While operand bundles carry unpredictable semantics, we know some of
them and can therefore "ignore" them. In this case we allow to look at
the declaration of `llvm.assume` when asked for the attributes at a call
site. The assume operand bundles we have do not invalidate the
declaration attributes.
We cannot test this in isolation because the llvm.assume attributes are
determined by the parser. However, a follow up patch will provide test
coverage.
In `MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4.cpp` we initialized
attributes until stack frame ~35k caused space to run out. The initial
size 1024 is pretty much random.
For a CFG G=(V,E), Knuth describes that by Kirchoff's circuit law, the minimum
number of counters necessary is |E|-(|V|-1). The emitted edges form a spanning
tree. libgcov emitted .gcda files leverages this optimization while clang
--coverage's doesn't.
Propagate counts by Kirchhoff's circuit law so that llvm-cov gcov can
correctly print line counts of gcc --coverage emitted files and enable
the future improvement of clang --coverage.
Instead, passing in the command line options, initialized to nullptr. In
an upcoming patch, we can then use the parameter to pass actual command
line options.
Differential Revision: https://reviews.llvm.org/D87336
Since a function might have portions of its code coming from multiple
different files, "start line" is ambiguous (it can't just be resolved
relative to the file/line specified). Add start file to disambiguate it.
This removes the after the fact FMF handling from D46854 in favor of passing fast math flags to getNode. This should be a superset of D87130.
This required adding a SDNodeFlags to SelectionDAG::getSetCC.
Now we manage to contant fold some stuff undefs during the
initial getNode that we don't do in later DAG combines.
Differential Revision: https://reviews.llvm.org/D87200
Failing example: v8i8 = truncate v8i32. v8i8 is legal, but v8i32 was
widened to HVX. Make sure that v8i8 does not get altered (even if it's
changed to another legal type).
The get{Return,Unwind,Unreachable}Block functions in
UnifyFunctionExitNodes have not been used for many years,
so just remove them.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D87078
If we know that the abs operand is known negative, we can replace
it with a neg.
To avoid computing known bits twice, I've removed the fold for the
non-negative case from InstSimplify. Both the non-negative and the
negative case are handled by InstCombine now, with one known bits call.
Differential Revision: https://reviews.llvm.org/D87196
D66230 attempted to fix a problem where when there are allocas used before CoroBegin.
It keeps allocas and their uses stay in put if there are no escapse/changes to the data before CoroBegin.
Unfortunately that's incorrect.
Consider this code:
%var = alloca i32
%1 = getelementptr .. %var; stays put
%f = call i8* @llvm.coro.begin
store ... %1
After this fix, %1 will now stay put, however if a store happens after coro.begin and hence modifies the content, this change will not be reflected in the coroutine frame (and will eventually be DCEed).
To generalize the problem, if any alias ptr is created before coro.begin for an Alloca and that alias ptr is latter written into after coro.begin, it will lead to incorrect behavior.
There are also a few other minor issues, such as incorrect dominate condition check in the ptr visitor, unhandled memory intrinsics and etc.
Ths patch attempts to fix some of these issue, and make it more robust to deal with aliases.
While visiting through the alloca pointer, we also keep track of all aliases created that will be used after CoroBegin. We track the offset of each alias, and then reacreate these aliases after CoroBegin using these offset.
It's worth noting that this is not perfect and there will still be cases we cannot handle. I think it's impractical to handle all cases given the current design.
This patch makes it more robust and should be a pure win.
In the meantime, we need to think about what how to completely elimiante these issues, likely through the route as @rjmccall mentioned in D66230.
Differential Revision: https://reviews.llvm.org/D86859
When the function return type is non-void and `end` instructions are at
the very end of a function, CFGStackify's `fixEndsAtEndOfFunction`
function fixes the corresponding block/loop/try's type to match the
function's return type. This is applied to consecutive `end` markers at
the end of a function. For example, when the function return type is
`i32`,
```
block i32 ;; return type is fixed to i32
...
loop i32 ;; return type is fixed to i32
...
end_loop
end_block
end_function
```
But try-catch is a little different, because it consists of two parts:
a try part and a catch part, and both parts' return type should satisfy
the function's return type. Which means,
```
try i32 ;; return type is fixed to i32
...
block i32 ;; this should be changed i32 too!
...
end_block
catch
...
end_try
end_function
```
As you can see in this example, it is not sufficient to only `end`
instructions at the end of a function; in case of `try`, we should
check instructions before `catch`es, in case their corresponding `try`'s
type has been fixed.
