0.69% |
| early-cse.NumCSE                                   | 2183283   | 2183227   |    -56 |    0.00% |    0.00% |
| early-cse.NumSimplify                              | 550105    | 542090    |  -8015 |   -1.46% |    1.46% |
| instcombine.NumAggregateReconstructionsSimplified  | 73        | 4506      |   4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined                            | 3640264   | 3664769   |  24505 |    0.67% |    0.67% |
| instcombine.NumDeadInst                            | 1778193   | 1783183   |   4990 |    0.28% |    0.28% |
| instcount.NumCallInst                              | 1758401   | 1758799   |    398 |    0.02% |    0.02% |
| instcount.NumInvokeInst                            | 59478     | 59502     |     24 |    0.04% |    0.04% |
| instcount.NumPHIInst                               | 330557    | 330533    |    -24 |   -0.01% |    0.01% |
| instcount.TotalInsts                               | 8831952   | 8832286   |    334 |    0.00% |    0.00% |
| simplifycfg.NumInvokes                             | 4300      | 4410      |    110 |    2.56% |    2.56% |
| simplifycfg.NumSimpl                               | 1019808   | 999607    | -20201 |   -1.98% |    1.98% |
```
I.e. it fires ~24k times, causes +110 (+2.56%) more `invoke` -> `call`
transforms, and counter-intuitively results in *more* instructions total.

That being said, the PHI count doesn't decrease that much,
and looking at some examples, it seems at least some of them
were previously getting PHI CSE'd in SimplifyCFG of all places..

I'm adjusting `Instruction::isIdenticalToWhenDefined()` at the same time.
As a comment in `InstCombinerImpl::visitPHINode()` already stated,
there are no guarantees on the ordering of the operands of a PHI node,
so if we just naively compare them, we may false-negatively say that
the nodes are not equal when the only difference is operand order,
which is especially important since the fold is in InstSimplify,
so we can't rely on InstCombine sorting them beforehand.

Fixing this for the general case is costly (geomean +0.02%),
and does not appear to catch anything in test-suite, but for
the same-BB case, it's trivial, so let's fix at least that.

As per http://llvm-compile-time-tracker.com/compare.php?from=04879086b44348cad600a0a1ccbe1f7776cc3cf9&to=82bdedb888b945df1e9f130dd3ac4dd3c96e2925&stat=instructions
this appears to cause geomean +0.03% compile time increase (regression),
but geomean -0.01%..-0.04% code size decrease (improvement).
2020-08-27 18:47:04 +03:00
Sjoerd Meijer bda8fbe2d2 [LV] Fallback strategies if tail-folding fails
This implements 2 different vectorisation fallback strategies if tail-folding
fails: 1) don't vectorise at all, or 2) vectorise using a scalar epilogue. This
can be controlled with option -prefer-predicate-over-epilogue, that has been
changed to take a numeric value corresponding to the tail-folding preference
and preferred fallback.

Patch by: Pierre van Houtryve, Sjoerd Meijer.

Differential Revision: https://reviews.llvm.org/D79783
2020-08-26 16:55:25 +01:00
David Green 677c1590c0 [ARM] Increase MVE gather/scatter cost by MVECostFactor.
MVE Gather scatter codegeneration is looking a lot better than it used
to, but still has some issues. The instructions we currently model as 1
cycle per element, which is a bit low for some cases. Increasing the
cost by the MVECostFactor brings them in-line with our other instruction
costs. This will have the effect of only generating then when the extra
benefit is more likely to overcome some of the issues. Notably in
running out of registers and vectorizing loops that could otherwise be
SLP vectorized.

In the short-term whilst we look at other ways of dealing with those
more directly, we can increase the costs of gathers to make them more
likely to be beneficial when created.

Differential Revision: https://reviews.llvm.org/D86444
2020-08-26 13:03:46 +01:00
Arthur Eubanks df5576a852 [test] Add -inject-tli-mapping to -loop-vectorize -vector-library tests
The legacy LoopVectorize has a dependency on InjectTLIMappingsLegacy.
That cannot be expressed in the new PM since they are both normal
passes. Explicitly add -inject-tli-mappings as a pass.

Follow-up to https://reviews.llvm.org/D86492.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D86561
2020-08-25 11:55:11 -07:00
Sjoerd Meijer ae366479e8 [LV] get.active.lane.mask consuming tripcount instead of backedge-taken count
This adapts LV to the new semantics of get.active.lane.mask as discussed in
D86147, which means that the LV now emits intrinsic get.active.lane.mask with
the loop tripcount instead of the backedge-taken count as its second argument.
The motivation for this is described in D86147.

Differential Revision: https://reviews.llvm.org/D86304
2020-08-25 13:49:19 +01:00
Anna Welker 8048068c3e [ARM][MVE] Allow tail predication for strides !=1 with gather/scatters
If gather/scatters are enabled, ARMTargetTransformInfo now allows
tail predication for loops with a much wider range of strides, up
to anything that is loop invariant.

Differential Revision: https://reviews.llvm.org/D85410
2020-08-24 13:54:47 +01:00
David Green 2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green 816097e4e5 [LV] Allow tail folded reduction selects to remain in the loop
The normal scheme for tail folding reductions is to use:

loop:
  p = phi(0, a)
  mask = ...
  x = masked_load(..., mask)
  a = add(x, p)
s = select(mask, a, p)

This means we need to keep the register p and a alive out of the loop, plus
the mask. On a target with predicated operations we can instead generate
the phi as p = phi(0, s). This ensures the select in the loop and we can
fold select(m, add(a, b), c) to something like a vaddt c, a, b using the
m predicate. This in turn allows us to tail predicate the entire loop.

Differential Revision: https://reviews.llvm.org/D84741
2020-08-20 14:31:14 +01:00
Hiroshi Yamauchi ab401a8c8a [PGO][PGSO][LV] Fix loop not vectorized issue under profile guided size opts.
D81345 appears to accidentally disables vectorization when explicitly
enabled. As PGSO isn't currently accessible from LoopAccessInfo, revert back to
the vectorization with versioning-for-unit-stride for PGSO.

Differential Revision: https://reviews.llvm.org/D85784
2020-08-19 12:13:34 -07:00
David Green b8088ada05 [LV] Predicated reduction tests. NFC 2020-08-18 16:02:21 +01:00
David Green 745bf6cf44 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-06 10:10:50 +01:00
Jordan Rupprecht 3c39db0c44 Revert "[LoopVectorizer] Inloop vector reductions"
This reverts commit e9761688e4. It breaks the build:

```
~/src/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp:868:10: error: no viable conversion from returned value of type 'SmallVector<[...], 8>' to function return type 'SmallVector<[...], 4>'
  return ReductionOperations;
```
2020-08-05 10:24:15 -07:00
David Green e9761688e4 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-05 18:14:05 +01:00
Florian Hahn 98db27711d [LV] Do not check widening decision for instrs outside of loop.
No widening decisions will be computed for instructions outside the
loop. Do not try to get a widening decision. The load/store will be just
a scalar load, so treating at as normal should be fine I think.

Fixes PR46950.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D85087
2020-08-03 10:09:24 +01:00
Arthur Eubanks b36c39260e [NewPM] Don't print 'Invalidating all non-preserved analyses'
If an analysis is actually invalidated, there's already a log statement
for that: 'Invalidating analysis: FooAnalysis'.
Otherwise the statement is not very useful.

Reviewed By: asbirlea, ychen

Differential Revision: https://reviews.llvm.org/D84981
2020-07-30 19:40:29 -07:00
David Green 1da0c47fa2 [LoopVectorizer] Don't create unused block masks for reductions. NFC
This removes some unneeded block masks when we don't have any
reductions. It should not have any effect on codegen as the values
created are dead anyway.

Differential Revision: https://reviews.llvm.org/D81415
2020-07-30 14:28:08 +01:00
Craig Topper 3efc978bae [LV] Add abs/smin/smax/umin/umax intrinsics to isTriviallyVectorizable
This patch adds support for vectorizing these intrinsics.

Differential Revision: https://reviews.llvm.org/D84796
2020-07-29 10:23:07 -07:00
David Green 9ddb28964c [ARM] Tune getCastInstrCost for extending masked loads and truncating masked stores
This patch uses the feature added in D79162 to fix the cost of a
sext/zext of a masked load, or a trunc for a masked store.
Previously, those were considered cheap or even free, but it's
not the case as we cannot split the load in the same way we would for
normal loads.

This updates the costs to better reflect reality, and adds a test for it
in test/Analysis/CostModel/ARM/cast.ll.

It also adds a vectorizer test that showcases the improvement: in some
cases, the vectorizer will now choose a smaller VF when
tail-predication is enabled, which results in better codegen. (Because
if it were to use a higher VF in those cases, the code we see above
would be generated, and the vmovs would block tail-predication later in
the process, resulting in very poor codegen overall)

Original Patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79163
2020-07-29 13:41:34 +01:00
Jinsong Ji d28f86723f Re-land "[PowerPC] Remove QPX/A2Q BGQ/BGP CNK support"
This reverts commit bf544fa1c3.

Fixed the typo in PPCInstrInfo.cpp.
2020-07-28 14:00:11 +00:00
Jinsong Ji bf544fa1c3 Revert "[PowerPC] Remove QPX/A2Q BGQ/BGP CNK support"
This reverts commit adffce7153.

This is breaking test-suite, revert while investigation.
2020-07-27 21:07:00 +00:00
Jinsong Ji adffce7153 [PowerPC] Remove QPX/A2Q BGQ/BGP CNK support
Per RFC http://lists.llvm.org/pipermail/llvm-dev/2020-April/141295.html
no one is making use of QPX/A2Q/BGQ/BGP CNK anymore.

This patch remove the support of QPX/A2Q in llvm, BGQ/BGP in clang,
CNK support in openmp/polly.

Reviewed By: hfinkel

Differential Revision: https://reviews.llvm.org/D83915
2020-07-27 19:24:39 +00:00
Arthur Eubanks 9bb6ce78be Rename scoped-noalias -> scoped-noalias-aa
Summary: To match NewPM name. Also the new name is clearer and more consistent.

Subscribers: jvesely, nhaehnle, hiraditya, asbirlea, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D84542
2020-07-24 12:14:27 -07:00
Hiroshi Yamauchi 7bedae7dee [PGO][PGSO] Add profile guided size optimization to loop vectorization legality. 2020-07-21 11:16:36 -07:00
David Green 2f4c3e8097 [LV] Add additional InLoop redution tests. NFC 2020-07-18 12:14:23 +01:00
Arthur Eubanks 0dfa4a83fa Revert "[PGO][PGSO] Add profile guided size optimization to loop vectorization legality."
This reverts commit 30c382a7c6.

See https://crbug.com/1106813.
