Following on from this RFC[0] from a while back, this is the first patch towards
implementing variadic debug values.
This patch specifically adds a set of functions to MachineInstr for performing
operations specific to debug values, and replacing uses of the more general
functions where appropriate. The most prevalent of these is replacing
getOperand(0) with getDebugOperand(0) for debug-value-specific code, as the
operands corresponding to values will no longer be at index 0, but index 2 and
upwards: getDebugOperand(x) == getOperand(x+2). Similar replacements have been
added for the other operands, along with some helper functions to replace
oft-repeated code and operate on a variable number of value operands.
[0] http://lists.llvm.org/pipermail/llvm-dev/2020-February/139376.html<Paste>
Differential Revision: https://reviews.llvm.org/D81852
Some processors may speculatively execute the instructions immediately
following RET (returns) and BR (indirect jumps), even though
control flow should change unconditionally at these instructions.
To avoid a potential miss-speculatively executed gadget after these
instructions leaking secrets through side channels, this pass places a
speculation barrier immediately after every RET and BR instruction.
Since these barriers are never on the correct, architectural execution
path, performance overhead of this is expected to be low.
On targets that implement that Armv8.0-SB Speculation Barrier extension,
a single SB instruction is emitted that acts as a speculation barrier.
On other targets, a DSB SYS followed by a ISB is emitted to act as a
speculation barrier.
These speculation barriers are implemented as pseudo instructions to
avoid later passes to analyze them and potentially remove them.
Even though currently LLVM does not produce BRAA/BRAB/BRAAZ/BRABZ
instructions, these are also mitigated by the pass and tested through a
MIR test.
The mitigation is off by default and can be enabled by the
harden-sls-retbr subtarget feature.
Differential Revision: https://reviews.llvm.org/D81400
Follow-up of D78082 (x86-64).
This change avoids dynamic relocations in `xray_instr_map` for ARM/AArch64/powerpc64le.
MIPS64 cannot use 64-bit PC-relative addresses because R_MIPS_PC64 is not defined.
Because MIPS32 shares the same code, for simplicity, we don't use PC-relative addresses for MIPS32 as well.
Tested on AArch64 Linux and ppc64le Linux.
Reviewed By: ianlevesque
Differential Revision: https://reviews.llvm.org/D78590
- Adding changes to support comments on outlined functions with outlining for the conditions through which it was outlined (e.g. Thunks, Tail calls)
- Adapts the emitFunctionHeader to print out a comment next to the header if the target specifies it based on information in MachineFunctionInfo
- Adds mir test for function annotiation
Differential Revision: https://reviews.llvm.org/D78062
Summary:
For -fpatchable-function-entry=N,0 -mbranch-protection=bti, after
9a24488cb6, we place the NOP sled after
the initial BTI.
```
.Lfunc_begin0:
bti c
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lfunc_begin0
```
This patch adds a label after the initial BTI and changes the __patchable_function_entries entry to reference the label:
```
.Lfunc_begin0:
bti c
.Lpatch0:
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lpatch0
```
This placement is compatible with the resolution in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 .
A local linkage function whose address is not taken does not need a BTI.
Placing the patch label after BTI has the advantage that code does not
need to differentiate whether the function has an initial BTI.
Reviewers: mrutland, nickdesaulniers, nsz, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73680
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
The Linux kernel uses -fpatchable-function-entry to implement DYNAMIC_FTRACE_WITH_REGS
for arm64 and parisc. GCC 8 implemented
-fpatchable-function-entry, which can be seen as a generalized form of
-mnop-mcount. The N,M form (function entry points before the Mth NOP) is
currently only used by parisc.
This patch adds N,0 support to AArch64 codegen. N is represented as the
function attribute "patchable-function-entry". We will use a different
function attribute for M, if we decide to implement it.
The patch reuses the existing patchable-function pass, and
TargetOpcode::PATCHABLE_FUNCTION_ENTER which is currently used by XRay.
When the integrated assembler is used, __patchable_function_entries will
be created for each text section with the SHF_LINK_ORDER flag to prevent
--gc-sections (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93197) and
COMDAT (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93195) issues.
Retrospectively, __patchable_function_entries should use a PC-relative
relocation type to avoid the SHF_WRITE flag and dynamic relocations.
"patchable-function-entry"'s interaction with Branch Target
Identification is still unclear (see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 for GCC discussions).
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D72215
Recommit after making the same API change in non-x86 targets. This has been build for all targets, and tested for effected ones. Why the difference? Because my disk filled up when I tried make check for all.
For auto-padding assembler support, we'll need to bundle the label with the instructions (nops or call sequences) so that they don't get separated. This just rearranges the code to make the upcoming change more obvious.
The emission of stack maps in AArch64 binaries has been disabled for all
binary formats except Mach-O since rL206610, probably mistakenly, as far
as I can tell. This patch reverts this to its intended state.
Differential Revision: https://reviews.llvm.org/D70069
Patch by Loic Ottet.
We can't use short granules with stack instrumentation when targeting older
API levels because the rest of the system won't understand the short granule
tags stored in shadow memory.
Moreover, we need to be able to let old binaries (which won't understand
short granule tags) run on a new system that supports short granule
tags. Such binaries will call the __hwasan_tag_mismatch function when their
outlined checks fail. We can compensate for the binary's lack of support
for short granules by implementing the short granule part of the check in
the __hwasan_tag_mismatch function. Unfortunately we can't do anything about
inline checks, but I don't believe that we can generate these by default on
aarch64, nor did we do so when the ABI was fixed.
A new function, __hwasan_tag_mismatch_v2, is introduced that lets code
targeting the new runtime avoid redoing the short granule check. Because tag
mismatches are rare this isn't important from a performance perspective; the
main benefit is that it introduces a symbol dependency that prevents binaries
targeting the new runtime from running on older (i.e. incompatible) runtimes.