This changes `fixEndsAtEndOfFunction`'s algorithm to use a worklist
that contains a reverse iterator, each of which is a starting point for
a new backward `end` instruction search.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47413.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D87207
We only need to include MachineInstrBundle.h, but exposes an implicit dependency in MachineOutliner.h.
Also, remove duplicate includes from LiveRegUnits.cpp + MachineOutliner.cpp.
On SystemZ, a ZERO_EXTEND of an i1 vector handled by WidenVecRes_Convert()
always ended up being scalarized, because the type action of the input is
promotion which was previously an unhandled case in this method.
This fixes https://bugs.llvm.org/show_bug.cgi?id=47132.
Differential Revision: https://reviews.llvm.org/D86268
Patch by Eli Friedman.
Review: Ulrich Weigand
This patch makes the debug_ranges section optional. When we specify an
empty debug_ranges section, yaml2obj only emits the section header.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D87263
count register
After my patch at D86087, code that now uses the mov operand rather than
the vctp operand will no longer remove modifications to the vctp operand
as they should. This patch fixes that by explicitly removing
modifications to the vctp operand rather than the register used as the
element count.
This patch is cherry-picked from 04b0a4e22e3b4549f9d241f8a9f37eebecb62a31, and
amended to prevent an undefined reference to `llvm::EnableABIBreakingChecks'
Commit 3c0b3250 introduced memory cluster under pwr10 target, but a
check for operands was unexpectedly removed. This adds it back to avoid
regression.
Implement AArch64 variant of shouldCoalesce() to detect a known failing case
and prevent the coalescing of a 32-bit copy into a 64-bit sign-extending load.
Do not coalesce in the following case:
COPY where source is bottom 32 bits of a 64-register,
and destination is a 32-bit subregister of a 64-bit register,
ie it causes the rest of the register to be implicitly set to zero.
A mir test has been added.
In the test case, the 32-bit copy implements a 32 to 64 bit zero extension
and relies on the upper 32 bits being zeroed.
Coalescing to the result of the 64-bit load meant overwriting
the upper 32 bits incorrectly when the loaded byte was negative.
Reviewed By: john.brawn
Differential Revision: https://reviews.llvm.org/D85956
Without gcc 7.4 warns with
../lib/Target/PowerPC/PPCInstrInfo.cpp:2284:25: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
BaseOp1.isFI() &&
~~~~~~~~~~~~~~~^~
"Only base registers and frame indices are supported.");
~
In GenerateConstantOffsetsImpl, we may generate non canonical Formula
if BaseRegs of that Formula is updated and includes a recurrent expr reg
related with current loop while its ScaledReg is not.
Patched by: mdchen
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86939
The CloneFunctionInto has implicit requirements with regards to the
linkage and visibility of the function. We now update these after we did
the CloneFunctionInto on the copy with the same linkage and visibility
as the original.
Deleting or replacing anything is certainly a modification. This caused
a later assertion in IPSCCP when compiling 400.perlbench with the new PM.
I'm not sure how to test this.
On Power10, it's profitable to schedule some stores with adjacent target
address together. This patch implements this feature.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D86754
This was reverted in 503deec218
because it caused gigantic increase (3x) in branch mispredictions
in certain benchmarks on certain CPU's,
see https://reviews.llvm.org/D84108#2227365.
It has since been investigated and here are the results:
https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20200907/827578.html
> It's an amazingly severe regression, but it's also all due to branch
> mispredicts (about 3x without this). The code layout looks ok so there's
> probably something else to deal with. I'm not sure there's anything we can
> reasonably do so we'll just have to take the hit for now and wait for
> another code reorganization to make the branch predictor a bit more happy :)
>
> Thanks for giving us some time to investigate and feel free to recommit
> whenever you'd like.
>
> -eric
So let's just reland this.
Original commit message:
I've been looking at missed vectorizations in one codebase.
One particular thing that stands out is that some of the loops
reach vectorizer in a rather mangled form, with weird PHI's,
and some of the loops aren't even in a rotated form.
After taking a more detailed look, that happened because
the loop's headers were too big by then. It is evident that
SimplifyCFG's common code hoisting transform is at fault there,
because the pattern it handles is precisely the unrotated
loop basic block structure.
Surprizingly, `SimplifyCFGOpt::HoistThenElseCodeToIf()` is enabled
by default, and is always run, unlike it's friend, common code sinking
transform, `SinkCommonCodeFromPredecessors()`, which is not enabled
by default and is only run once very late in the pipeline.