2020-07-17 16:47:41 -07:00
Sjoerd Meijer 7ebc6bed84 [ARM][MVE] Reorg of the LV tail-folding tests
It was getting difficult to see which test was in which file, so this
reorganises the test files so that now all filenames start with tail-folding-*
followed by a more descriptive name what that group of tests check.
2020-07-17 15:54:15 +01:00
Anna Welker 23c9534515 [LV] Enable the LoopVectorizer to create pointer inductions
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.

Differential Revision: https://reviews.llvm.org/D81267
2020-07-17 13:35:07 +01:00
Hiroshi Yamauchi 30c382a7c6 [PGO][PGSO] Add profile guided size optimization to loop vectorization legality.
Differential Revision: https://reviews.llvm.org/D83329
2020-07-15 11:49:36 -07:00
Sjoerd Meijer 959eaa50d6 [ARM][MVE] Only tail-fold integer add reductions
If a vector body has live-out values, it is probably a reduction, which needs a
final reduction step after the loop. MVE has a VADDV instruction to reduce
integer vectors, but doesn't have an equivalent one for float vectors. A
live-out value that is not recognised as reduction later in the optimisation
pipeline will result in the tail-predicated loop to be reverted to a
non-predicated loop and this is very expensive, i.e. it has a significant
performance impact, which is what we hope to avoid with fine tuning the ARM TTI
hook preferPredicateOverEpilogue implementation.

Differential Revision: https://reviews.llvm.org/D82953
2020-07-14 10:15:07 +01:00
Sjoerd Meijer 595270ae39 [ARM][MVE] Refactor option -disable-mve-tail-predication
This refactors option -disable-mve-tail-predication to take different arguments
so that we have 1 option to control tail-predication rather than several
different ones.

This is also a prep step for D82953, in which we want to reject reductions
unless that is requested with this option.

Differential Revision: https://reviews.llvm.org/D83133
2020-07-13 13:40:33 +01:00
Ayal Zaks 82a5157ff1 [LV] Fixing versioning-for-unit-stide of loops with small trip count
This patch fixes D81345 and PR46652.

If a loop with a small trip count is compiled w/o -Os/-Oz, Loop Access Analysis
still generates runtime checks for unit strides that will version the loop.

In such cases, the loop vectorizer should either re-run the analysis or bail-out
from vectorizing the loop, as done prior to D81345. The latter is applied for
now as the former requires refactoring.

Differential Revision: https://reviews.llvm.org/D83470
2020-07-12 19:51:47 +03:00
Florian Hahn 264ab1e2c8 [LV] Pick vector loop body as insert point for SCEV expansion.
Currently the DomTree is not kept up to date for additional blocks
generated in the vector loop, for example when vectorizing with
predication. SCEVExpander relies on dominance checks when looking for
existing instructions to re-use and in some cases that can lead to the
expander picking instructions that do not actually dominate their insert
point (e.g. as in PR46525).

Unfortunately keeping the DT up-to-date is a bit tricky, because the CFG
is only patched up after generating code for a block. For now, we can
just use the vector loop header, as this ensures the inserted
instructions dominate all uses in the vector loop. There should be no
noticeable impact on the generated code, as other passes should sink
those instructions, if profitable.

Fixes PR46525.

Reviewers: Ayal, gilr, mkazantsev, dmgreen

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D83288
2020-07-10 10:37:12 +01:00
Ayal Zaks 7bf299c8d8 [LV] Vectorize without versioning-for-unit-stride under -Os/-Oz
If a loop is in a function marked OptSize, Loop Access Analysis should refrain
from generating runtime checks for unit strides that will version the loop.

If a loop is in a function marked OptSize and its vectorization is enabled, it
should be vectorized w/o any versioning.

Fixes PR46228.

Differential Revision: https://reviews.llvm.org/D81345
2020-07-07 15:04:21 +03:00
Jordan Rupprecht 10c82eecbc Revert "[LV] Enable the LoopVectorizer to create pointer inductions"
This reverts commit a8fe12065e.

It causes a crash when building gzip. Will post the detailed reduced test case to D81267.
2020-07-06 17:50:38 -07:00
David Green 146dad0077 [ARM] MVE FP16 cost adjustments
This adjusts the MVE fp16 cost model, similar to how we already do for
integer casts. It uses the base cost of 1 per cvt for most fp extend /
truncates, but adjusts it for loads and stores where we know that a
extending load has been used to get the load into the correct lane, and
only an MVE VCVTB is then needed.

Differential Revision: https://reviews.llvm.org/D81813
2020-07-06 15:57:51 +01:00
David Green 55227f85d0 [ARM] Use BaseT::getMemoryOpCost for getMemoryOpCost
This alters getMemoryOpCost to use the Base TargetTransformInfo version
that includes some additional checks for whether extending loads are
legal. This will generally have the effect of making <2 x ..> and some
<4 x ..> loads/stores more expensive, which in turn should help favour
larger vector factors.

Notably it alters the cost of a <4 x half>, which with the current
codegen will be expensive if it is not extended.

Differential Revision: https://reviews.llvm.org/D82456
2020-07-06 10:58:40 +01:00
Anna Welker a8fe12065e [LV] Enable the LoopVectorizer to create pointer inductions
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.

Differential Revision: https://reviews.llvm.org/D81267
2020-07-02 11:39:28 +01:00
Florian Hahn 1ccc49924a [AArch64] Add getCFInstrCost, treat branches as free for throughput.
D79164/2596da31740f changed getCFInstrCost to return 1 per default.
AArch64 did not have its own implementation, hence the throughput cost
of CFI instructions is overestimated. On most cores, most branches should
be predicated and essentially free throughput wise.

This restores a 9% performance regression on a SPEC2006 benchmark on
AArch64 with -O3 LTO & PGO.

This patch effectively restores pre 2596da3174 behavior for AArch64
and undoes the AArch64 test changes of the patch.

Reviewers: samparker, dmgreen, anemet

Reviewed By: samparker

Differential Revision: https://reviews.llvm.org/D82755
2020-06-30 20:34:04 +01:00
Fangrui Song 4cd19a6e15 [BasicAA] Rename -disable-basicaa to -disable-basic-aa to be consistent with the canonical name "basic-aa" 2020-06-26 20:55:44 -07:00
Fangrui Song f31811f2dc [BasicAA] Rename deprecated -basicaa to -basic-aa
Follow-up to D82607
Revert an accidental change (empty.ll) of D82683
2020-06-26 20:41:37 -07:00
Sjoerd Meijer e345d547a0 Recommit "[LV] Emit @llvm.get.active.lane.mask for tail-folded loops"
Fixed ARM regression test.

Please see the original commit message rG47650451738c for details.
2020-06-17 13:12:15 +01:00
Sjoerd Meijer d4e183f686 Revert "[LV] Emit @llvm.get.active.mask for tail-folded loops"
This reverts commit 4765045173
while I investigate the build bot failures.
2020-06-17 10:09:54 +01:00
Sjoerd Meijer 4765045173 [LV] Emit @llvm.get.active.mask for tail-folded loops
This emits new IR intrinsic @llvm.get.active.mask for tail-folded vectorised
loops if the intrinsic is supported by the backend, which is checked by
querying TargetTransform hook emitGetActiveLaneMask.

This intrinsic creates a mask representing active and inactive vector lanes,
which is used by the masked load/store instructions that are created for
tail-folded loops. The semantics of @llvm.get.active.mask are described here in
LangRef:

https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics

This intrinsic is also used to provide a hint to the backend. That is, the
second argument of the intrinsic represents the back-edge taken count of the
loop. For MVE, for example, we use that to set up tail-predication, which is a
new form of predication in MVE for vector loops that implicitely predicates the
last vector loop iteration by implicitely setting active/inactive lanes, i.e.
the tail loop is predicated. In order to set up a tail-predicated vector loop,
we need to know the number of data elements processed by the vector loop, which
corresponds the the tripcount of the scalar loop, which we can now reconstruct
using @llvm.get.active.mask.

Differential Revision: https://reviews.llvm.org/D79100
2020-06-17 09:53:58 +01:00
Sam Parker 2596da3174 [CostModel] getCFInstrCost in getUserCost.
Have BasicTTI call the base implementation so that both agree on the
default behaviour, which the default being a cost of '1'. This has
required an X86 specific implementation as it seems to be very
reliant on those instructions being free. Changes are also made to
AMDGPU so that their implementations distinguish between cost kinds,
so that the unrolling isn't affected. PowerPC also has its own
implementation to prevent changes to the reg-usage vectorizer test.

The cost model test changes now reflect that ret instructions are not
generally free.

Differential Revision: https://reviews.llvm.org/D79164
2020-06-15 09:28:46 +01:00
Florian Hahn 6176f04436 [LAA] Do not set CanDoRT to false for AS that do not need RT checks.
Alternative approach to D80570.

canCheckPtrAtRT already contains checks the figure out for which alias
sets runtime checks are needed. But it currently sets CanDoRT to false
for alias sets for which we cannot do RT checks but also do not need
any.

If we know that we do not need RT checks based on the number of
reads/writes in the alias set, we can skip processing the AS.

This patch also adds an assertion to ensure that DepCands does not
contain more than one write from the alias set.

Reviewers: Ayal, anemet, hfinkel, dmgreen

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D80622
2020-06-14 20:55:59 +01:00
David Green 46529978bf [ARM] Always use reductions intrinsics under MVE
Similar to a recent change to the X86 backend, this changes things so
that we always produce a reduction intrinsics for all reduction types,
not just the legal ones. This gives a better chance in the backend to
custom lower them to something more suitable for MVE. Especially for
something like fadd the in-order reduction produced during DAG lowering
is already better than the shuffles produced in the midend, and we can
do even better with a bit of custom lowering.

Differential Revision: https://reviews.llvm.org/D81398
2020-06-12 19:21:17 +01:00
Florian Hahn 3a846d4d92 [VPlan] Reject loops without computable backedge taken counts
getOrCreateTripCount is used to generate code for the outer loop, but it
requires a computable backedge taken counts. Check that in the VPlan
native path.

Reviewers: Ayal, gilr, rengolin, sguggill

Reviewed By: sguggill

Differential Revision: https://reviews.llvm.org/D81088
2020-06-12 10:31:18 +01:00
David Green a4cf68e743 [ARM] MVE vectorizer reduction tests for each reduction type. NFC 2020-06-10 11:18:24 +01:00
Anh Tuyen Tran e7c5412b37 [NFC][LV][TEST]: extend pr45679-fold-tail-by-masking.ll with -force-vector-width=1 -force-vector-interleave=4
Summary:
Add -force-vector-width=1 -force-vector-interleave=4 to pr45679-fold-tail-by-masking.ll

Author: anhtuyen (Anh Tuyen Tran)

Reviewers: Ayal (Ayal Zaks)

Reviewed By: Ayal (Ayal Zaks)

Subscribers: rkruppe (Hanna Kruppe), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80446
2020-06-09 18:30:56 +00:00
Sanjay Patel e50059f6b6 [x86] form reduction intrinsics from vectorizers instead of raw IR
Motivating examples are seen in the PhaseOrdering tests based on:
https://bugs.llvm.org/show_bug.cgi?id=43953#c2 - if we have
intrinsics there, some pass can fold them.

