Same as D60846 but with a fix for the problem encountered there which
was a missing context adjustment in the handling of PHI nodes.
The test that caused D60846 to be reverted was added in e15ab8f277.
Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69571
In similar fashion to D67721, we can simplify FMA multiplications if any
of the operands is NaN or undef. In instcombine, we will simplify the
FMA to an fadd with a NaN operand, which in turn gets folded to NaN.
Note that this just changes SimplifyFMAFMul, so we still not catch the
case where only the Add part of the FMA is Nan/Undef.
Reviewers: cameron.mcinally, mcberg2017, spatel, arsenm
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D68265
llvm-svn: 373459
This is intended to be similar to the constant folding results from
D67446
and earlier, but not all operands are constant in these tests, so the
responsibility for folding is left to InstSimplify.
Differential Revision: https://reviews.llvm.org/D67721
llvm-svn: 373455
Because we do not constant fold multiplications in SimplifyFMAMul,
we match 1.0 and 0.0 for both operands, as multiplying by them
is guaranteed to produce an exact result (if it is allowed to do so).
Note that it is not enough to just swap the operands to ensure a
constant is on the RHS, as we want to also cover the case with
2 constants.
Reviewers: lebedev.ri, spatel, reames, scanon
Reviewed By: lebedev.ri, reames
Differential Revision: https://reviews.llvm.org/D67553
llvm-svn: 372915
As @reames pointed out post-commit, rL371518 adds additional rounding
in some cases, when doing constant folding of the multiplication.
This breaks a guarantee llvm.fma makes and must be avoided.
This patch reapplies rL371518, but splits off the simplifications not
requiring rounding from SimplifFMulInst as SimplifyFMAFMul.
Reviewers: spatel, lebedev.ri, reames, scanon
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67434
llvm-svn: 372899
Summary:
I don't have a direct motivational case for this,
but it would be good to have this for completeness/symmetry.
This pattern is basically the motivational pattern from
https://bugs.llvm.org/show_bug.cgi?id=43251
but with different predicate that requires that the offset is non-zero.
The completeness bit comes from the fact that a similar pattern (offset != zero)
will be needed for https://bugs.llvm.org/show_bug.cgi?id=43259,
so it'd seem to be good to not overlook very similar patterns..
Proofs: https://rise4fun.com/Alive/21b
Also, there is something odd with `isKnownNonZero()`, if the non-zero
knowledge was specified as an assumption, it didn't pick it up (PR43267)
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67411
llvm-svn: 371718
This was actually the original intention in D67332,
but i messed up and forgot about it.
This patch was originally part of D67411, but precommitting this.
llvm-svn: 371630
Summary:
This is motivated by D67122 sanitizer check enhancement.
That patch seemingly worsens `-fsanitize=pointer-overflow`
overhead from 25% to 50%, which strongly implies missing folds.
In this particular case, given
```
char* test(char& base, unsigned long offset) {
return &base + offset;
}
```
it will end up producing something like
https://godbolt.org/z/LK5-iH
which after optimizations reduces down to roughly
```
define i1 @t0(i8* nonnull %base, i64 %offset) {
%base_int = ptrtoint i8* %base to i64
%adjusted = add i64 %base_int, %offset
%non_null_after_adjustment = icmp ne i64 %adjusted, 0
%no_overflow_during_adjustment = icmp uge i64 %adjusted, %base_int
%res = and i1 %non_null_after_adjustment, %no_overflow_during_adjustment
ret i1 %res
}
```
Without D67122 there was no `%non_null_after_adjustment`,
and in this particular case we can get rid of the overhead:
Here we add some offset to a non-null pointer,
and check that the result does not overflow and is not a null pointer.
But since the base pointer is already non-null, and we check for overflow,
that overflow check will already catch the null pointer,
so the separate null check is redundant and can be dropped.
Alive proofs:
https://rise4fun.com/Alive/WRzq
There are more patterns of "unsigned-add-with-overflow", they are not handled here,
but this is the main pattern, that we currently consider canonical,
so it makes sense to handle it.
https://bugs.llvm.org/show_bug.cgi?id=43246
Reviewers: spatel, nikic, vsk
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits, reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67332
llvm-svn: 371349
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
Now that with D65143/D65144 we've produce `@llvm.umul.with.overflow`,
and with D65147 we've flattened the CFG, we now can see that
the guard may have been there to prevent division by zero is redundant.
