checkForAllInstructions was not handling declarations correctly.
It should have been returning false when it gets called on a declaration
The patch also fixes a test case for AAFunctionReachability for it to be able
to pass after the changes to the checkForAllinstructions.
Differential Revision: https://reviews.llvm.org/D106625
This attribute uses Attributor's internal 'optimistic' call graph
information to answer queries about function call reachability.
Functions can become reachable over time as new call edges are
discovered.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D104599
The old version of this code would blindly perform arithmetic without
paying attention to whether the types involved were pointers or
integers. This could lead to weird expressions like negating a pointer.
Explicitly handle simple cases involving pointers, like "x < y ? x : y".
In all other cases, coerce the operands of the comparison to integer
types. This avoids the weird cases, while handling most of the
interesting cases.
Differential Revision: https://reviews.llvm.org/D103660
[Debugify][Original DI] Test dbg var loc preservation
This is an improvement of [0]. This adds checking of
original llvm.dbg.values()/declares() instructions in
optimizations.
We have picked a real issue that has been found with
this (actually, picked one variable location missing
from [1] and resolved the issue), and the result is
the fix for that -- D100844.
Before applying the D100844, using the options from [0]
(but with this patch applied) on the compilation of GDB 7.11,
the final HTML report for the debug-info issues can be found
at [1] (please scroll down, and look for
"Summary of Variable Location Bugs"). After applying
the D100844, the numbers has improved a bit -- please take
a look into [2].
[0] https://llvm.org/docs/HowToUpdateDebugInfo.html#\
test-original-debug-info-preservation-in-optimizations
[1] https://djolertrk.github.io/di-check-before-adce-fix/
[2] https://djolertrk.github.io/di-check-after-adce-fix/
Differential Revision: https://reviews.llvm.org/D100845
The Unit test was failing because the pass from the test that
modifies the IR, in its runOnFunction() didn't return 'true',
so the expensive-check configuration triggered an assertion.
This is an improvement of [0]. This adds checking of
original llvm.dbg.values()/declares() instructions in
optimizations.
We have picked a real issue that has been found with
this (actually, picked one variable location missing
from [1] and resolved the issue), and the result is
the fix for that -- D100844.
Before applying the D100844, using the options from [0]
(but with this patch applied) on the compilation of GDB 7.11,
the final HTML report for the debug-info issues can be found
at [1] (please scroll down, and look for
"Summary of Variable Location Bugs"). After applying
the D100844, the numbers has improved a bit -- please take
a look into [2].
[0] https://llvm.org/docs/HowToUpdateDebugInfo.html\
[1] https://djolertrk.github.io/di-check-before-adce-fix/
[2] https://djolertrk.github.io/di-check-after-adce-fix/
Differential Revision: https://reviews.llvm.org/D100845
Currently all AA analyses marked as preserved are stateless, not taking
into account their dependent analyses. So there's no need to mark them
as preserved, they won't be invalidated unless their analyses are.
SCEVAAResults was the one exception to this, it was treated like a
typical analysis result. Make it like the others and don't invalidate
unless SCEV is invalidated.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102032
Printing pass manager invocations is fairly verbose and not super
useful.
This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.
This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D101797
We're trying to move DebugLogging into instrumentation, rather than
being part of PassManagers/AnalysisManagers.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D102093
This patch adds initial unit tests for appendToUsedList
in the ModuleUtils. It specifically tests changes from
https://reviews.llvm.org/D101363 which intent to allow
insertion of globals in non-zero address spaces into the
llvm used lists.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D101746
As suggested in D99294, this adds a getVPSingleValue helper to use for
recipes that are guaranteed to define a single value. This replaces uses
of getVPValue() which used to default to I = 0.
When iterating over const blocks, the base type in the lambdas needs
to use const VPBlockBase *, otherwise it cannot be used with input
iterators over const VPBlockBase.
Also adjust the type of the input iterator range to const &, as it
does not take ownership of the input range.
This patch adds a blocksOnly helpers which take an iterator range
over VPBlockBase * or const VPBlockBase * and returns an interator
range that only include BlockTy blocks. The accesses are casted to
BlockTy.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D101093
This patch adds a new iterator to traverse through VPRegionBlocks and a
GraphTraits specialization using the iterator to traverse through
VPRegionBlocks.
Because there is already a GraphTraits specialization for VPBlockBase *
and co, a new VPBlockRecursiveTraversalWrapper helper is introduced.
This allows us to provide a new GraphTraits specialization for that
type. Users can use the new recursive traversal by using this wrapper.