The intrinsics are still named "experimental" at this point, but
if there is no fallout from this patch, that will be a good
indicator that it is safe to finalize them.

Differential Revision: https://reviews.llvm.org/D80867
2020-06-05 12:38:49 -04:00
Florian Hahn b446ec56a2 [LV] Make sure the MaxVF is a power-of-2 by rounding down.
LV currently only supports power of 2 vectorization factors, which has
been made explicit with the assertion added in
840450549c.

However, if the widest type is not a power-of-2 the computed MaxVF won't
be a power-of-2 either. This patch updates computeFeasibleMaxVF to
ensure the returned value is a power-of-2 by rounding down to the
nearest power-of-2.

Fixes PR46139.

Reviewers: Ayal, gilr, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D80870
2020-06-02 10:40:49 +01:00
Sanjay Patel db653ff6b7 [LoopVectorize] auto-generate complete test checks; NFC 2020-05-29 13:14:08 -04:00
Sanjay Patel f78eecbb93 [LoopVectorize] regenerate test checks; NFC
Align attributes are now visible.
2020-05-29 13:02:45 -04:00
Sanjay Patel 5e94273227 [LoopVectorize] auto-generate complete checks; NFC 2020-05-29 13:01:35 -04:00
Sanjay Patel 9d1f95bf9f [LoopVectorize] regenerate test checks; NFC
Align attributes are now visible.
2020-05-29 13:01:35 -04:00
Sanjay Patel 0b21c6706a [LoopVectorize] auto-generate complete test checks; NFC 2020-05-29 13:01:35 -04:00
Sanjay Patel 1a2bffaf8b [InstCombine] reassociate sub+add to increase adds and throughput
The -reassociate pass tends to transform this kind of pattern into
something that is worse for vectorization and codegen. See PR43953:
https://bugs.llvm.org/show_bug.cgi?id=43953

Follows-up the FP version of the same transform:
rGa0ce2338a083
2020-05-26 14:49:17 -04:00
Sanjay Patel f5cfcc4b06 [LoopVectorize] regenerate full test checks; NFC 2020-05-26 14:49:17 -04:00
Serge Pavlov 4d20e31f73 [FPEnv] Intrinsic llvm.roundeven
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.

Differential Revision: https://reviews.llvm.org/D75670
2020-05-26 19:24:58 +07:00
Ayal Zaks 840450549c [LV] Clamp MaxVF to power of 2.
If a loop has a constant trip count known to be a multiple of MaxVF (times user
UF), LV infers that no tail will be generated for any chosen VF. This relies on
the chosen VF's being powers of 2 bound by MaxVF, and assumes MaxVF is a power
of 2. Make sure the latter holds, in particular when MaxVF is set by a memory
dependence distance which may not be a power of 2.

Differential Revision: https://reviews.llvm.org/D80491
2020-05-25 11:24:33 +03:00
Florian Hahn 0deab8a54f [LV] Either get invariant condition OR vector condition.
Currently we unconditionally get the first lane of the condition
operand, even if we later use the full vector condition. This can result
in some unnecessary instructions being generated.

Suggested as follow-up in D80219.
2020-05-24 17:16:42 +01:00
Anh Tuyen Tran 13bf6039c9 Title: [LV] Handle Fold-Tail of loops with vectorizarion factor equal to 1
Summary:
When handling loops whose VF is 1, fold-tail vectorization sets the
backedge taken count of the original loop with a vector of a single
element. This causes type-mismatch during instruction generartion.

The purpose of this patch is toto address the case of VF==1.

Reviewer: Ayal (Ayal Zaks), bmahjour (Bardia Mahjour), fhahn (Florian Hahn), gilr (Gil Rapaport), rengolin (Renato Golin)

Reviewed By: Ayal (Ayal Zaks), bmahjour (Bardia Mahjour), fhahn (Florian Hahn)

Subscribers: Ayal (Ayal Zaks), rkruppe (Hanna Kruppe), bmahjour (Bardia Mahjour), rogfer01 (Roger Ferrer Ibanez), vkmr (Vineet Kumar), bollu (Siddharth Bhat), hiraditya (Aditya Kumar), llvm-commits (Mailing List llvm-commits)

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D79976
2020-05-22 13:30:56 +00:00
Jon Roelofs 5fb979dd06 [llvm][test] Add missing FileCheck colons. NFC 2020-05-21 09:29:27 -06:00
Ayal Zaks 682e739638 [LV] Fix FoldTail under user VF and UF
LV considers an internally computed MaxVF to decide if a constant trip-count is
a multiple of any subsequently chosen VF, and conclude that no scalar remainder
iterations (tail) will be left for Fold Tail to handle. If an external VF is
provided via -force-vector-width, it must be considered instead of the internal
MaxVF.
If an external UF is provided via -force-vector-interleave, it too must be
considered in addition to MaxVF or user VF.

Fixes PR45679.

Differential Revision: https://reviews.llvm.org/D80085
2020-05-19 01:32:25 +03:00
Eli Friedman 4532a50899 Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.

The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.

Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.

This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.

Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.

Differential Revision: https://reviews.llvm.org/D78403
2020-05-14 13:03:50 -07:00
Sjoerd Meijer 9529597cf4 Recommit #2: "[LV] Induction Variable does not remain scalar under tail-folding."
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:

If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.
2020-05-13 13:50:09 +01:00
Sam Parker b4a8091a11 [ARM][CostModel] Improve getCastInstrCost
- Specifically check for sext/zext users which have 'long' form NEON
  instructions.
- Add more entries to the table for sext/zexts so that we can report
  more accurately the number of vmovls required for NEON.
- Pass the instruction to the pass implementation.

Differential Revision: https://reviews.llvm.org/D79561
2020-05-12 10:32:20 +01:00
Florian Hahn 96c63f544f Recommit "[LAA] Remove one addRuntimeChecks function (NFC)."
The failing assertion has been fixed and the problematic test case has
been added.

This reverts the revert commit fc44617f28.
2020-05-10 15:19:57 +01:00
Benjamin Kramer f936457f80 Revert "Recommit "[LV] Induction Variable does not remain scalar under tail-folding.""
This reverts commit ae45b4dbe7. It
causes miscompilations, test case on the mailing list.
2020-05-08 14:49:10 +02:00
Sjoerd Meijer ae45b4dbe7 Recommit "[LV] Induction Variable does not remain scalar under tail-folding."
With 3 llvm regr tests fixed/updated that I had missed.
2020-05-07 11:52:20 +01:00
Sjoerd Meijer 20d67ffeae Revert "[LV] Induction Variable does not remain scalar under tail-folding."
This reverts commit 617aa64c84.

while I investigate buildbot failures.
2020-05-07 09:29:56 +01:00
Sjoerd Meijer 617aa64c84 [LV] Induction Variable does not remain scalar under tail-folding.
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.

Differential Revision: https://reviews.llvm.org/D78911
2020-05-07 09:15:23 +01:00
Masoud Ataei b4934ae44c [VFDatabase] Testsuite for scalar functions are vector functions with VF =1
Fixing test suite of the committed PR: https://reviews.llvm.org/D78054.
I am proposing to remove the PowerPC target triple in the test suite.

Reviewed by: @jsji, @fpetrogalli

Tags: LLVM

Differential Revision: https://reviews.llvm.org/D79124
2020-04-30 15:47:21 -04:00
Anh Tuyen Tran c7878ad231 [VFDatabase] Scalar functions are vector functions with VF =1
Summary:
Return scalar function when VF==1. The new trivial mapping scalar --> scalar when VF==1 to prevent false positive for "isVectorizable" query.

Author: masoud.ataei (Masoud Ataei)

Reviewers: Whitney (Whitney Tsang), fhahn (Florian Hahn), pjeeva01 (Jeeva P.), fpetrogalli (Francesco Petrogalli), rengolin (Renato Golin)

Reviewed By: fpetrogalli (Francesco Petrogalli)

Subscribers: hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D78054
2020-04-29 17:20:37 +00:00
Simon Pilgrim 090cae8491 [TTI] Add DemandedElts to getScalarizationOverhead
The improvements to the x86 vector insert/extract element costs in D74976 resulted in the estimated costs for vector initialization and scalarization increasing higher than should be expected. This is particularly noticeable on pre-SSE4 targets where the available of legal INSERT_VECTOR_ELT ops is more limited.

This patch does 2 things:
1 - it implements X86TTIImpl::getScalarizationOverhead to more accurately represent the typical costs of a ISD::BUILD_VECTOR pattern.
2 - it adds a DemandedElts mask to getScalarizationOverhead to permit the SLP's BoUpSLP::getGatherCost to be rewritten to use it directly instead of accumulating raw vector insertion costs.

This fixes PR45418 where a v4i8 (zext'd to v4i32) was no longer vectorizing.

A future patch should extend X86TTIImpl::getScalarizationOverhead to tweak the EXTRACT_VECTOR_ELT scalarization costs as well.

Reviewed By: @craig.topper

Differential Revision: https://reviews.llvm.org/D78216
2020-04-29 12:00:38 +01:00
Florian Hahn e89379856a Recommit "[VPlan] Add & use VPValue operands for VPWidenRecipe (NFC)."
The crash that caused the original revert has been fixed in
a3c964a278. I also added a reduced version of the crash reproducer.

This reverts the revert commit 2107af9ccf.
2020-04-29 11:40:39 +01:00
Craig Topper 5eff75d86a [X86][CostModel] Improve costs for fp_to_uint/fp_to_sint for vXi8/vXi16/v2i32 results.
Differential Revision: https://reviews.llvm.org/D78893
2020-04-27 10:35:15 -07:00
Ayal Zaks a3c964a278 [LV] Fix recording of BranchTakenCount for FoldTail
When folding tail, branch taken count is computed during initial VPlan execution
and recorded to be used by the compare computing the loop's mask. This recording
should directly set the State, instead of reusing Value2VPValue mapping which
serves original Values present prior to vectorization.
The branch taken count may be a constant Value, which may be used elsewhere in
the loop; trying to employ Value2VPValue for both leads to the issue reported in
https://reviews.llvm.org/D76992#inline-721028

Differential Revision: https://reviews.llvm.org/D78847
2020-04-26 20:13:10 +03:00
Max Kazantsev 9cd4debd5a [LoopVectorize] Preserve CFG analyses if CFG wasn't modified
One of transforms the loop vectorizer makes is LCSSA formation. In some cases it
is the only transform it makes. We should not drop CFG analyzes if only LCSSA was
formed and no actual CFG changes was made.

We should think of expanding this logic to other passes as well, and maybe make
it a part of PM framework.