We can simply drop it:
```
----------------------------------------
Name: no overflow or zero
%iszero = icmp eq i4 %y, 0
%umul = smul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%umul.ov.not = xor %umul.ov, -1
%retval.0 = or i1 %iszero, %umul.ov.not
ret i1 %retval.0
=>
%iszero = icmp eq i4 %y, 0
%umul = smul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%umul.ov.not = xor %umul.ov, -1
%retval.0 = or i1 %iszero, %umul.ov.not
ret i1 %umul.ov.not
Done: 1
Optimization is correct!
```
Note that this is inverted from what we have in a previous patch,
here we are looking for the inverted overflow bit.
And that inversion is kinda problematic - given this particular
pattern we neither hoist that `not` closer to `ret` (then the pattern
would have been identical to the one without inversion,
and would have been handled by the previous patch), neither
do the opposite transform. But regardless, we should handle this too.
I've filled [[ https://bugs.llvm.org/show_bug.cgi?id=42720 | PR42720 ]].
Reviewers: nikic, spatel, xbolva00, RKSimon
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65151
llvm-svn: 370351
Summary:
Now that with D65143/D65144 we've produce `@llvm.umul.with.overflow`,
and with D65147 we've flattened the CFG, we now can see that
the guard may have been there to prevent division by zero is redundant.
We can simply drop it:
```
----------------------------------------
Name: no overflow and not zero
%iszero = icmp ne i4 %y, 0
%umul = umul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%retval.0 = and i1 %iszero, %umul.ov
ret i1 %retval.0
=>
%iszero = icmp ne i4 %y, 0
%umul = umul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%retval.0 = and i1 %iszero, %umul.ov
ret %umul.ov
Done: 1
Optimization is correct!
```
Reviewers: nikic, spatel, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65150
llvm-svn: 370350
As discussed in PR42696:
https://bugs.llvm.org/show_bug.cgi?id=42696
...but won't help that case yet.
We have an odd situation where a select operand equivalence fold was
implemented in InstSimplify when it could have been done more generally
in InstCombine if we allow dropping of {nsw,nuw,exact} from a binop operand.
Here's an example:
https://rise4fun.com/Alive/Xplr
%cmp = icmp eq i32 %x, 2147483647
%add = add nsw i32 %x, 1
%sel = select i1 %cmp, i32 -2147483648, i32 %add
=>
%sel = add i32 %x, 1
I've left the InstSimplify code in place for now, but my guess is that we'd
prefer to remove that as a follow-up to save on code duplication and
compile-time.
Differential Revision: https://reviews.llvm.org/D65576
llvm-svn: 367695
Summary:
SimplifyFPBinOp is a variant of SimplifyBinOp that lets you specify
fast math flags, but the name is misleading because both functions
can simplify both FP and non-FP ops. Instead, overload SimplifyBinOp
so that you can optionally specify fast math flags.
Likewise for SimplifyFPUnOp.
Reviewers: spatel
Reviewed By: spatel
Subscribers: xbolva00, cameron.mcinally, eraman, hiraditya, haicheng, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64902
llvm-svn: 366902
Summary:
- As the pointer stripping could trace through `addrspacecast` now, need
to sext/trunc the offset to ensure it has the same width as the
pointer after stripping.
Reviewers: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64768
llvm-svn: 366162
The interface predates CallBase, so both it and implementation were
significantly more complicated than they needed to be. There was even
some redundancy that could be eliminated.
Should also help with OpaquePointers by not trying to derive a
function's type from it's PointerType.
llvm-svn: 365767
This patch replaces the three almost identical "strip & accumulate"
implementations for constant pointer offsets with a single one,
combining the respective functionalities. The old interfaces are kept
for now.
