This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).
Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.
This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector
The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
same number of elements, then use LLT::vector(OtherTy.getElementCount())
or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
or operator*. That is because there is no reason to specifically restrict
the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
just use fixed_vector. This will need to be fixed up in the future when
modifying the algorithm to also work for scalable vectors, and will need
then need additional tests to confirm the behaviour works the same for
scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
this is replaced by LLT::scalable_vector.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104451
Change the definition of G_SBFX and G_UBFX so that the lsb and width
can have different types than the src and dst operands.
Differential Revision: https://reviews.llvm.org/D99739
Also, make it structurally required so it can't be forgotten and re-introduce
the bug that led to the rotten green tests.
Differential Revision: https://reviews.llvm.org/D99692
There is a bunch of similar bitfield extraction code throughout *ISelDAGToDAG.
E.g, ARMISelDAGToDAG, AArch64ISelDAGToDAG, and AMDGPUISelDAGToDAG all contain
code that matches a bitfield extract from an and + right shift.
Rather than duplicating code in the same way, this adds two opcodes:
- G_UBFX (unsigned bitfield extract)
- G_SBFX (signed bitfield extract)
They work like this
```
%x = G_UBFX %y, %lsb, %width
```
Where `lsb` and `width` are
- The least-significant bit of the extraction
- The width of the extraction
This will extract `width` bits from `%y`, starting at `lsb`. G_UBFX zero-extends
the result, while G_SBFX sign-extends the result.
This should allow us to use the combiner to match the bitfield extraction
patterns rather than duplicating pattern-matching code in each target.
Differential Revision: https://reviews.llvm.org/D98464
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
After r368065, all the tests using GISelMITest must call setUp() before
doing anything, otherwise the TargetMachine is not going to be set up.
A few tests added after that commit were not doing that and ended up
testing effectively nothing.
Fix the setup of all the tests and fix the failing tests.
llvm-svn: 374595
Teach buildMerge how to deal with scalar to vector kind of requests.
Prior to this patch, buildMerge would issue either a G_MERGE_VALUES
when all the vregs are scalars or a G_CONCAT_VECTORS when the destination
vreg is a vector.
G_CONCAT_VECTORS was actually not the proper instruction when the source
vregs were scalars and the compiler would assert that the sources must
be vectors. Instead we want is to issue a G_BUILD_VECTOR when we are
in this situation.
This patch fixes that.
llvm-svn: 374588
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
This fixes two problems with CSE done in buildConstant. First, this
would hit an assert when used with a vector result type. Solve this by
allowing CSE on the vector elements, but not on the result vector for
now.
Second, this was also performing the CSE based on the input
ConstantInt pointer. The underlying buildConstant could potentially
convert the constant depending on the result type, giving in a
different ConstantInt*. Stop allowing the APInt and ConstantInt forms
from automatically casting to the result type to avoid any similar
problems in the future.
llvm-svn: 353077