Reviewed By: Florian Hahn
Differential Revision: https://reviews.llvm.org/D78360
2020-04-24 17:22:24 +07:00
David Green eecba95067 [ARM] Replace arm vendor with none. NFC 2020-04-22 18:19:35 +01:00
Eli Friedman 9b9454af8a Require "target datalayout" to be at the beginning of an IR file.
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.

Differential Revision: https://reviews.llvm.org/D78413
2020-04-20 11:55:49 -07:00
Max Kazantsev 204c0bbe7f [Test] Fix test failure: platform-dependent printout 2020-04-20 10:27:50 +07:00
Max Kazantsev 80cd36ed63 [Test] Add a test showing how CFG analyses are invalidated after LV
It demonstrates that, even if LV does no actual vectorization and only
forms LCSSA, CFG analyses get dropped.
2020-04-20 09:38:49 +07:00
Ayal Zaks 8e0c5f7200 [LV] Mark first-order recurrences as allowed exits
First-order recurrences require special treatment when they are live-out;
such treatment is provided by fixFirstOrderRecurrence(), so they should be
included in AllowedExit set.

(Should probably have been included originally in D16197.)

Fixes PR45526: AllowedExit set is used by prepareToFoldTailByMasking() to
check whether the treatment for live-outs also holds when folding the tail,
which is not (yet) the case for first-order recurrences.

Differential Revision: https://reviews.llvm.org/D78210
2020-04-18 23:54:21 +03:00
Florian Hahn 4ee45ab60f [LV] Invalidate cost model decisions along with interleave groups.
Cost-modeling decisions are tied to the compute interleave groups
(widening decisions, scalar and uniform values). When invalidating the
interleave groups, those decisions also need to be invalidated.

Otherwise there is a mis-match during VPlan construction.
VPWidenMemoryRecipes created initially are left around w/o converting them
into VPInterleave recipes. Such a conversion indeed should not take place,
and these gather/scatter recipes may in fact be right. The crux is leaving around
obsolete CM_Interleave (and dependent) markings of instructions along with
their costs, instead of recalculating decisions, costs, and recipes.

Alternatively to forcing a complete recompute later on, we could try
to selectively invalidate the decisions connected to the interleave
groups. But we would likely need to run the uniform/scalar value
detection parts again anyways and the extra complexity is probably not
worth it.

Fixes PR45572.

Reviewers: gilr, rengolin, Ayal, hsaito

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D78298
2020-04-18 10:23:49 +01:00
Sjoerd Meijer 5be767d489 NFC: remove outdated TODOs from ARM test file. 2020-04-17 17:08:11 +01:00
Gil Rapaport b747d72c19 [LV] Fix PR45525: Incorrect assert in blend recipe
Fix an assert introduced in 41ed5d856c1: a phi with a single predecessor and a
mask is a valid case which is already supported by the code.

Differential Revision: https://reviews.llvm.org/D78115
2020-04-15 10:39:07 +03:00
Sjoerd Meijer 3ef614a007 NFC: update of ARM llvm regr test, follow up of 9633fc14ae. 2020-04-14 21:30:22 +01:00
Sjoerd Meijer 9633fc14ae [LV][ARM] Add tail-folding tests for MVE. NFC.
D77635 added support to recognise primary induction variables for counting-down
loops. This allows us to fold the scalar tail loop into the main vector body,
which we need for MVE tail-predication. This adds some ARM tail-folding test
cases that we want to support.

This test was extracted from D76838, which implemented a different approach to
reverse and thus find a primary induction variable.
2020-04-14 16:03:29 +01:00
Jon Roelofs 0b0bb1969f [llvm] Fix yet more missing FileCheck colons 2020-04-13 10:49:19 -06:00
Ayal Zaks 1678489234 [LV] FoldTail w/o Primary Induction
Introduce a new VPWidenCanonicalIVRecipe to generate a canonical vector
induction for use in fold-tail-with-masking, if a primary induction is absent.

The canonical scalar IV having start = 0 and step = VF*UF, created during code
-gen to control the vector loop, is widened into a canonical vector IV having
start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF} and
step = <VF*UF, VF*UF, ..., VF*UF>.

Differential Revision: https://reviews.llvm.org/D77635
2020-04-09 17:45:23 +03:00
Craig Topper ca376782ff [LoopVectorize] Move testing for SVML vectorization of exp2f_finite/exp2_finite from svml-calls.ll to svml-calls-finite.ll where the finite versions of log, pow, and exp already were. 2020-04-08 18:13:55 -07:00
Jonathan Roelofs 7c5d2bec76 [llvm] Fix missing FileCheck directive colons
https://reviews.llvm.org/D77352
2020-04-06 09:59:08 -06:00
laith sakka a0983ed3d2 Handle exp2 with proper vectorization and lowering to SVML calls
Summary:
Add mapping from exp2 math functions
to corresponding SVML calls.

This is a follow up and extension for llvm diff
https://reviews.llvm.org/D19544

Test Plan:
- update test case and run ninja check.
- run tests locally

Reviewers: wenlei, hoyFB, mmasten, mzolotukhin, spatel

Reviewed By: spatel

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77114
2020-04-02 21:11:13 -07:00
Vedant Kumar dcc410b5cf [LoopVectorize] Fix crash on "getNoopOrZeroExtend cannot truncate!" (PR45259)
In InnerLoopVectorizer::getOrCreateTripCount, when the backedge taken
count is a SCEV add expression, its type is defined by the type of the
last operand of the add expression.

In the test case from PR45259, this last operand happens to be a
pointer, which (according to llvm::Type) does not have a primitive size
in bits. In this case, LoopVectorize fails to truncate the SCEV and
crashes as a result.

Uing ScalarEvolution::getTypeSizeInBits makes the truncation work as expected.

https://bugs.llvm.org/show_bug.cgi?id=45259

Differential Revision: https://reviews.llvm.org/D76669
2020-03-30 10:14:14 -07:00
Roman Lebedev 1badf7c33a
[InstComine] Forego of one-use check in `(X - (X & Y)) --> (X & ~Y)` if Y is a constant
Summary:
This is potentially more friendly for further optimizations,
analysies, e.g.: https://godbolt.org/z/G24anE

This resolves phase-ordering bug that was introduced
in D75145 for https://godbolt.org/z/2gBwF2
https://godbolt.org/z/XvgSua

Reviewers: spatel, nikic, dmgreen, xbolva00

Reviewed By: nikic, xbolva00

Subscribers: hiraditya, zzheng, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D75757
2020-03-06 21:39:07 +03:00
David Green 587feec07e [ARM] Change all tests from "thumbv8.1-m.main" to "thumbv8.1m.main". NFC 2020-03-04 13:47:35 +00:00
David Green ec7e4a9a80 [LoopVectorizer] Add reduction tests for inloop reductions. NFC
Also adds a force-reduction-intrinsics option for testing, for forcing
the generation of reduction intrinsics even when the backend is not
requesting them.
2020-03-03 10:54:00 +00:00
Simon Pilgrim 168a44a70e [CostModel][X86] Improve extract/insert element costs (PR43605)
This tries to improve the accuracy of extract/insert element costs by accounting for subvector extraction/insertion for >128-bit vectors and the shuffling of elements to/from the 0'th index.

It also adds INSERTPS for f32 types and PINSR/PEXTR costs for integer types (at the moment we assume the same cost as MOVD/MOVQ - which isn't always true).

Differential Revision: https://reviews.llvm.org/D74976
2020-02-27 15:54:13 +00:00
Nemanja Ivanovic b9f3686056 Fix buildbot break after c46b85aaf4
I added test cases that rely on the availability of the PPC target into
the general directory for the loop vectorizer. This causes failures on
bots that don't build the PPC target. Moving them to the PowerPC directory
to fix this.
2020-02-26 21:56:11 -06:00
Nemanja Ivanovic c46b85aaf4 [LoopVectorize] Fix cost for calls to functions that have vector versions
A recent commit
(https://reviews.llvm.org/rG66c120f02560ef528a60924104ead66f330190f1) changed
the cost for calls to functions that have a vector version for some
vectorization factor. However, no check is performed for whether the
vectorization factor matches the current one being cost modeled. This leads to
attempts to widen call instructions to a vectorization factor for which such a
function does not exist, which in turn leads to an assertion failure.

This patch adds the check for vectorization factor (i.e. not just that the
called function has a vector version for some VF, but that it has a vector
version for this VF).

Differential revision: https://reviews.llvm.org/D74944
2020-02-26 21:39:11 -06:00
Roman Lebedev d6f47aeb51
[SCEV] SCEVExpander::isHighCostExpansionHelper(): cost-model min/max (PR44668)
Summary:
Previosly we simply always said that `SCEVMinMaxExpr` is too costly to expand.
But this isn't really true, it expands into just a comparison+swap pair.
And again much like with add/mul, there will be one less such pair
than the number of operands. And we need to count the cost of operands themselves.

This does change a number of testcases, and as far as i can tell,
all of these changes are improvements, in the sense that
we fixed up more latches to do the [in]equality comparison.

This concludes cost-modelling changes, no other SCEV expressions exist as of now.

This is a part of addressing [[ https://bugs.llvm.org/show_bug.cgi?id=44668 | PR44668 ]].

Reviewers: reames, mkazantsev, wmi, sanjoy

Reviewed By: mkazantsev

Subscribers: hiraditya, javed.absar, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73744
2020-02-25 23:05:59 +03:00
Simon Pilgrim 2769fb90f0 [LoopVectorize][X86] Regenerate tests. NFCI. 2020-02-21 18:23:55 +00:00
Roman Lebedev 3bd33ccfdf
[NFC?][SCEV][LoopVectorize] Add datalayout to the X86/float-induction-x86.ll test
Summary:
Currently, `SCEVExpander::isHighCostExpansionHelper()` has the following logic:
```
  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
    // If the divisor is a power of two and the SCEV type fits in a native
    // integer (and the LHS not expensive), consider the division cheap
    // irrespective of whether it occurs in the user code since it can be
    // lowered into a right shift.
    if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
      if (SC->getAPInt().isPowerOf2()) {
        if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At,
                                      BudgetRemaining, TTI, Processed))
          return true;
        const DataLayout &DL =
            L->getHeader()->getParent()->getParent()->getDataLayout();
        unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
        return DL.isIllegalInteger(Width);
      }
```

Since this test does not have a datalayout specified,
`SCEVExpander::isHighCostExpansionHelper()` says that
`[[TMP2:%.*]] = lshr exact i64 [[TMP1]], 5` is high-cost, and didn't perform it.

But future patches will change that logic to solely rely on cost-model,
without any such datalayout checks, so i think it is best to show
that that change is ephemeral, and can already happen without costmodel changes.