Differential Revision: https://reviews.llvm.org/D64468
llvm-svn: 365723
As discussed in PR42314:
https://bugs.llvm.org/show_bug.cgi?id=42314
Improving the canonicalization for these patterns:
rL363956
...means we should adjust/enhance the related simplification.
https://rise4fun.com/Alive/w1cp
Name: isPow2 or zero
%x = and i32 %xx, 2048
%a = add i32 %x, -1
%r = and i32 %a, %x
=>
%r = i32 0
llvm-svn: 363997
Fix folds of addo and subo with an undef operand to be:
`@llvm.{u,s}{add,sub}.with.overflow` all fold to `{ undef, false }`,
as per LLVM undef rules.
Same for commuted variants.
Based on the original version of the patch by @nikic.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=42209 | PR42209 ]]
Differential Revision: https://reviews.llvm.org/D63065
llvm-svn: 363522
This is another step towards correcting our usage of fast-math-flags when applied on an fcmp.
In this case, we are checking for 'nnan' on the fcmp itself rather than the operand of
the fcmp. But I'm leaving that clause in until we're more confident that we can stop
relying on fcmp's FMF.
By using the more general "isKnownNeverNaN()", we gain a simplification shown on the
tests with 'uitofp' regardless of the FMF on the fcmp (uitofp never produces a NaN).
On the tests with 'fabs', we are now relying on the FMF for the call fabs instruction
in addition to the FMF on the fcmp.
This is a continuation of D62979 / rL362879.
llvm-svn: 362903
This is 1 step towards correcting our usage of fast-math-flags when applied on an fcmp.
In this case, we are checking for 'nnan' on the fcmp itself rather than the operand of
the fcmp. But I'm leaving that clause in until we're more confident that we can stop
relying on fcmp's FMF.
By using the more general "isKnownNeverNaN()", we gain a simplification shown on the
tests with 'uitofp' regardless of the FMF on the fcmp (uitofp never produces a NaN).
On the tests with 'fabs', we are now relying on the FMF for the call fabs instruction
in addition to the FMF on the fcmp.
I'll update the 'ult' case below here as a follow-up assuming no problems here.
Differential Revision: https://reviews.llvm.org/D62979
llvm-svn: 362879
This was part of InstCombine, but it's better placed in
InstSimplify. InstCombine also had an unreachable but weaker
fold for insertelement with undef index, so that is deleted.
llvm-svn: 361559
This is the sibling transform for rL360899 (D61691):
maxnum(X, GreaterC) == C --> false
maxnum(X, GreaterC) <= C --> false
maxnum(X, GreaterC) < C --> false
maxnum(X, GreaterC) >= C --> true
maxnum(X, GreaterC) > C --> true
maxnum(X, GreaterC) != C --> true
llvm-svn: 361118
minnum(X, LesserC) == C --> false
minnum(X, LesserC) >= C --> false
minnum(X, LesserC) > C --> false
minnum(X, LesserC) != C --> true
minnum(X, LesserC) <= C --> true
minnum(X, LesserC) < C --> true
maxnum siblings will follow if there are no problems here.
We should be able to perform some other combines when the constants
are equal or greater-than too, but that would go in instcombine.
We might also generalize this by creating an FP ConstantRange
(similar to what we do for integers).
Differential Revision: https://reviews.llvm.org/D61691
llvm-svn: 360899
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
llvm-svn: 359072
In the process, use the existing masked.load combine which is slightly stronger, and handles a mix of zero and undef elements in the mask.
llvm-svn: 358913
As discussed on PR41125 and D59363, we have a mismatch between icmp eq/ne cases with an undef operand:
When the other operand is constant we fold to undef (handled in ConstantFoldCompareInstruction)
When the other operand is non-constant we fold to a bool constant based on isTrueWhenEqual (handled in SimplifyICmpInst).
Neither is really wrong, but this patch changes the logic in SimplifyICmpInst to consistently fold to undef.
The NewGVN test change is annoying (as with most heavily reduced tests) but AFAICT I have kept the purpose of the test based on rL291968.
Differential Revision: https://reviews.llvm.org/D59541
llvm-svn: 356456
This is preparation for D59506. The InstructionSimplify abs handling
is moved into computeConstantRange(), which is the general place for
such calculations. This is NFC and doesn't affect the existing tests
in test/Transforms/InstSimplify/icmp-abs-nabs.ll.
