This removes the after the fact FMF handling from D46854 in favor of passing fast math flags to getNode. This should be a superset of D87130.
This required adding a SDNodeFlags to SelectionDAG::getSetCC.
Now we manage to contant fold some stuff undefs during the
initial getNode that we don't do in later DAG combines.
Differential Revision: https://reviews.llvm.org/D87200
Previously SDNodeFlags::instersectWith(Flags) would do nothing if Flags was
in an undefined state, which is very bad given that this is the default when
getNode() is called without passing an explicit SDNodeFlags argument.
This meant that if an already existing and reused node had a flag which the
second caller to getNode() did not set, that flag would remain uncleared.
This was exposed by https://bugs.llvm.org/show_bug.cgi?id=47092, where an NSW
flag was incorrectly set on an add instruction (which did in fact overflow in
one of the two original contexts), so when SystemZElimCompare removed the
compare with 0 trusting that flag, wrong-code resulted.
There is more that needs to be done in this area as discussed here:
Differential Revision: https://reviews.llvm.org/D86871
Review: Ulrich Weigand, Sanjay Patel
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
When joining the legal parts of vector arguments into its original value
during the lower of Formal Arguments in SelectionDAGBuilder, the Calling
Convention information was not being propagated for the handling of each
individual parts. The same did not happen when lowering calls, causing a
mismatch.
This patch fixes the issue by properly propagating the Calling
Convention details.
This fixes Bugzilla #47001.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86715
This adapts legalization of intrinsic get.active.lane.mask to the new semantics
as described in D86147. Because the second argument is now the loop tripcount,
we legalize this intrinsic to an 'icmp ULT' instead of an ULE when it was the
backedge-taken count.
Differential Revision: https://reviews.llvm.org/D86302
In SelectionDAGBuilder always translate the fshl and fshr intrinsics to
FSHL and FSHR (or ROTL and ROTR) instead of lowering them to shifts and
ORs. Improve the legalization of FSHL and FSHR to avoid code quality
regressions.
Differential Revision: https://reviews.llvm.org/D77152
Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220
The custom lowering saves an instruction over the generic expansion, by
taking advantage of the fact that PowerPC shift instructions are well
defined in the shift-by-bitwidth case.
Differential Revision: https://reviews.llvm.org/D83948
This patch stops unconditionally transforming FSUB(-0,X) into an FNEG(X) while building the DAG. There is also one small change to handle the new FSUB(-0,X) similarly to FNEG(X) in the AMDGPU backend.
Differential Revision: https://reviews.llvm.org/D84056
This fixes an assertion failure that was being triggered in
SelectionDAG::getZeroExtendInReg(), where it was trying to extend the <2xi32>
to i64 (which should have been <2xi64>).
Fixes: rdar://66016901
Differential Revision: https://reviews.llvm.org/D84884
This adds the llvm.abs(), llvm.umin(), llvm.umax(), llvm.smin(),
and llvm.smax() intrinsics specified in D81829. For SelectionDAG,
the ISD opcodes and all the legalization and lowering already exist,
so this just wires them up to the intrinsic in the SDAG builder and
adds rudimentary tests. For GlobalISel only the min/max intrinsics
are wired up, as llvm.abs() will require the addition of a G_ABS op,
and corresponding legalization support.
Differential Revision: https://reviews.llvm.org/D84125
When the byref attribute is added, there will need to be two similar
functions for the existing cases which have an associate value copy,
and byref which does not. Most, but not all of the existing uses will
use the existing version.
The associated size function added by D82679 also needs to
contextually differ, and will help eliminate a few places still
relying on pointee element types.
Some of the system registers readable on AArch64 and ARM platforms
return different values with each read (for example a timer counter),
these shouldn't be hoisted outside loops or otherwise interfered with,
but the normal @llvm.read_register intrinsic is only considered to read
memory.
This introduces a separate @llvm.read_volatile_register intrinsic and
maps all system-registers on ARM platforms to use it for the
__builtin_arm_rsr calls. Registers declared with asm("r9") or similar
are unaffected.
`__stack_chk_fail` does not return, but `unreachable` was not generated
following `call __stack_chk_fail`. This had a possibility to generate an
invalid binary for functions with a return type, because
`__stack_chk_fail`'s return type is void and `call __stack_chk_fail` can
be the last instruction in the function whose return type is non-void.
Generating `unreachable` after it makes sure CFGStackify's
`fixEndsAtEndOfFunction` handles it correctly.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D83277
This patch fixes all remaining warnings in:
llvm/test/CodeGen/AArch64/sve-trunc.ll
llvm/test/CodeGen/AArch64/sve-vector-splat.ll
I hit some warnings related to getCopyPartsToVector. I fixed two
issues:
1. In widenVectorToPartType() we assumed that we'd always be
using BUILD_VECTOR nodes to expand from one vector type to another,
which is incorrect for scalable vector types. I've fixed this for now
by simply bailing out immediately for scalable vectors.