Reviewers: reames, fhahn, sanjoy, craig.topper, RKSimon

Reviewed By: RKSimon

Subscribers: javed.absar, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73717
2020-02-12 12:27:38 +03:00
Sanjay Patel e78fb556c5 [InstCombine] reassociate splatted vector ops
bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp

This patch depends on the splat analysis enhancement in D73549.
See the test with comment:
; Negative test - mismatched splat elements
...as the motivation for that first patch.

The motivating case for reassociating splatted ops is shown in PR42174:
https://bugs.llvm.org/show_bug.cgi?id=42174

In that example, a slight change in order-of-associative math results
in a big difference in IR and codegen. This patch gets all of the
unnecessary shuffles out of the way, but doesn't address the potential
scalarization (see D50992 or D73480 for that).

Differential Revision: https://reviews.llvm.org/D73703
2020-02-03 09:08:36 -05:00
Simon Pilgrim 105e5c940c [ValueTracking] Add DemandedElts support to computeKnownBits/ComputeNumSignBits (PR36319)
This patch adds initial support for a DemandedElts mask to the internal computeKnownBits/ComputeNumSignBits methods, matching the SelectionDAG and GlobalISel equivalents.

So far only a couple of instructions have been setup to handle the DemandedElts, the remainder still using the existing 'all elements' default. The plan is to extend support as we have test coverage.

Differential Revision: https://reviews.llvm.org/D73435
2020-02-01 12:45:46 +00:00
Florian Hahn a911fef3dd [LV] Do not try to sink dead instructions.
Dead instructions do not need to be sunk. Currently we try and record
the recipies for them, but there are no recipes emitted for them and
there's nothing to sink. They can be removed from SinkAfter while
marking them for recording.

Fixes PR44634.

Reviewers: rengolin, hsaito, fhahn, Ayal, gilr

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D73423
2020-01-28 08:28:03 -08:00
Wei Mi f60671f049 [LV] Remove nondeterminacy by changing LoopVectorizationLegality::Reductions
from DenseMap to MapVector

The iteration order of LoopVectorizationLegality::Reductions matters for the
final code generation, so we better use MapVector instead of DenseMap for it
to remove the nondeterminacy. reduction-order.ll in the patch is an example
reduced from the case we saw. In the output of opt command, the order of the
select instructions in the vector.body block keeps changing from run to run
currently.

Differential Revision: https://reviews.llvm.org/D73490
2020-01-27 16:53:20 -08:00
Roman Lebedev 7bca4a28f5
[NFC][LoopVectorize] Autogenerate tests affected by isHighCostExpansionHelper() cost modelling (PR44668) 2020-01-27 23:34:30 +03:00
David Green b535aa405a [ARM] Use reduction intrinsics for larger than legal reductions
The codegen for splitting a llvm.vector.reduction intrinsic into parts
will be better than the codegen for the generic reductions. This will
only directly effect when vectorization factors are specified by the
user.

Also added tests to make sure the codegen for larger reductions is OK.

Differential Revision: https://reviews.llvm.org/D72257
2020-01-24 17:07:24 +00:00
Florian Hahn f14f2a8568 [LV] Fix predication for branches with matching true and false succs.
Currently due to the edge caching, we create wrong predicates for
branches with matching true and false successors. We will cache the
condition for the edge from the true successor, and then lookup the same
edge (src and dst are the same) for the edge to the false successor.

If both successors match, the condition should always be true. At the
moment, we cannot really create constant VPValues, but we can just
create a true condition as X | !X. Later passes will clean that up.

Fixes PR44488.

Reviewers: rengolin, hsaito, fhahn, Ayal, dorit, gilr

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D73079
2020-01-22 18:34:11 -08:00
Florian Hahn 39ae86ab72 [AArch64TTI] AArch64 supports NT vector stores through STNP.
This patch adds a custom implementation of isLegalNTStore to AArch64TTI
that supports vector types that can be directly stored by STNP. Note
that the implementation may not catch all valid cases (e.g. because the
vector is a multiple of 256 and could be broken down to multiple valid 256 bit
stores), but it is good enough for LV to vectorize loops with NT stores,
as LV only passes in a vector with 2 elements to check. LV seems to also
be the only user of isLegalNTStore.

We should also do the same for NT loads, but before that we need to
ensure that we properly lower LDNP of vectors, similar to D72919.

Reviewers: dmgreen, samparker, t.p.northover, ab

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D73158
2020-01-22 16:45:24 -08:00
Evgeniy Brevnov af7e158872 [LV] Vectorizer should adjust trip count in profile information
Summary: Vectorized loop processes VFxUF number of elements in one iteration thus total number of iterations decreases proportionally. In addition epilog loop may not have more than VFxUF - 1 iterations. This patch updates profile information accordingly.

Reviewers: hsaito, Ayal, fhahn, reames, silvas, dcaballe, SjoerdMeijer, mkuper, DaniilSuchkov

Reviewed By: Ayal, DaniilSuchkov

Subscribers: fedor.sergeev, hiraditya, rkruppe, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67905
2020-01-20 18:36:28 +07:00
Francesco Petrogalli 66c120f025 [VectorUtils] Rework the Vector Function Database (VFDatabase).
Summary:
This commits is a rework of the patch in
https://reviews.llvm.org/D67572.

The rework was requested to prevent out-of-tree performance regression
when vectorizing out-of-tree IR intrinsics. The vectorization of such
intrinsics is enquired via the static function `isTLIScalarize`. For
detail see the discussion in https://reviews.llvm.org/D67572.

Reviewers: uabelho, fhahn, sdesmalen

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72734
2020-01-16 15:08:26 +00:00
Florian Hahn 23c113802e [LV] Allow assume calls in predicated blocks.
The assume intrinsic is intentionally marked as may reading/writing
memory, to avoid passes moving them around. When flattening the CFG
for predicated blocks, we have to drop the assume calls, as they
are control-flow dependent.

There are some cases where we can do better (when control flow is
preserved), but that is follow-up work.

Fixes PR43620.

Reviewers: hsaito, rengolin, dcaballe, Ayal

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D68814
2020-01-16 10:11:35 +00:00
Florian Hahn 59ac44b3c1 [LV] Make X86/assume.ll X86 independent (NFC).
The test does not check anything X86 specific. This is a preparation for
the D68814.
2020-01-16 10:01:35 +00:00
Momchil Velikov 173b711e83 [ARM][MVE] MVE-I should not be disabled by -mfpu=none
Architecturally, it's allowed to have MVE-I without an FPU, thus
-mfpu=none should not disable MVE-I, or moves to/from FP-registers.

This patch removes `+/-fpregs` from features unconditionally added to
target feature list, depending on FPU and moves the logic to Clang
driver, where the negative form (`-fpregs`) is conditionally added to
the target features list for the cases of `-mfloat-abi=soft`, or
`-mfpu=none` without either `+mve` or `+mve.fp`. Only the negative
form is added by the driver, the positive one is derived from other
features in the backend.

Differential Revision: https://reviews.llvm.org/D71843
2020-01-09 14:03:25 +00:00
Sjoerd Meijer 8f1887456a [LV] Still vectorise when tail-folding can't find a primary inducation variable
This addresses a vectorisation regression for tail-folded loops that are
counting down, e.g. loops as simple as this:

  void foo(char *A, char *B, char *C, uint32_t N) {
    while (N > 0) {
      *C++ = *A++ + *B++;
       N--;
    }
  }

These are loops that can be vectorised, but when tail-folding is requested, it
can't find a primary induction variable which we do need for predicating the
loop. As a result, the loop isn't vectorised at all, which it is able to do
when tail-folding is not attempted. So, this adds a check for the primary
induction variable where we decide how to lower the scalar epilogue. I.e., when
there isn't a primary induction variable, a scalar epilogue loop is allowed
(i.e. don't request tail-folding) so that vectorisation could still be
triggered.

Having this check for the primary induction variable make sense anyway, and in
addition, in a follow-up of this I will look into discovering earlier the
primary induction variable for counting down loops, so that this can also be
tail-folded.

Differential revision: https://reviews.llvm.org/D72324
2020-01-09 09:14:00 +00:00
Matt Arsenault f26ed6e47c llc: Change behavior of -mcpu with existing attribute
Don't overwrite existing target-cpu attributes.

I've often found the replacement behavior annoying, and this is
inconsistent with how the fast math command line flags interact with
the function attributes.

Does not yet change target-features, since I think that should behave
as a concatenation.
2020-01-07 10:10:25 -05:00
Jinsong Ji e29a2e6be4 [PowerPC][LoopVectorize] Extend getRegisterClassForType to consider double and other floating point type
In https://reviews.llvm.org/D67148, we use isFloatTy to test floating
point type, otherwise we return GPRRC.
So 'double' will be classified as GPRRC, which is not accurate.

This patch covers other floating point types.

Reviewed By: #powerpc, nemanjai

Differential Revision: https://reviews.llvm.org/D71946
2020-01-06 18:44:59 +00:00
Jinsong Ji 1d7990228f [PowerPC][LoopVectorize] Add tests for fp128 and fp16
Add two tests to reg-usage.ll
2020-01-03 21:39:29 +00:00
Jinsong Ji e8c5600de8 [PowerPC][LoopVectorize]Add floating point reg usage test
Copied two tests from x86 to test floating point reg usage.
2019-12-27 20:37:23 +00:00
Fangrui Song a36ddf0aa9 Migrate function attribute "no-frame-pointer-elim"="false" to "frame-pointer"="none" as cleanups after D56351 2019-12-24 16:27:51 -08:00
Fangrui Song eb16435b5e Migrate function attribute "no-frame-pointer-elim-non-leaf" to "frame-pointer"="non-leaf" as cleanups after D56351 2019-12-24 16:05:15 -08:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Ayal Zaks e498be5738 [LV] Strip wrap flags from vectorized reductions
A sequence of additions or multiplications that is known not to wrap, may wrap
if it's order is changed (i.e., reassociated). Therefore when vectorizing
integer sum or product reductions, their no-wrap flags need to be removed.

Fixes PR43828

Patch by Denis Antrushin

Differential Revision: https://reviews.llvm.org/D69563
2019-12-20 14:48:53 +02:00
Nemanja Ivanovic a5da8d90da [PowerPC] Add missing legalization for vector BSWAP
We somehow missed doing this when we were working on Power9 exploitation.
This just adds the missing legalization and cost for producing the vector
intrinsics.

Differential revision: https://reviews.llvm.org/D70436
2019-12-17 19:07:34 -06:00
David Green d6642ed1c8 [ARM] Add missing REQUIRES: asserts to test. NFC 2019-12-09 11:43:43 +00:00
David Green b1aba0378e [ARM] Enable MVE masked loads and stores
With the extra optimisations we have done, these should now be fine to
enable by default. Which is what this patch does.