Differential Revision: https://reviews.llvm.org/D59511
llvm-svn: 356409
The shift argument is defined to be modulo the bitwidth, so if that argument
is a constant, we can always reduce the constant to its minimal form to allow
better CSE and other follow-on transforms.
We need to be careful to ignore constant expressions here, or we will likely
infinite loop. I'm adding a general vector constant query for that case.
Differential Revision: https://reviews.llvm.org/D59374
llvm-svn: 356192
InstructionSimplify currently has some code to determine the constant
range of integer instructions for some simple cases. It is used to
simplify icmps.
This change moves the relevant code into ValueTracking as
llvm::computeConstantRange(), so it can also be reused for other
purposes.
In particular this is with the optimization of overflow checks in
mind (ref D59071), where constant ranges cover some cases that
known bits don't.
llvm-svn: 355781
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2019-February/130491.html
We can't remove the compare+select in the general case because
we are treating funnel shift like a standard instruction (as
opposed to a special instruction like select/phi).
That means that if one of the operands of the funnel shift is
poison, the result is poison regardless of whether we know that
the operand is actually unused based on the instruction's
particular semantics.
The motivating case for this transform is the more specific
rotate op (rather than funnel shift), and we are preserving the
fold for that case because there is no chance of introducing
extra poison when there is no anonymous extra operand to the
funnel shift.
llvm-svn: 354905
The m_APFloat matcher does not work with anything but strict
splat vector constants, so we could miss these folds and then
trigger an assertion in instcombine:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13201
The previous attempt at this in rL354406 had a logic bug that
actually triggered a regression test failure, but I failed to
notice it the first time.
llvm-svn: 354467
The m_APFloat matcher does not work with anything but strict
splat vector constants, so we could miss these folds and then
trigger an assertion in instcombine:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13201
llvm-svn: 354406
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If a saturating add/sub has one constant operand, then we can
determine the possible range of outputs it can produce, and simplify
an icmp comparison based on that.
The implementation is based on a similar existing mechanism for
simplifying binary operator + icmps.
Differential Revision: https://reviews.llvm.org/D55735
llvm-svn: 349369
We were duplicating code around the existing isImpliedCondition() that
checks for a predecessor block/dominating condition, so make that a
wrapper call.
llvm-svn: 348088
This is an almost direct move of the functionality from InstCombine to
InstSimplify. There's no reason not to do this in InstSimplify because
we never create a new value with this transform.
(There's a question of whether any dominance-based transform belongs in
either of these passes, but that's a separate issue.)
I've changed 1 of the conditions for the fold (1 of the blocks for the
branch must be the block we started with) into an assert because I'm not
sure how that could ever be false.
We need 1 extra check to make sure that the instruction itself is in a
basic block because passes other than InstCombine may be using InstSimplify
as an analysis on values that are not wired up yet.
The 3-way compare changes show that InstCombine has some kind of
phase-ordering hole. Otherwise, we would have already gotten the intended
final result that we now show here.
llvm-svn: 347896
This is a problem seen in common rotate idioms as noted in:
https://bugs.llvm.org/show_bug.cgi?id=34924
Note that we are not canonicalizing standard IR (shifts and logic) to the intrinsics yet.
(Although I've written this before...) I think this is the last step before we enable
that transform. Ie, we could regress code by doing that transform without this
simplification in place.
In PR34924, I questioned whether this is a valid transform for target-independent IR,
but I convinced myself this is ok. If we're speculating a funnel shift by turning cmp+br
into select, then SimplifyCFG has already determined that the transform is justified.
It's possible that SimplifyCFG is not taking into account profile or other metadata,
but if that's true, then it's a bug independent of funnel shifts.
Also, we do have CGP code to restore a guard like this around an intrinsic if it can't
be lowered cheaply. But that isn't necessary for funnel shift because the default
expansion in SelectionDAGBuilder includes this same cmp+select.