The graph trait visits both the entry block of a region, as well as all
its successors. Exit blocks of a region implicitly have their parent
region's successors. This ensures all blocks in a region are visited
before any blocks in a successor region when doing a reverse post-order
traversal of the graph.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100175
CommandLine.h is indirectly included in ~50% of TUs when building
clang, and VirtualFileSystem.h is large.
(Already remarked by jhenderson on D70769.)
No behavior change.
Differential Revision: https://reviews.llvm.org/D100957
Add an initial version of a helper to determine whether a recipe may
have side-effects.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100259
Summary:
The function SplitCriticalEdge (called by SplitEdge) can return a nullptr in
cases where the edge is a critical. SplitEdge uses SplitCriticalEdge assuming it
can always split all critical edges, which is an incorrect assumption.
The three cases where the function SplitCriticalEdge will return a nullptr is:
1. DestBB is an exception block
2. Options.IgnoreUnreachableDests is set to true and
isa(DestBB->getFirstNonPHIOrDbgOrLifetime()) is not equal to a nullptr
3. LoopSimplify form must be preserved (Options.PreserveLoopSimplify is true)
and it cannot be maintained for a loop due to indirect branches
For each of these situations they are handled in the following way:
1. Modified the function ehAwareSplitEdge originally from
llvm/lib/Transforms/Coroutines/CoroFrame.cpp to handle the cases when the DestBB
is an exception block. This function is called directly in SplitEdge.
SplitEdge does not call SplitCriticalEdge in this case
2. Options.IgnoreUnreachableDests is set to false by default, so this situation
does not apply.
3. Return a nullptr in this situation since the SplitCriticalEdge also returned
nullptr. Nothing we can do in this case.
Reviewed By: asbirlea
Differential Revision:https://reviews.llvm.org/D94619
For VPWidenPHIRecipes that model all incoming values as VPValue
operands, print those operands instead of printing the original PHI.
D99294 updates recipes of reduction PHIs to use the VPValue for the
incoming value from the loop backedge, making use of this new printing.
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
This reverts commit 6b053c9867.
The build is broken:
ld.lld: error: undefined symbol: llvm::VPlan::printDOT(llvm::raw_ostream&) const
>>> referenced by LoopVectorize.cpp
>>> LoopVectorize.cpp.o:(llvm::LoopVectorizationPlanner::printPlans(llvm::raw_ostream&)) in archive lib/libLLVMVectorize.a
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
BasicAA stores a reference to LoopInfo inside. This imposes an implicit
requirement of keeping it up to date whenever we modify the IR (in particular,
whenever we modify terminators of blocks that belong to loops). Failing
to do so leads to incorrect state of the LoopInfo.
Because general AA does not require loop info updates and provides to API to
update it properly, the users of AA reasonably assume that there is no need to
update the loop info. It may be a reason of bugs, as example in PR43276 shows.
This patch drops dependence of BasicAA on LoopInfo to avoid this problem.
This may potentially pessimize the result of queries to BasicAA.
Differential Revision: https://reviews.llvm.org/D98627
Reviewed By: nikic
This reverts commit 329aeb5db4,
and relands commit 61f006ac65.
This is a continuation of D89456.
As it was suggested there, now that SCEV models `PtrToInt`,
we can try to improve SCEV's pointer handling.
In particular, i believe, i will need this in the future
to further fix `SCEVAddExpr`operation type handling.
This removes special handling of `ConstantPointerNull`
from `ScalarEvolution::createSCEV()`, and add constant folding
into `ScalarEvolution::getPtrToIntExpr()`.
This way, `null` constants stay as such in SCEV's,
but gracefully become zero integers when asked.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D98147
This is a continuation of D89456.
As it was suggested there, now that SCEV models `PtrToInt`,
we can try to improve SCEV's pointer handling.
In particular, i believe, i will need this in the future
to further fix `SCEVAddExpr`operation type handling.
This removes special handling of `ConstantPointerNull`
from `ScalarEvolution::createSCEV()`, and add constant folding
into `ScalarEvolution::getPtrToIntExpr()`.
This way, `null` constants stay as such in SCEV's,
but gracefully become zero integers when asked.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D98147
This patch makes uses of the context bridges introduced in D83299 to make
AAValueConstantRange call site specific.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D83744
Add support to widen select instructions in VPlan native path by using a correct recipe when such instructions are encountered. This is already used by inner loop vectorizer.