Differential Revision: https://reviews.llvm.org/D70968
2019-12-09 11:37:34 +00:00
David Green be7a107070 [ARM] Teach the Arm cost model that a Shift can be folded into other instructions
This attempts to teach the cost model in Arm that code such as:
  %s = shl i32 %a, 3
  %a = and i32 %s, %b
Can under Arm or Thumb2 become:
  and r0, r1, r2, lsl #3

So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.

We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.

Differential Revision: https://reviews.llvm.org/D70966
2019-12-09 10:24:33 +00:00
David Green f008b5b8ce [ARM] Additional tests and minor formatting. NFC
This adds some extra cost model tests for shifts, and does some minor
adjustments to some Neon code to make it clear as to what it applies to.
Both NFC.
2019-12-09 10:24:33 +00:00
David Green 3a6eb5f160 [ARM] Disable VLD4 under MVE
Alas, using half the available vector registers in a single instruction
is just too much for the register allocator to handle. The mve-vldst4.ll
test here fails when these instructions are enabled at present. This
patch disables the generation of VLD4 and VST4 by adding a
mve-max-interleave-factor option, which we currently default to 2.

Differential Revision: https://reviews.llvm.org/D71109
2019-12-08 10:37:29 +00:00
Florian Hahn c491949694 [LV] Pick correct BB as insert point when fixing PHI for FORs.
Currently we fail to pick the right insertion point when
PreviousLastPart of a first-order-recurrence is a PHI node not in the
LoopVectorBody. This can happen when PreviousLastPart is produce in a
predicated block. In that case, we should pick the insertion point in
the BB the PHI is in.

Fixes PR44020.

Reviewers: hsaito, fhahn, Ayal, dorit

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D71071
2019-12-07 19:32:00 +00:00
Ayal Zaks 6ed9cef25f [LV] Scalar with predication must not be uniform
Fix PR40816: avoid considering scalar-with-predication instructions as also
uniform-after-vectorization.

Instructions identified as "scalar with predication" will be "vectorized" using
a replicating region. If such instructions are also optimized as "uniform after
vectorization", namely when only the first of VF lanes is used, such a
replicating region becomes erroneous - only the first instance of the region can
and should be formed. Fix such cases by not considering such instructions as
"uniform after vectorization".

Differential Revision: https://reviews.llvm.org/D70298
2019-12-03 19:50:24 +02:00
Roman Lebedev 0f22e783a0
[InstCombine] Revert rL341831: relax one-use check in foldICmpAddConstant() (PR44100)
rL341831 moved one-use check higher up, restricting a few folds
that produced a single instruction from two instructions to the case
where the inner instruction would go away.

Original commit message:
> InstCombine: move hasOneUse check to the top of foldICmpAddConstant
>
> There were two combines not covered by the check before now,
> neither of which actually differed from normal in the benefit analysis.
>
> The most recent seems to be because it was just added at the top of the
> function (naturally). The older is from way back in 2008 (r46687)
> when we just didn't put those checks in so routinely, and has been
> diligently maintained since.

From the commit message alone, there doesn't seem to be a
deeper motivation, deeper problem that was trying to solve,
other than 'fixing the wrong one-use check'.

As i have briefly discusses in IRC with Tim, the original motivation
can no longer be recovered, too much time has passed.

However i believe that the original fold was doing the right thing,
we should be performing such a transformation even if the inner `add`
will not go away - that will still unchain the comparison from `add`,
it will no longer need to wait for `add` to compute.

Doing so doesn't seem to break any particular idioms,
as least as far as i can see.

References https://bugs.llvm.org/show_bug.cgi?id=44100
2019-12-02 18:06:15 +03:00
Florian Hahn ec3efcf11f [IVDescriptors] Skip FOR where we have multiple sink points for now.
This fixes a crash with instructions where multiple operands are
first-order-recurrences.
2019-11-28 22:18:47 +01:00
Sanjay Patel 5c166f1d19 [x86] make SLM extract vector element more expensive than default
I'm not sure what the effect of this change will be on all of the affected
tests or a larger benchmark, but it fixes the horizontal add/sub problems
noted here:
https://reviews.llvm.org/D59710?vs=227972&id=228095&whitespace=ignore-most#toc

The costs are based on reciprocal throughput numbers in Agner's tables for
PEXTR*; these appear to be very slow ops on Silvermont.

This is a small step towards the larger motivation discussed in PR43605:
https://bugs.llvm.org/show_bug.cgi?id=43605

Also, it seems likely that insert/extract is the source of perf regressions on
other CPUs (up to 30%) that were cited as part of the reason to revert D59710,
so maybe we'll extend the table-based approach to other subtargets.

Differential Revision: https://reviews.llvm.org/D70607
2019-11-27 14:08:56 -05:00
Florian Hahn 9d24933f79 Recommit f0c2a5a "[LV] Generalize conditions for sinking instrs for first order recurrences."
This version contains 2 fixes for reported issues:
1. Make sure we do not try to sink terminator instructions.
2. Make sure we bail out, if we try to sink an instruction that needs to
   stay in place for another recurrence.

Original message:
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.

With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.

As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.

Fixes PR43398.

Reviewers: hsaito, dcaballe, Ayal, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D69228
2019-11-24 21:21:55 +00:00
Sjoerd Meijer 901cd3b3f6 [LV] PreferPredicateOverEpilog respecting option
Follow-up of cb47b8783: don't query TTI->preferPredicateOverEpilogue when
option -prefer-predicate-over-epilog is set to false, i.e. when we prefer not
to predicate the loop.

Differential Revision: https://reviews.llvm.org/D70382
2019-11-21 14:06:10 +00:00
David Green 882f23caea [ARM] MVE interleaving load and stores.
Now that we have the intrinsics, we can add VLD2/4 and VST2/4 lowering
for MVE. This works the same way as Neon, recognising the load/shuffles
combination and converting them into intrinsics in a pre-isel pass,
which just calls getMaxSupportedInterleaveFactor, lowerInterleavedLoad
and lowerInterleavedStore.

The main difference to Neon is that we do not have a VLD3 instruction.
Otherwise most of the code works very similarly, with just some minor
differences in the form of the intrinsics to work around. VLD3 is
disabled by making isLegalInterleavedAccessType return false for those
cases.

We may need some other future adjustments, such as VLD4 take up half the
available registers so should maybe cost more. This patch should get the
basics in though.

Differential Revision: https://reviews.llvm.org/D69392
2019-11-19 18:37:30 +00:00
David Green 411bfe476b [ARM] Add and update a lot of VLDn tests. NFC 2019-11-19 18:37:30 +00:00
Sjoerd Meijer 71327707b0 [ARM][MVE] tail-predication
This is a follow up of d90804d, to also flag fmcp instructions as instructions
that we do not support in tail-predicated vector loops.

Differential Revision: https://reviews.llvm.org/D70295
2019-11-15 11:01:13 +00:00
Sjoerd Meijer cb47b87830 [LV] PreferPredicateOverEpilog respecting predicate loop hint
The vectoriser queries TTI->preferPredicateOverEpilogue to determine if
tail-folding is preferred for a loop, but it was not respecting loop hint
'predicate' that can disable this, which has now been added. This showed that
we were incorrectly initialising loop hint 'vectorize.predicate.enable' with 0
(i.e. FK_Disabled) but this should have been FK_Undefined, which has been
fixed.

Differential Revision: https://reviews.llvm.org/D70125
2019-11-14 13:10:44 +00:00
Sjoerd Meijer d90804d26b [ARM][MVE] canTailPredicateLoop
This implements TTI hook 'preferPredicateOverEpilogue' for MVE.  This is a
first version and it operates on single block loops only. With this change, the
vectoriser will now determine if tail-folding scalar remainder loops is
possible/desired, which is the first step to generate MVE tail-predicated
vector loops.

This is disabled by default for now. I.e,, this is depends on option
-disable-mve-tail-predication, which is off by default.

I will follow up on this soon with a patch for the vectoriser to respect loop
hint 'vectorize.predicate.enable'. I.e., with this loop hint set to Disabled,
we don't want to tail-fold and we shouldn't query this TTI hook, which is
done in D70125.

Differential Revision: https://reviews.llvm.org/D69845
2019-11-13 13:24:33 +00:00
Gil Rapaport 7f152543e4 [LV] Apply sink-after & interleave-groups as VPlan transformations (NFCI)
This recommits 11ed1c0239 (reverted in
9f08ce0d21 for failing an assert) with a fix:
tryToWidenMemory() now first checks if the widening decision is to interleave,
thus maintaining previous behavior where tryToInterleaveMemory() was called
first, giving priority to interleave decisions over widening/scalarization. This
commit adds the test case that exposed this bug as a LIT.
2019-11-09 20:52:25 +02:00
Gil Rapaport 9f08ce0d21 Revert "[LV] Apply sink-after & interleave-groups as VPlan transformations (NFCI)"
This reverts commit 11ed1c0239 - causes an assert failure.
2019-11-08 22:17:11 +02:00
Gil Rapaport 11ed1c0239 [LV] Apply sink-after & interleave-groups as VPlan transformations (NFCI)
This recommits 100e797adb (reverted in
009e032634 for failing an assert). While the
root cause was independently reverted in eaff300401,
this commit includes a LIT to make sure IVDescriptor's SinkAfter logic does not
try to sink branch instructions.
2019-11-08 15:25:14 +02:00
Hans Wennborg eaff300401 Revert f0c2a5a "[LV] Generalize conditions for sinking instrs for first order recurrences."
It broke Chromium, causing "Instruction does not dominate all uses!" errors.
See https://bugs.chromium.org/p/chromium/issues/detail?id=1022297#c1 for a
reproducer.

> If the recurrence PHI node has a single user, we can sink any
> instruction without side effects, given that all users are dominated by
> the instruction computing the incoming value of the next iteration
> ('Previous'). We can sink instructions that may cause traps, because
> that only causes the trap to occur later, but not on any new paths.
>
> With the relaxed check, we also have to make sure that we do not have a
> direct cycle (meaning PHI user == 'Previous), which indicates a
> reduction relation, which potentially gets missed by
> ReductionDescriptor.
>
> As follow-ups, we can also sink stores, iff they do not alias with
> other instructions we move them across and we could also support sinking
> chains of instructions and multiple users of the PHI.
>
> Fixes PR43398.
>
> Reviewers: hsaito, dcaballe, Ayal, rengolin
>
> Reviewed By: Ayal
>
> Differential Revision: https://reviews.llvm.org/D69228
2019-11-07 11:00:02 +01:00
Sjoerd Meijer 6c2a4f5ff9 [TTI][LV] preferPredicateOverEpilogue
We have two ways to steer creating a predicated vector body over creating a
scalar epilogue. To force this, we have 1) a command line option and 2) a
pragma available. This adds a third: a target hook to TargetTransformInfo that
can be queried whether predication is preferred or not, which allows the
vectoriser to make the decision without forcing it.