Differential Revision: https://reviews.llvm.org/D54552
llvm-svn: 346960
This is NFCI for InstCombine because it calls InstSimplify,
so I left the tests for this transform there. As noted in
the code comment, we can allow this fold more often by using
FMF and/or value tracking.
llvm-svn: 346169
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
Remove duplicate tests from InstCombine that were added with
D50582. I left negative tests there to verify that nothing
in InstCombine tries to go overboard. If isKnownNeverNaN is
improved to handle the FP binops or other cases, we should
have coverage under InstSimplify, so we could remove more
duplicate tests from InstCombine at that time.
llvm-svn: 340279
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
This is the second patch of the series which intends to enable jump threading for an inlined method whose return type is std::pair<int, bool> or std::pair<bool, int>.
The first patch is https://reviews.llvm.org/rL338485.
This patch handles code sequences that merges two values using `shl` and `or`, then extracts one value using `and`.
Differential Revision: https://reviews.llvm.org/D49981
llvm-svn: 338817
This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined.
For example, jump threading does not happen for the if statement in func.
std::pair<int, bool> callee(int v) {
int a = dummy(v);
if (a) return std::make_pair(dummy(v), true);
else return std::make_pair(v, v < 0);
}
int func(int v) {
std::pair<int, bool> rc = callee(v);
if (rc.second) {
// do something
}
SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA.
After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc).
This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs.
These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading.
SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify.
This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr.
Differential Revision: https://reviews.llvm.org/D48828
llvm-svn: 338485
This fold is repeated/misplaced in instcombine, but I'm
not sure if it's safe to remove that yet because some
other folds appear to be asserting that the transform
has occurred within instcombine itself.
This isn't the best fix for PR37776, but it probably
hides the bug with the given code example:
https://bugs.llvm.org/show_bug.cgi?id=37776
We have another test to demonstrate the more general bug.
llvm-svn: 337127
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
For both operands are unsigned, the following optimizations are valid, and missing:
1. X > Y && X != 0 --> X > Y
2. X > Y || X != 0 --> X != 0
3. X <= Y || X != 0 --> true
4. X <= Y || X == 0 --> X <= Y
5. X > Y && X == 0 --> false
unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
should fold to x > y, but I found we haven't done it right now.
besides, unsigned foo(unsigned x, unsigned y) { return x < y && y != 0; }
Has been folded to x < y, so there may be a bug.
Patch by: Li Jia He!
Differential Revision: https://reviews.llvm.org/D47922
llvm-svn: 335129
Summary:
`%ret = add nuw i8 %x, C`
From [[ https://llvm.org/docs/LangRef.html#add-instruction | langref ]]:
nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present,
the result value of the add is a poison value if unsigned
and/or signed overflow, respectively, occurs.
So if `C` is `-1`, `%x` can only be `0`, and the result is always `-1`.
I'm not sure we want to use `KnownBits`/`LVI` here, because there is
exactly one possible value (all bits set, `-1`), so some other pass
should take care of replacing the known-all-ones with constant `-1`.
The `test/Transforms/InstCombine/set-lowbits-mask-canonicalize.ll` change *is* confusing.
What happening is, before this: (omitting `nuw` for simplicity)
1. First, InstCombine D47428/rL334127 folds `shl i32 1, %NBits`) to `shl nuw i32 -1, %NBits`
2. Then, InstSimplify D47883/rL334222 folds `shl nuw i32 -1, %NBits` to `-1`,
3. `-1` is inverted to `0`.
But now:
1. *This* InstSimplify fold `%ret = add nuw i32 %setbit, -1` -> `-1` happens first,
before InstCombine D47428/rL334127 fold could happen.
Thus we now end up with the opposite constant,
and it is all good: https://rise4fun.com/Alive/OA9https://rise4fun.com/Alive/sldC
Was mentioned in D47428 review.
Follow-up for D47883.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47908
llvm-svn: 334298
Summary:
`%r = shl nuw i8 C, %x`
As per langref:
```
If the nuw keyword is present, then the shift produces
a poison value if it shifts out any non-zero bits.
```
Thus, if the sign bit is set on `C`, then `%x` can only be `0`,
which means that `%r` can only be `C`.
Or in other words, set sign bit means that the signed value
is negative, so the constant is `<= 0`.
https://rise4fun.com/Alive/WMkhttps://rise4fun.com/Alive/udv
Was mentioned in D47428 review.
We already handle the `0` constant, https://godbolt.org/g/UZq1sJ, so this only handles negative constants.