Previously select instructions get handled by the wrong recipe and resulted in unreachable instruction errors like this one: https://bugs.llvm.org/show_bug.cgi?id=48139.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D97136
Changes to function calls in LocalTest resulted in comparisons between
unsigned values and signed literals; the latter have been updated to be
unsigned to prevent this warning.
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
The individual recipes have been updated to manage their operands using
VPUser a while back. Now that the transition is done, we can instead
make VPRecipeBase a VPUser and get rid of the toVPUser helper.
Rename the `RF_MoveDistinctMDs` flag passed into `MapValue` and
`MapMetadata` to `RF_ReuseAndMutateDistinctMDs` in order to more
precisely describe its effect and clarify the header documentation.
Found this while helping to investigate PR48841, which pointed out an
unsound use of the flag in `CloneModule()`. For now I've just added a
FIXME there, but I'm hopeful that the new (more precise) name will
prevent other similar errors.
I am trying to untangle the fast-math-flags propagation logic
in the vectorizers (see a6f022127 for SLP).
The loop vectorizer has a mix of checking FP function attributes,
IR-level FMF, and just wrong assumptions.
I am trying to avoid regressions while fixing this, and I think
the IR-level logic is good enough for that, but it's hard to say
for sure. This would be the 1st step in the clean-up.
The existing test that I changed to include 'fast' actually shows
a miscompile: the function only had the equivalent of nnan, but we
created new instructions that had fast (all FMF set). This is
similar to the example in https://llvm.org/PR35538
Differential Revision: https://reviews.llvm.org/D95452
This patch unifies the way recipes and VPValues are printed after the
transition to VPDef.
VPSlotTracker has been updated to iterate over all recipes and all
their defined values to number those. There is no need to number
values in Value2VPValue.
It also updates a few places that only used slot numbers for
VPInstruction. All recipes now can produce numbered VPValues.
The new test case here contains a first order recurrences and an
instruction that is replicated. The first order recurrence forces an
instruction to be sunk _into_, as opposed to after the replication
region. That causes several things to go wrong including registering
vector instructions multiple times and failing to create dominance
relations correctly.
Instead we should be sinking to after the replication region, which is
what this patch makes sure happens.
Differential Revision: https://reviews.llvm.org/D93629
This is a follow-up patch of D87045.
The patch implements "loop-nest mode" for `LPMUpdater` and `FunctionToLoopPassAdaptor` in which only top-level loops are operated.
`createFunctionToLoopPassAdaptor` decides whether the returned adaptor is in loop-nest mode or not based on the given pass. If the pass is a loop-nest pass or the pass is a `LoopPassManager` which contains only loop-nest passes, the loop-nest version of adaptor is returned; otherwise, the normal (loop) version of adaptor is returned.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D87531
This patch makes VPRecipeBase a direct subclass of VPDef, moving the
SubclassID to VPDef.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90564
This patch turns updates VPInterleaveRecipe to manage the values it defines
using VPDef. The VPValue is used during VPlan construction and
codegeneration instead of the plain IR reference where possible.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90562
This PR implements the function splitBasicBlockBefore to address an
issue
that occurred during SplitEdge(BB, Succ, ...), inside splitBlockBefore.
The issue occurs in SplitEdge when the Succ has a single predecessor
and the edge between the BB and Succ is not critical. This produces
the result ‘BB->Succ->New’. The new function splitBasicBlockBefore
was added to splitBlockBefore to handle the issue and now produces
the correct result ‘BB->New->Succ’.
Below is an example of splitting the block bb1 at its first instruction.
/// Original IR
bb0:
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlock
bb0:
br bb1
bb1:
br bb1.split
bb1.split:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlockBefore
bb0:
br bb1.split
bb1.split
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
Differential Revision: https://reviews.llvm.org/D92200
This PR implements the function splitBasicBlockBefore to address an
issue
that occurred during SplitEdge(BB, Succ, ...), inside splitBlockBefore.
The issue occurs in SplitEdge when the Succ has a single predecessor
and the edge between the BB and Succ is not critical. This produces
the result ‘BB->Succ->New’. The new function splitBasicBlockBefore
was added to splitBlockBefore to handle the issue and now produces
the correct result ‘BB->New->Succ’.
Below is an example of splitting the block bb1 at its first instruction.
/// Original IR
bb0:
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlock
bb0:
br bb1
bb1:
br bb1.split
bb1.split:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlockBefore
bb0:
br bb1.split
bb1.split
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
Differential Revision: https://reviews.llvm.org/D92200
... so just ensure that we pass DomTreeUpdater it into it.
Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
Per http://llvm.org/OpenProjects.html#llvm_loopnest, the goal of this
patch (and other following patches) is to create facilities that allow
implementing loop nest passes that run on top-level loop nests for the
New Pass Manager.
This patch extends the functionality of LoopPassManager to handle
loop-nest passes by specializing the definition of LoopPassManager that
accepts both kinds of passes in addPass.
Only loop passes are executed if L is not a top-level one, and both
kinds of passes are executed if L is top-level. Currently, loop nest
passes should have the following run method:
PreservedAnalyses run(LoopNest &, LoopAnalysisManager &,
LoopStandardAnalysisResults &, LPMUpdater &);
Reviewed By: Whitney, ychen
Differential Revision: https://reviews.llvm.org/D87045
This PR implements the function splitBasicBlockBefore to address an
issue
that occurred during SplitEdge(BB, Succ, ...), inside splitBlockBefore.
The issue occurs in SplitEdge when the Succ has a single predecessor
and the edge between the BB and Succ is not critical. This produces
the result ‘BB->Succ->New’. The new function splitBasicBlockBefore
was added to splitBlockBefore to handle the issue and now produces
the correct result ‘BB->New->Succ’.
Below is an example of splitting the block bb1 at its first instruction.
/// Original IR
bb0:
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlock
bb0:
br bb1
bb1:
br bb1.split
bb1.split:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlockBefore
bb0:
br bb1.split
bb1.split
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
Differential Revision: https://reviews.llvm.org/D92200
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
Interleave groups also depend on the values they store. Manage the
stored values as VPUser operands. This is currently a NFC, but is
required to allow VPlan transforms and to manage generated vector values
exclusively in VPTransformState.
This is a follow-up to 00a6601136 to make
isa<VPReductionRecipe> work and unifies the VPValue ID names, by making
sure they all consistently start with VPV*.
This patch introduces a new VPDef class, which can be used to
manage VPValues defined by recipes/VPInstructions.
The idea here is to mirror VPUser for values defined by a recipe. A
VPDef can produce either zero (e.g. a store recipe), one (most recipes)
or multiple (VPInterleaveRecipe) result VPValues.
To traverse the def-use chain from a VPDef to its users, one has to
traverse the users of all values defined by a VPDef.
VPValues now contain a pointer to their corresponding VPDef, if one
exists. To traverse the def-use chain upwards from a VPValue, we first
need to check if the VPValue is defined by a VPDef. If it does not have
a VPDef, this means we have a VPValue that is not directly defined
iniside the plan and we are done.
If we have a VPDef, it is defined inside the region by a recipe, which
is a VPUser, and the upwards def-use chain traversal continues by
traversing all its operands.
Note that we need to add an additional field to to VPVAlue to link them
to their defs. The space increase is going to be offset by being able to
remove the SubclassID field in future patches.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D90558
Update the code responsible for deleting VPBBs and recipes to properly
update users and release operands.
This is another preparation for D84680 & following patches towards
enabling modeling def-use chains in VPlan.
This adds a helper to convert a VPRecipeBase pointer to a VPUser, for
recipes that inherit from VPUser. Once VPRecipeBase directly inherits
from VPUser this helper can be removed.
When updating operands of a VPUser, we also have to adjust the list of
users for the new and old VPValues. This is required once we start
transitioning recipes to become VPValues.
Now that VPUser is not inheriting from VPValue, we can take the next
step and turn the recipes that already manage their operands via VPUser
into VPUsers directly. This is another small step towards traversing
def-use chains in VPlan.
This is NFC with respect to the generated code, but makes the interface
more powerful.
Currently SCEVExpander creates inttoptr for non-integral pointers if the
base is a null constant for example. This results in invalid IR.
This patch changes InsertNoopCastOfTo to emit a GEP & bitcast to convert
to a non-integral pointer. First, a GEP of i8* null is generated and the
integral value is used as index. The GEP is then bitcasted to the target
type.
This was exposed by D71539.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87827
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~
~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~
~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~
~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~
See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .
This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.
Testing
Ninja check
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D86156
When trying to enable -debug-info-kind=constructor there was an assert
that occurs during debug info cloning ("mismatched subprogram between
llvm.dbg.value variable and !dbg attachment").
It appears that during llvm::CloneFunctionInto, a DISubprogram could be
duplicated when MapMetadata is called, and then added to the MD map again
when DIFinder gets a list of subprograms. This results in two different
versions of the DISubprogram.