While this change behaves as a non-functional change for now, it shows the
required TTI plumbing, usage of this new hook in the vectoriser, and the
beginning of an ARM MVE implementation. I will follow up on this with:
- a complete MVE implementation, see D69845.
- a patch to disable this, i.e. we should respect "vector_predicate(disable)"
  and its corresponding loophint.

Differential Revision: https://reviews.llvm.org/D69040
2019-11-06 10:14:20 +00:00
Florian Hahn f0c2a5af76 [LV] Generalize conditions for sinking instrs for first order recurrences.
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.

With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.

As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.

Fixes PR43398.

Reviewers: hsaito, dcaballe, Ayal, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D69228
2019-11-02 22:08:27 +01:00
Craig Topper 4592f70758 [LV] Move interleave_short_tc.ll into the X86 directory to hopefully make fix non-X86 bots. 2019-11-01 10:41:18 -07:00
Craig Topper f8ba90d448 [LV] Add test case that was supposed to go with D67948
I forgot to git add it when I committed for Evgeniy.
2019-10-31 15:11:26 -07:00
Jay Foad 843c0adf0f [ConstantFold] Fold extractelement of getelementptr
Summary:
Getelementptr has vector type if any of its operands are vectors
(the scalar operands being implicitly broadcast to all vector elements).
Extractelement applied to a vector getelementptr can be folded by
applying the extractelement in turn to all of the vector operands.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69379
2019-10-28 18:32:39 +00:00
Craig Topper 18824d25d8 [LV] Interleaving should not exceed estimated loop trip count.
Currently we may do iterleaving by more than estimated trip count
coming from the profile or computed maximum trip count. The solution is to
use "best known" trip count instead of exact one in interleaving analysis.

Patch by Evgeniy Brevnov.

Differential Revision: https://reviews.llvm.org/D67948
2019-10-28 10:58:22 -07:00
Sam Parker 39af8a3a3b [DAGCombine][ARM] Enable extending masked loads
Add generic DAG combine for extending masked loads.

Allow us to generate sext/zext masked loads which can access v4i8,
v8i8 and v4i16 memory to produce v4i32, v8i16 and v4i32 respectively.

Differential Revision: https://reviews.llvm.org/D68337

llvm-svn: 375085
2019-10-17 07:55:55 +00:00
Zi Xuan Wu 9802268ad3 recommit: [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374634
2019-10-12 02:53:04 +00:00
Sjoerd Meijer d1170dbe58 [LV] Emitting SCEV checks with OptForSize
When optimising for size and SCEV runtime checks need to be emitted to check
overflow behaviour, the loop vectorizer can run in this assert:

  LoopVectorize.cpp:2699: void llvm::InnerLoopVectorizer::emitSCEVChecks(
  llvm::Loop *, llvm::BasicBlock *): Assertion `!BB->getParent()->hasOptSize()
  && "Cannot SCEV check stride or overflow when opt

We should not generate predicates while optimising for size because
code will be generated for predicates such as these SCEV overflow runtime
checks.

This should fix PR43371.

Differential Revision: https://reviews.llvm.org/D68082

llvm-svn: 374166
2019-10-09 13:19:41 +00:00
Jinsong Ji 9912232b46 Revert "[LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize"
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"

This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.

The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.

llvm-svn: 374091
2019-10-08 17:32:56 +00:00
Zi Xuan Wu 2edc69c05d [NFC] Add REQUIRES for r374017 in testcase
llvm-svn: 374027
2019-10-08 08:49:15 +00:00
Zi Xuan Wu 9f41deccc0 [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374017
2019-10-08 03:28:33 +00:00
Sanjay Patel b743f18b1f [LoopVectorize] add test that asserted after cost model change (PR43582); NFC
llvm-svn: 373913
2019-10-07 14:48:27 +00:00
Sjoerd Meijer 0fcb3afb40 [LV] Forced vectorization with runtime checks and OptForSize
When vectorisation is forced with a pragma, we optimise for min size, and we
need to emit runtime memory checks, then allow this code growth and don't run
in an assert like we currently do.

This is the result of D65197 and D66803, and was a use-case not really
considered before. If this now happens, we emit an optimisation remark warning
about the code-size expansion, which can be avoided by not forcing
vectorisation or possibly source-code modifications.

Differential Revision: https://reviews.llvm.org/D67764

llvm-svn: 372694
2019-09-24 08:03:34 +00:00
Sjoerd Meijer c2bafadd7a [LV] Add ARM MVE tail-folding tests
Now that the vectorizer can do tail-folding (rL367592), and the ARM backend
understands MVE masked loads/stores (rL371932), it's time to add the MVE
tail-folding equivalent of the X86 tests that I added.

llvm-svn: 371996
2019-09-16 14:56:26 +00:00
David Green b325c05732 [ARM] Masked loads and stores
Masked loads and store fit naturally with MVE, the instructions being easily
predicated. This adds lowering for the simple cases of masked loads and stores.
It does not yet deal with widening/narrowing or pre/post inc, and so is
currently behind an option.

The llvm masked load intrinsic will accept a "passthru" value, dictating the
values used for the zero masked lanes. In MVE the instructions write 0 to the
zero predicated lanes, so we need to match a passthru that isn't 0 (or undef)
with a select instruction to pull in the correct data after the load.

Differential Revision: https://reviews.llvm.org/D67186

llvm-svn: 371932
2019-09-15 14:14:47 +00:00
Philip Reames 0e8d5085ac Remove a duplicate test
Turns out I'd already added exactly the same test under the name non_unit_stride.

llvm-svn: 371777
2019-09-12 21:40:15 +00:00
Florian Hahn 0741810077 [LV] Update test case after r371768.
llvm-svn: 371769
2019-09-12 20:07:17 +00:00
Philip Reames e0cab70718 Precommit tests for generalization of load dereferenceability in loop
llvm-svn: 371747
2019-09-12 17:09:01 +00:00
Philip Reames b90f94f42e [LV] Support invariant addresses in speculation logic
Implement a TODO from rL371452, and handle loop invariant addresses in predicated blocks. If we can prove that the load is safe to speculate into the header, then we can avoid using a masked.load in favour of a normal load.

This is mostly about vectorization robustness. In the common case, it's generally expected that LICM/LoadStorePromotion would have eliminated such loads entirely.

Differential Revision: https://reviews.llvm.org/D67372

llvm-svn: 371745
2019-09-12 16:49:10 +00:00
Philip Reames b8cddb7611 [Tests] Fix a typo in a test
llvm-svn: 371456
2019-09-09 21:33:59 +00:00
Philip Reames 847fbf7013 [Tests] Precommit test case for D67372
llvm-svn: 371455
2019-09-09 21:32:16 +00:00
Philip Reames 7403569be7 [LoopVectorize] Leverage speculation safety to avoid masked.loads
If we're vectorizing a load in a predicated block, check to see if the load can be speculated rather than predicated.  This allows us to generate a normal vector load instead of a masked.load.

To do so, we must prove that all bytes accessed on any iteration of the original loop are dereferenceable, and that all loads (across all iterations) are properly aligned.  This is equivelent to proving that hoisting the load into the loop header in the original scalar loop is safe.

Note: There are a couple of code motion todos in the code.  My intention is to wait about a day - to be sure this sticks - and then perform the NFC motion without furthe review.

Differential Revision: https://reviews.llvm.org/D66688

llvm-svn: 371452
2019-09-09 20:54:13 +00:00
Craig Topper a31112e357 [X86] Replace -mcpu with -mattr on some tests.
llvm-svn: 371260
2019-09-06 21:48:44 +00:00
Bjorn Pettersson dd18ce4501 [LV] Fix miscompiles by adding non-header PHI nodes to AllowedExit
Summary:
Fold-tail currently supports reduction last-vector-value live-out's,
but has yet to support last-scalar-value live-outs, including
non-header phi's. As it relies on AllowedExit in order to detect
them and bail out we need to add the non-header PHI nodes to
AllowedExit, otherwise we end up with miscompiles.

Solves https://bugs.llvm.org/show_bug.cgi?id=43166

Reviewers: fhahn, Ayal

Reviewed By: fhahn, Ayal

Subscribers: anna, hiraditya, rkruppe, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67074

llvm-svn: 370721
2019-09-03 09:33:55 +00:00
Bjorn Pettersson 0760d348eb [LV] Precommit test case showing miscompile from PR43166. NFC
Summary:  Precommit test case showing miscompile from PR43166.

Reviewers: fhahn, Ayal

Reviewed By: fhahn

Subscribers: rkruppe, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67072

llvm-svn: 370720
2019-09-03 09:33:40 +00:00
Ayal Zaks d15df0ede5 [LV] Fold tail by masking - handle reductions
Allow vectorizing loops that have reductions when tail is folded by masking.
A select is introduced in VPlan, choosing between the last value carried by the
loop-exit/live-out instruction of the reduction, and the penultimate value
carried by the reduction phi, according to the "i < n" mask of fold-tail.
This select replaces the last value as the live-out value of the loop.

Differential Revision: https://reviews.llvm.org/D66720

llvm-svn: 370173
2019-08-28 09:02:23 +00:00
Philip Reames 2de9788815 Preland test cases for D66688 to make diffs clear.
llvm-svn: 369959
2019-08-26 20:37:06 +00:00
David Green 8c2c5f5045 [ARM] Don't pretend we know how to generate MVE VLDn
We don't yet know how to generate these instructions for MVE. And in the case
of VLD3, we don't even have the instruction. For the moment don't tell the
vectoriser that we have VLD4, just to end up serialising the results.

Differential Revision: https://reviews.llvm.org/D66009

llvm-svn: 369101
2019-08-16 13:06:49 +00:00
Dorit Nuzman d57d73daed [LV] fold-tail predication should be respected even with assume_safety
assume_safety implies that loads under "if's" can be safely executed
speculatively (unguarded, unmasked). However this assumption holds only for the
original user "if's", not those introduced by the compiler, such as the
fold-tail "if" that guards us from loading beyond the original loop trip-count.
Currently the combination of fold-tail and assume-safety pragmas results in
ignoring the fold-tail predicate that guards the loads, generating unmasked
loads. This patch fixes this behavior.

Differential Revision: https://reviews.llvm.org/D66106

Reviewers: Ayal, hsaito, fhahn
llvm-svn: 368973
2019-08-15 07:12:14 +00:00
Dorit Nuzman 491ca2425d [LV] Fold-tail flag
This is the compiler-flag equivalent of the Predicate pragma
(https://reviews.llvm.org/D65197), to direct the vectorizer to fold the
remainder-loop into the main-loop using predication.

Differential Revision: https://reviews.llvm.org/D66108

Reviewers: Ayal, hsaito, fhahn, SjoerdMeije
llvm-svn: 368801
2019-08-14 05:22:20 +00:00
David Green 44f8d635e2 [ARM] Permit auto-vectorization using MVE
With enough codegen complete, we can now correctly report the number and size
of vector registers for MVE, allowing auto vectorisation. This also allows FP
auto-vectorization for MVE without -Ofast/-ffast-math, due to support for IEEE
FP arithmetic and parity between scalar and vector FP behaviour.