I'm proposing to harmonize this, and disable common code hoisting
until //late// in pipeline. Definition of //late// may vary,
here currently i've picked the same one as for code sinking,
but i suppose we could enable it as soon as right after
loop rotation happens.
Experimentation shows that this does indeed unsurprizingly help,
more loops got rotated, although other issues remain elsewhere.
Now, this undoubtedly seriously shakes phase ordering.
This will undoubtedly be a mixed bag in terms of both compile- and
run- time performance, codesize. Since we no longer aggressively
hoist+deduplicate common code, we don't pay the price of said hoisting
(which wasn't big). That may allow more loops to be rotated,
so we pay that price. That, in turn, that may enable all the transforms
that require canonical (rotated) loop form, including but not limited to
vectorization, so we pay that too. And in general, no deduplication means
more [duplicate] instructions going through the optimizations. But there's still
late hoisting, some of them will be caught late.
As per benchmarks i've run {F12360204}, this is mostly within the noise,
there are some small improvements, some small regressions.
One big regression i saw i fixed in rG8d487668d09fb0e4e54f36207f07c1480ffabbfd, but i'm sure
this will expose many more pre-existing missed optimizations, as usual :S
llvm-compile-time-tracker.com thoughts on this:
http://llvm-compile-time-tracker.com/compare.php?from=e40315d2b4ed1e38962a8f33ff151693ed4ada63&to=c8289c0ecbf235da9fb0e3bc052e3c0d6bff5cf9&stat=instructions
* this does regress compile-time by +0.5% geomean (unsurprizingly)
* size impact varies; for ThinLTO it's actually an improvement
The largest fallout appears to be in GVN's load partial redundancy
elimination, it spends *much* more time in
`MemoryDependenceResults::getNonLocalPointerDependency()`.
Non-local `MemoryDependenceResults` is widely-known to be, uh, costly.
There does not appear to be a proper solution to this issue,
other than silencing the compile-time performance regression
by tuning cut-off thresholds in `MemoryDependenceResults`,
at the cost of potentially regressing run-time performance.
D84609 attempts to move in that direction, but the path is unclear
and is going to take some time.
If we look at stats before/after diffs, some excerpts:
* RawSpeed (the target) {F12360200}
* -14 (-73.68%) loops not rotated due to the header size (yay)
* -272 (-0.67%) `"Number of live out of a loop variables"` - good for vectorizer
* -3937 (-64.19%) common instructions hoisted
* +561 (+0.06%) x86 asm instructions
* -2 basic blocks
* +2418 (+0.11%) IR instructions
* vanilla test-suite + RawSpeed + darktable {F12360201}
* -36396 (-65.29%) common instructions hoisted
* +1676 (+0.02%) x86 asm instructions
* +662 (+0.06%) basic blocks
* +4395 (+0.04%) IR instructions
It is likely to be sub-optimal for when optimizing for code size,
so one might want to change tune pipeline by enabling sinking/hoisting
when optimizing for size.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D84108
This reverts commit 503deec218.
For intrinsics supported by ConstantRange, compute the result range
based on the argument ranges. We do this independently of whether
some or all of the input ranges are full, as we can often still
constrain the result in some way.
Differential Revision: https://reviews.llvm.org/D87183
Rather than using SELECT instructions, use SRA, UADDO/ADDCARRY and
XORs to expand ABS. This is the multi-part version of the sequence
we use in LegalizeDAG.
It's also the same as the Custom sequence uses for i64 on 32-bit
and i128 on 64-bit. So we can remove the X86 customization.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D87215
This was supposed to be an NFC cleanup, but there's
a real logic difference (did not drop 'nsw') visible
in some tests in addition to an efficiency improvement.
This is because in the case where we have 2 GEPs,
the code was *always* swapping the operands and
negating the result. But if we have 2 GEPs, we
should *never* need swapping/negation AFAICT.
This is part of improving flags propagation noticed
with PR47430.
This is a follow-up suggested in D86420 - if we have a pair of stores
in inverted order for the target endian, we can rotate the source
bits into place.
The "be_i64_to_i16_order" test shows a limitation of the current
function (which might be avoided if we integrate this function with
the other cases in mergeConsecutiveStores). In the earlier
"be_i64_to_i16" test, we skip the first 2 stores because we do not
match the full set as consecutive or rotate-able, but then we reach
the last 2 stores and see that they are an inverted pair of 16-bit
stores. The "be_i64_to_i16_order" test alters the program order of
the stores, so we miss matching the sub-pattern.
Differential Revision: https://reviews.llvm.org/D87112