This patch switches the order so that the DIFinder subprograms are
added before MapMetadata is called.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46784
Differential Revision: https://reviews.llvm.org/D86185
This reverts the revert commit dc28675768.
It includes a fix for Polly, which uses SCEVExpander on IR that is not
in LCSSA form. Set PreserveLCSSA = false in that case, to ensure we do
not introduce LCSSA phis where there were none before.
This reverts commit 99166fd4fb, because it
breaks the polly builders.
polly/test/Isl/CodeGen/invariant_load_escaping_second_scop.ll fails
because a apparently unnecessary LCSSA phi node is introduced.
Make the bots green again, while I take a closer look.
This patch teaches SCEVExpander to directly preserve LCSSA.
As it is currently, SCEV does not look through PHI nodes in loops,
as it might break LCSSA form. Once SCEVExpander can preserve
LCSSA form, it should be safe for SCEV to look through PHIs.
To preserve LCSSA form, this patch uses formLCSSAForInstructions
on operands of newly created instructions, if the definition is inside
a different loop than the new instruction.
The final value we return from expandCodeFor may also need LCSSA
phis, depending on the insert point. As no user for it exists there yet,
create a temporary instruction at the insert point, which can be passed
to formLCSSAForInstructions. This temporary instruction is removed
after LCSSA construction.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D71538
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
Summary: This patch adds more test case focusing on data dependency.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto
Reviewed By: Whitney
Subscribers: llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D83543
The dependencies in llvm/unittests/Transforms/IPO/CMakeLists.txt
introduced in revision 0750757e were incomplete, leading to link errors
for a DBUILD_SHARED_LIBS=True build.
Summary: This patch introduces basic unittest interface for the Attributor and a simple test case for casting.
Reviewers: jdoerfert, sstefan1, uenoku, homerdin, baziotis
Reviewed By: jdoerfert
Subscribers: mgorny, uenoku, kuter, okura, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83754
Summary: This patch makes code motion checks optional which are dependent on
specific analysis example, dominator tree, post dominator tree and dependence
info. The aim is to make the adoption of CodeMoverUtils easier for clients that
don't use analysis which were strictly required by CodeMoverUtils. This will
also help in diversifying code motion checks using other analysis example MSSA.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto
Reviewed By: Whitney
Subscribers: Prazek, hiraditya, george.burgess.iv, asbirlea, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D82566
Move ScalarEvolution::forgetLoopDispositions implementation to ScalarEvolution.cpp to remove the dependency.
Add implicit header dependency to source files where necessary.
code motion
Summary: Currently isSafeToMoveBefore uses DFS numbering for determining
the relative position of instruction and insert point which is not
always correct. This PR proposes the use of Dominator Tree depth for the
same. If a node is at a higher level than the insert point then it is
safe to say that we want to move in the forward direction.
Authored By: RithikSharma
Reviewer: Whitney, nikic, bmahjour, etiotto, fhahn
Reviewed By: Whitney
Subscribers: fhahn, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80084
Hide the method that allows setting probability for particular edge
and introduce a public method that sets probabilities for all
outgoing edges at once.
Setting individual edge probability is error prone. More over it is
difficult to check that the total probability is 1.0 because there is
no easy way to know when the user finished setting all
the probabilities.
Related bug is fixed in BranchProbabilityInfo::calcMetadataWeights().
Changing unreachable branch probabilities to raw(1) and distributing
the rest (oldProbability - raw(1)) over the reachable branches could
introduce total probability inaccuracy bigger than 1/numOfBranches.
Reviewers: yamauchi, ebrevnov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79396
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
Splitting critical edges for indirect branches
the SplitIndirectBrCriticalEdges() function may break branch
probabilities if target basic block happens to have unset
a probability for any of its successors. That is because in
such cases the getEdgeProbability(Target) function returns
probability 1/NumOfSuccessors and it is called after Target
was split (thus Target has a single successor). As the result
the correspondent successor of the split block gets
probability 100% but 1/NumOfSuccessors is expected (or better
be left unset).
Reviewers: yamauchi
Differential Revision: https://reviews.llvm.org/D78806
Summary:
Updated CallPromotionUtils and impacted sites. Parameters that are
expected to be non-null, and return values that are guranteed non-null,
were replaced with CallBase references rather than pointers.
Left FIXME in places where more changes are facilitated by CallBase, but
aren't CallSites: Instruction* parameters or return values, for example,
where the contract that they are actually CallBase values.
Reviewers: davidxl, dblaikie, wmi
Reviewed By: dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77930