Patch by David Sherwood.

Differential Revision: https://reviews.llvm.org/D63728

llvm-svn: 368529
2019-08-11 08:42:57 +00:00
Craig Topper 005b22855e [LoopVectorize][X86] Clamp interleave factor if we have a known constant trip count that is less than VF*interleave
If we know the trip count, we should make sure the interleave factor won't cause the vectorized loop to exceed it.

Improves one of the cases from PR42674

Differential Revision: https://reviews.llvm.org/D65896

llvm-svn: 368215
2019-08-07 21:44:14 +00:00
Craig Topper 0a05a04e5b [LoopVectorize][X86] Add test case for missed vectorization from PR42674.
We do end vectorizing the code, but use an interleave factor that
is too high and causes the vector code to be dead.

llvm-svn: 368197
2019-08-07 19:07:10 +00:00
Hideki Saito ec818d7fb3 [LV][NFC] Share the LV illegality reporting with LoopVectorize.
Reviewers: hsaito, fhahn, rengolin
 
Reviewed By: rengolin
 
Patch by psamolysov, thanks!
 
Differential Revision: https://reviews.llvm.org/D62997

llvm-svn: 367980
2019-08-06 06:08:48 +00:00
Jay Foad b874b3d3fa [LV] Fix test failure in a Release build.
llvm-svn: 367666
2019-08-02 08:33:41 +00:00
Hideki Saito 8871ac41a7 Moves the newly added test interleaved-accesses-waw-dependency.ll to X86 subdirectory.
ps4-buildslave1 reported a failure. The test has x86 triple.

llvm-svn: 367659
2019-08-02 07:25:09 +00:00
Hideki Saito 09fac2450b [LV] Avoid building interleaved group in presence of WAW dependency
Reviewers: hsaito, Ayal, fhahn, anna, mkazantsev

Reviewed By: hsaito

Patch by evrevnov, thanks!

Differential Revision: https://reviews.llvm.org/D63981

llvm-svn: 367654
2019-08-02 06:31:50 +00:00
Sjoerd Meijer 20b198ec5e [LV] Tail-Loop Folding
This allows folding of the scalar epilogue loop (the tail) into the main
vectorised loop body when the loop is annotated with a "vector predicate"
metadata hint. To fold the tail, instructions need to be predicated (masked),
enabling/disabling lanes for the remainder iterations.

Differential Revision: https://reviews.llvm.org/D65197

llvm-svn: 367592
2019-08-01 18:21:44 +00:00
Florian Hahn 1d554b7441 [LoopVectorize] Pass unfiltered list of arguments to getIntrinsicInstCost.
We do not compute the scalarization overhead in getVectorIntrinsicCost
and TTI::getIntrinsicInstrCost requires the full arguments list.

llvm-svn: 366049
2019-07-15 08:48:47 +00:00
Florian Hahn 9428d95ce7 [LV] Exclude loop-invariant inputs from scalar cost computation.
Loop invariant operands do not need to be scalarized, as we are using
the values outside the loop. We should ignore them when computing the
scalarization overhead.

Fixes PR41294

Reviewers: hsaito, rengolin, dcaballe, Ayal

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D59995

llvm-svn: 366030
2019-07-14 20:12:36 +00:00
Petr Hosek e28fca29fe Revert "[IRBuilder] Fold consistently for or/and whether constant is LHS or RHS"
This reverts commit r365260 which broke the following tests:

    Clang :: CodeGenCXX/cfi-mfcall.cpp
    Clang :: CodeGenObjC/ubsan-nullability.m
    LLVM :: Transforms/LoopVectorize/AArch64/pr36032.ll

llvm-svn: 365284
2019-07-07 22:12:01 +00:00
Philip Reames 9812668d77 [IRBuilder] Fold consistently for or/and whether constant is LHS or RHS
Without this, we have the unfortunate property that tests are dependent on the order of operads passed the CreateOr and CreateAnd functions.  In actual usage, we'd promptly optimize them away, but it made tests slightly more verbose than they should have been.

llvm-svn: 365260
2019-07-06 04:28:00 +00:00
Orlando Cazalet-Hyams 1251cac62a [DebugInfo@O2][LoopVectorize] pr39024: Vectorized code linenos step through loop even after completion
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024

The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:

A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.

In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.

I have set up a separate review D61933 for a fix which is required for this patch.

Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse

Reviewed By: hfinkel, jmorse

Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits

Tags: #llvm, #debug-info

Differential Revision: https://reviews.llvm.org/D60831

> llvm-svn: 363046

llvm-svn: 363786
2019-06-19 10:50:47 +00:00
Warren Ristow 6452bdd29b [LV] Suppress vectorization in some nontemporal cases
When considering a loop containing nontemporal stores or loads for
vectorization, suppress the vectorization if the corresponding
vectorized store or load with the aligment of the original scaler
memory op is not supported with the nontemporal hint on the target.

This adds two new functions:
  bool isLegalNTStore(Type *DataType, unsigned Alignment) const;
  bool isLegalNTLoad(Type *DataType, unsigned Alignment) const;

to TTI, leaving the target independent default implementation as
returning true, but with overriding implementations for X86 that
check the legality based on available Subtarget features.

This fixes https://llvm.org/PR40759

Differential Revision: https://reviews.llvm.org/D61764

llvm-svn: 363581
2019-06-17 17:20:08 +00:00
Bjorn Pettersson 83773b77a5 [LV] Deny irregular types in interleavedAccessCanBeWidened
Summary:
Avoid that loop vectorizer creates loads/stores of vectors
with "irregular" types when interleaving. An example of
an irregular type is x86_fp80 that is 80 bits, but that
may have an allocation size that is 96 bits. So an array
of x86_fp80 is not bitcast compatible with a vector
of the same type.

Not sure if interleavedAccessCanBeWidened is the best
place for this check, but it solves the problem seen
in the added test case. And it is the same kind of check
that already exists in memoryInstructionCanBeWidened.

Reviewers: fhahn, Ayal, craig.topper

Reviewed By: fhahn

Subscribers: hiraditya, rkruppe, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63386

llvm-svn: 363547
2019-06-17 12:02:24 +00:00
Fangrui Song ac14f7b10c [lit] Delete empty lines at the end of lit.local.cfg NFC
llvm-svn: 363538
2019-06-17 09:51:07 +00:00
Sam Parker 0cf9639a9c [SCEV] Pass NoWrapFlags when expanding an AddExpr
InsertBinop now accepts NoWrapFlags, so pass them through when
expanding a simple add expression.

This is the first re-commit of the functional changes from rL362687,
which was previously reverted.

Differential Revision: https://reviews.llvm.org/D61934

llvm-svn: 363364
2019-06-14 09:19:41 +00:00
Sander de Smalen 51c2fa0e2a Improve reduction intrinsics by overloading result value.
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.

For example:

  ; The LLVM LangRef specifies that the scalar result must equal the
  ; vector element type, but this is not checked/enforced by LLVM.
  declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)

This patch changes that into:

  declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)

Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.

Reviewers: RKSimon, arsenm, rnk, greened, aemerson

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D62996

llvm-svn: 363240
2019-06-13 09:37:38 +00:00
Matt Arsenault 1e21181aee LoopDistribute/LAA: Add tests to catch regressions
I broke 2 of these with a patch, but were not covered by existing
tests.

https://reviews.llvm.org/D63035

llvm-svn: 363158
2019-06-12 13:15:59 +00:00
Orlando Cazalet-Hyams a947156396 Revert "[DebugInfo@O2][LoopVectorize] pr39024: Vectorized code linenos step through loop even after completion"
This reverts commit 1a0f7a2077.
See phabricator thread for D60831.

llvm-svn: 363132
2019-06-12 08:34:51 +00:00
Orlando Cazalet-Hyams 1a0f7a2077 [DebugInfo@O2][LoopVectorize] pr39024: Vectorized code linenos step through loop even after completion
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024

The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:

A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.

In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.

I have set up a separate review D61933 for a fix which is required for this patch.

Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse

Reviewed By: hfinkel, jmorse

Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits

Tags: #llvm, #debug-info

Differential Revision: https://reviews.llvm.org/D60831

llvm-svn: 363046
2019-06-11 10:37:20 +00:00
Benjamin Kramer f1249442cf Revert "[SCEV] Use wrap flags in InsertBinop"
This reverts commit r362687. Miscompiles llvm-profdata during selfhost.

llvm-svn: 362699
2019-06-06 12:35:46 +00:00
Sam Parker 7cc580f5e9 [SCEV] Use wrap flags in InsertBinop
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.

Differential Revision: https://reviews.llvm.org/D61934

llvm-svn: 362687
2019-06-06 08:56:26 +00:00
Nemanja Ivanovic fe97754acf Initial support for IBM MASS vector library
This is the LLVM portion of patch https://reviews.llvm.org/D59881.
The clang portion is to follow.

llvm-svn: 362568
2019-06-05 01:31:43 +00:00
Simon Pilgrim 8a32ca381d [CostModel][X86] Improve masked load/store AVX1/AVX2 costs
A mixture of internal tests and review of the scheduler models indicates we're overestimating the cost of a masked load, which we're estimating at 4x regular memory ops - more realistic values indicates that its closer to 2x. Masked stores costs are a lot more diverse but 8x is roughly in the middle of the range.

e.g. SandyBridge
defm : X86WriteRes<WriteFMaskedLoad, [SBPort23,SBPort05], 8, [1,2], 3>;
defm : X86WriteRes<WriteFMaskedLoadY, [SBPort23,SBPort05], 9, [1,2], 3>;
defm : X86WriteRes<WriteFMaskedStore, [SBPort4,SBPort01,SBPort23], 5, [1,1,1], 3>;
defm : X86WriteRes<WriteFMaskedStoreY, [SBPort4,SBPort01,SBPort23], 5, [1,1,1], 3>;

e.g. Btver2
defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteFMaskedStore, [JSAGU, JFPU01, JFPX], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteFMaskedStoreY, [JSAGU, JFPU01, JFPX], 6, [2, 2, 4], 2>;

Differential Revision: https://reviews.llvm.org/D61257

llvm-svn: 362338
2019-06-02 20:37:02 +00:00
Craig Topper 778e445c58 [LoopVectorize] Add FNeg instruction support
Differential Revision: https://reviews.llvm.org/D62510

llvm-svn: 362124
2019-05-30 18:19:35 +00:00
Craig Topper a807495fd1 [LoopVectorize] Precommit tests for D62510. NFC
llvm-svn: 362060
2019-05-30 06:48:13 +00:00