Could use computeKnownBits() / LazyValueInfo,
but the cost-benefit analysis (https://reviews.llvm.org/D47891)
suggests it isn't worth it.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47883
llvm-svn: 334222
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
I was reminded today that this patch got reverted in r301885. I can no
longer reproduce the failure that caused the revert locally (...almost
one year later), and the patch applied pretty cleanly, so I guess we'll
see if the bots still get angry about it.
The original breakage was InstSimplify complaining (in "assertion
failed" form) about getting passed some crazy IR when running `ninja
check-sanitizer`. I'm unable to find traces of what, exactly, said crazy
IR was. I suppose we'll find out pretty soon if that's still the case.
:)
Original commit:
Author: gbiv
Date: Mon May 1 18:12:08 2017
New Revision: 301880
URL: http://llvm.org/viewvc/llvm-project?rev=301880&view=rev
Log:
[InstSimplify] Handle selects of GEPs with 0 offset
In particular (since it wouldn't fit nicely in the summary):
(select (icmp eq V 0) P (getelementptr P V)) -> (getelementptr P V)
Differential Revision: https://reviews.llvm.org/D31435
llvm-svn: 330667
This is the last step in getting constant pattern matchers to allow
undef elements in constant vectors.
I'm adding a dedicated m_ZeroInt() function and building m_Zero() from
that. In most cases, calling code can be updated to use m_ZeroInt()
directly when there's no need to match pointers, but I'm leaving that
efficiency optimization as a follow-up step because it's not always
clear when that's ok.
There are just enough icmp folds in InstSimplify that can be used for
integer or pointer types, that we probably still want a generic m_Zero()
for those cases. Otherwise, we could eliminate it (and possibly add a
m_NullPtr() as an alias for isa<ConstantPointerNull>()).
We're conservatively returning a full zero vector (zeroinitializer) in
InstSimplify/InstCombine on some of these folds (see diffs in InstSimplify),
but I'm not sure if that's actually necessary in all cases. We may be
able to propagate an undef lane instead. One test where this happens is
marked with 'TODO'.
llvm-svn: 330550
As shown in the code comment, we don't need all of 'fast',
but we do need reassoc + nsz + nnan.
Differential Revision: https://reviews.llvm.org/D43765
llvm-svn: 327796
This matcher implementation appears to be slightly more efficient than
the generic constant check that it is replacing because every use was
for matching FP patterns, but the previous code would check int and
pointer type nulls too.
llvm-svn: 327627
From the LangRef definition for frem:
"The value produced is the floating-point remainder of the two operands.
This is the same output as a libm ‘fmod‘ function, but without any
possibility of setting errno. The remainder has the same sign as the
dividend. This instruction is assumed to execute in the default
floating-point environment."
llvm-svn: 327626
As shown in:
https://bugs.llvm.org/show_bug.cgi?id=27151
...the existing fold could miscompile when X is NaN.
The fold was also dependent on 'ninf' but that's not necessary.
From IEEE-754 (with default rounding which we can assume for these opcodes):
"When the sum of two operands with opposite signs (or the difference of two
operands with like signs) is exactly zero, the sign of that sum (or difference)
shall be +0...However, x + x = x − (−x) retains the same sign as x even when
x is zero."
llvm-svn: 327575
The 'hasOneUse' check is a giveaway that something's not right.
We never need to check that in InstSimplify because we don't
create new instructions here.
These are all handled as icmp simplifies which then trigger
existing select simplifies, so there's no need to duplicate
a composite fold of the two.
llvm-svn: 326750
This is NFC for the moment (and independent of any potential NaN semantic
controversy). Besides making the code in InstSimplify easier to read, the
motivation is to eventually allow undef elements in vector constants to
match too. A proposal to add the base logic for that is in D43792.
llvm-svn: 326600
Loosening the matcher definition reveals a subtle bug in InstSimplify (we should not
assume that because an operand constant matches that it's safe to return it as a result).
So I'm making that change here too (that diff could be independent, but I'm not sure how
to reveal it before the matcher change).
This also seems like a good reason to *not* include matchers that capture the value.