2. In getCopyToPartsVector() I've changed the code to compare
the element counts of different types.
Differential Revision: https://reviews.llvm.org/D83028
SelectionDAGBuilder converts logic-of-compares into multiple branches based
on a boolean TLI setting in isJumpExpensive(). But that probably never
considered the pattern of extracted bools from a vector compare - it seems
unlikely that we would want to turn vector logic into control-flow.
The motivating x86 reduction case is shown in PR44565:
https://bugs.llvm.org/show_bug.cgi?id=44565
...and that test shows the expected improvement from using pmovmsk codegen.
For AArch64, I modified the test to include an extra op because the simpler
test gets transformed by a codegen invocation of SimplifyCFG.
Differential Revision: https://reviews.llvm.org/D82602
Whilst trying to assemble the following test:
clang/test/CodeGen/aarch64-sve-intrinsics/acle_sve_set2.c
I discovered we were hitting some warnings about possible invalid
calls to getVectorNumElements() in getCopyToPartsVector(). I've
tried to fix these by using ElementCount types where possible and
I've made the assumption that we don't support using a fixed width
vector to copy parts of a scalable vector, and vice versa. Looking
at how the copy is implemented I think that's the right thing for
now.
Differential Revision: https://reviews.llvm.org/D82744
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
This lowers intrinsic @llvm.get.active.lane.mask to a setcc node, i.e. an icmp
ule, and creates vectors for its 2 arguments on which the comparison is
performed.
Differential Revision: https://reviews.llvm.org/D82292
Summary:
- AssertAlign node records the guaranteed alignment on its source node,
where these alignments are retrieved from alignment attributes in LLVM
IR. These tracked alignments could help DAG combining and lowering
generating efficient code.
- In this patch, the basic support of AssertAlign node is added. So far,
we only generate AssertAlign nodes on return values from intrinsic
calls.
- Addressing selection in AMDGPU is revised accordingly to capture the
new (base + offset) patterns.
Reviewers: arsenm, bogner
Subscribers: jvesely, wdng, nhaehnle, tpr, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81711
Summary:
Half-precision floating point arguments and returns are currently
promoted to either float or int32 in clang's CodeGen and there's
no existing support for the lowering of `half` arguments and returns
from IR in AArch32's backend.
Such frontend coercions, implemented as coercion through memory
in clang, can cause a series of issues in argument lowering, as causing
arguments to be stored on the wrong bits on big-endian architectures
and incurring in missing overflow detections in the return of certain
functions.
This patch introduces the handling of half-precision arguments and returns in
the backend using the actual "half" type on the IR. Using the "half"
type the backend is able to properly enforce the AAPCS' directions for
those arguments, making sure they are stored on the proper bits of the
registers and performing the necessary floating point convertions.
Reviewers: rjmccall, olista01, asl, efriedma, ostannard, SjoerdMeijer
Reviewed By: ostannard
Subscribers: stuij, hiraditya, dmgreen, llvm-commits, chill, dnsampaio, danielkiss, kristof.beyls, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75169
Summary:
The naked function attribute is meant to suppress all function
prologue/epilogue instructions.
On ARM, some are still emitted if an argument greater than 64 bytes in size
(the threshold for using the byval attribute in IR) is passed partially
in registers.
Perform the check for Attribute::Naked and early exit in
SelectionDAGISel::LowerArguments().
Checking in ARMFrameLowering::determineCalleeSaves() is too late.
A test case is included.
Reviewers: llvm-commits, olista01, danielkiss
Reviewed By: danielkiss
Subscribers: kristof.beyls, hiraditya, danielkiss
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80715
Change-Id: Icedecf2a4ad31bc3c35ab0df7489a9d346e1f7cc
Now that all of the statepoint related routines have classes with isa support, let's cleanup.
I'm leaving the (dead) utitilities in tree for a few days so that I can do the same cleanup downstream without breakage.
In the current statepoint design, we have four distinct groups of operands to the call: call args, gc transition args, deopt args, and gc args. This format prexisted the support in IR for operand bundles and was in fact one of the inspirations for the extension. However, we never went back and rearchitected statepoints to fully leverage bundles.
This change is the first in a small sequence to do so. All this does is extend the SelectionDAG lowering code to allow deopt and gc transition operands to be specified in either inline argument bundles or operand bundles.
Differential Revision: https://reviews.llvm.org/D8059
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
If the caller needs to reponsible for making sure the MaybeAlign
has a value, then we should just make the caller convert it to an Align
with operator*.
I explicitly deleted the relational comparison operators that
were being inherited from Optional. It's unclear what the meaning
of two MaybeAligns were one is defined and the other isn't
should be. So make the caller reponsible for defining the behavior.
I left the ==/!= operators from Optional. But now that exposed a
weird quirk that ==/!= between Align and MaybeAlign required the
MaybeAlign to be defined. But now we use the operator== from
Optional that takes an Optional and the Value.
Differential Revision: https://reviews.llvm.org/D80455
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689