We don't want to encourage the potential misstep of propagating undef values when it's
not allowed/intended.
I didn't include the capture variant option here or in the related rL325437 (m_One),
but it already exists for other constant matchers.
llvm-svn: 325466
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
These intrinsic folds were added with D41381, but only allowed with isFast().
That's more than necessary because FMF has 'reassoc' to apply to these
kinds of folds after D39304, and that's all we need in these cases.
Differential Revision: https://reviews.llvm.org/D43160
llvm-svn: 324967
Summary:
If any vector divisor element is undef, we can arbitrarily choose it be
zero which would make the div/rem an undef value by definition.
Reviewers: spatel, reames
Reviewed By: spatel
Subscribers: magabari, llvm-commits
Differential Revision: https://reviews.llvm.org/D42485
llvm-svn: 323343
This doesn't handle the more complicated case in the bug report yet:
https://bugs.llvm.org/show_bug.cgi?id=35790
For that, we have to match / look through a cast.
llvm-svn: 322327
In one case, we were handling out of bounds, but not undef indices. In the other, we were handling undef (with the comment making the analogy to out of bounds), but not out of bounds. Be consistent and treat both undef and constant out of bounds indices as producing undefined results.
As a side effect, this also protects instcombine from having to handle large constant indices as we always simplify first.
llvm-svn: 321575
Most of the -Wsign-compare warnings are due to the fact that
enums are signed by default in the MS ABI, while the
tautological comparison warnings trigger on x86 builds where
sizeof(size_t) is 4 bytes, so N > numeric_limits<unsigned>::max()
is always false.
Differential Revision: https://reviews.llvm.org/D41256
llvm-svn: 320750
Summary:
An undef extract index can be arbitrarily chosen to be an
out-of-range index value, which would result in the instruction being undef.
This change closes a gap identified while working on lowering vector permute intrinsics
with variable index vectors to pure LLVM IR.
Reviewers: arsenm, spatel, majnemer
Reviewed By: arsenm, spatel
Subscribers: fhahn, nhaehnle, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D40231
llvm-svn: 319910
The 'ord' and 'uno' predicates have a logic operation for NAN built into their definitions:
FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
So we can simplify patterns like this:
(fcmp ord (known NNAN), X) && (fcmp ord X, Y) --> fcmp ord X, Y
(fcmp uno (known NNAN), X) || (fcmp uno X, Y) --> fcmp uno X, Y
It might be better to split this into (X uno 0) | (Y uno 0) as a canonicalization, but that
would be another patch.
Differential Revision: https://reviews.llvm.org/D40130
llvm-svn: 318627
Call ConstantFoldSelectInstruction() to fold cases like below
select <2 x i1><i1 true, i1 false>, <2 x i8> <i8 0, i8 1>, <2 x i8> <i8 2, i8 3>
All operands are constants and the condition has mixed true and false conditions.
Differential Revision: https://reviews.llvm.org/D38369
llvm-svn: 314741
This should bring signed div/rem analysis up to the same level as unsigned.
We use icmp simplification to determine when the divisor is known greater than the dividend.
Each positive test is followed by a negative test to show that we're not overstepping the boundaries of the known bits.
There are extra tests for the signed-min-value special cases.
Alive proofs:
http://rise4fun.com/Alive/WI5
Differential Revision: https://reviews.llvm.org/D37713
llvm-svn: 313264
The idea to make an 'isDivZero' helper was suggested for the signed case in D37713:
https://reviews.llvm.org/D37713
This clean-up makes it clear that D37713 is just filling the gap for signed div/rem,
removes unnecessary code, and allows us to remove a bit of duplicated code from the
planned improvement in D37713.
llvm-svn: 313261
I'm trying to refactor some shared code for integer div/rem,
but I keep having to scroll through fdiv. The FP ops have
nothing in common with the integer ops, so I'm moving FP
below everything else.
While here, improve a couple of comments and fix some formatting.
llvm-svn: 312913
This removes some duplicated code and makes it easier to support signed div/rem
in a similar way if we want to do that. Note that the existing comments were not
accurate - we don't need a constant divisor to simplify; icmp simplification does
more than that. But as the added tests show, it could go even further.
llvm-svn: 312885
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869