Differential Revision: https://reviews.llvm.org/D68059
llvm-svn: 373035
Summary:
Adds the following inline asm constraints for SVE:
- Upl: One of the low eight SVE predicate registers, P0 to P7 inclusive
- Upa: SVE predicate register with full range, P0 to P15
Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, cameron.mcinally, greened, rengolin
Reviewed By: rovka
Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66524
llvm-svn: 371967
This is the main CodeGen patch to support the arm64_32 watchOS ABI in LLVM.
FastISel is mostly disabled for now since it would generate incorrect code for
ILP32.
llvm-svn: 371722
Summary:
Adds the following inline asm constraints for SVE:
- w: SVE vector register with full range, Z0 to Z31
- x: Restricted to registers Z0 to Z15 inclusive.
- y: Restricted to registers Z0 to Z7 inclusive.
This change also adds the "z" modifier to interpret a register as an SVE register.
Not all of the bitconvert patterns added by this patch are used, but they have been included here for completeness.
Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, rengolin, cameron.mcinally, greened
Reviewed By: sdesmalen
Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66302
llvm-svn: 370673
Summary:
The A64 assembly language does not require the '#' character to
introduce constant immediate operands. Avoid the '#' since the AArch64
asm parser does not accept '#' before the lane specifier and rejects the
following:
__asm__ ("fmla v2.4s, v0.4s, v1.s[%0]" :: "I"(0x1))
Fix a test to not expect the '#' and add a new test case with the above
asm.
Fixes: https://github.com/android-ndk/ndk/issues/1036
Reviewers: peter.smith, kristof.beyls
Subscribers: javed.absar, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65550
llvm-svn: 368320
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
llvm-svn: 365551
Turns out that we can save an instruction by folding the right shift into
the compare.
Differential Revision: https://reviews.llvm.org/D63568
llvm-svn: 363874
This reverts r362990 (git commit 374571301d)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360709
For some targets, there is a circular dependency between InstPrinter and
MCTargetDesc. Merging them together will fix this. For the other targets,
the merging is to maintain consistency so all targets will have the same
structure.
llvm-svn: 360486
Summary:
Targets like ARM, MSP430, PPC, and SystemZ have complex behavior when
printing the address of a MachineOperand::MO_GlobalAddress. Move that
handling into a new overriden method in each base class. A virtual
method was added to the base class for handling the generic case.
Refactors a few subclasses to support the target independent %a, %c, and
%n.
The patch also contains small cleanups for AVRAsmPrinter and
SystemZAsmPrinter.
It seems that NVPTXTargetLowering is possibly missing some logic to
transform GlobalAddressSDNodes for
TargetLowering::LowerAsmOperandForConstraint to handle with "i" extended
inline assembly asm constraints.
Fixes:
- https://bugs.llvm.org/show_bug.cgi?id=41402
- https://github.com/ClangBuiltLinux/linux/issues/449
Reviewers: echristo, void
Reviewed By: void
Subscribers: void, craig.topper, jholewinski, dschuff, jyknight, dylanmckay, sdardis, nemanjai, javed.absar, sbc100, jgravelle-google, eraman, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, jrtc27, atanasyan, jsji, llvm-commits, kees, tpimh, nathanchance, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60887
llvm-svn: 359337
Summary:
X86 is quite complicated; so I intend to leave it as is. ARM+Aarch64 do
basically the same thing (Aarch64 did not correctly handle immediates,
ARM has a test llvm/test/CodeGen/ARM/2009-04-06-AsmModifier.ll that uses
%a with an immediate) for a flag that should be target independent
anyways.
Reviewers: echristo, peter.smith
Reviewed By: echristo
Subscribers: javed.absar, eraman, kristof.beyls, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60841
llvm-svn: 358618
Summary:
The InlineAsm::AsmDialect is only required for X86; no architecture
makes use of it and as such it gets passed around between arch-specific
and general code while being unused for all architectures but X86.
Since the AsmDialect is queried from a MachineInstr, which we also pass
around, remove the additional AsmDialect parameter and query for it deep
in the X86AsmPrinter only when needed/as late as possible.
This refactor should help later planned refactors to AsmPrinter, as this
difference in the X86AsmPrinter makes it harder to make AsmPrinter more
generic.
Reviewers: craig.topper
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, llvm-commits, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60488
llvm-svn: 358101
Summary:
This change change the instrumentation to allow users to view the registers at the point at which tag mismatch occured. Most of the heavy lifting is done in the runtime library, where we save the registers to the stack and emit unwind information. This allows us to reduce the overhead, as very little additional work needs to be done in each __hwasan_check instance.
In this implementation, the fast path of __hwasan_check is unmodified. There are an additional 4 instructions (16B) emitted in the slow path in every __hwasan_check instance. This may increase binary size somewhat, but as most of the work is done in the runtime library, it's manageable.
The failure trace now contains a list of registers at the point of which the failure occured, in a format similar to that of Android's tombstones. It currently has the following format:
Registers where the failure occurred (pc 0x0055555561b4):
x0 0000000000000014 x1 0000007ffffff6c0 x2 1100007ffffff6d0 x3 12000056ffffe025
x4 0000007fff800000 x5 0000000000000014 x6 0000007fff800000 x7 0000000000000001
x8 12000056ffffe020 x9 0200007700000000 x10 0200007700000000 x11 0000000000000000
x12 0000007fffffdde0 x13 0000000000000000 x14 02b65b01f7a97490 x15 0000000000000000
x16 0000007fb77376b8 x17 0000000000000012 x18 0000007fb7ed6000 x19 0000005555556078
x20 0000007ffffff768 x21 0000007ffffff778 x22 0000000000000001 x23 0000000000000000
x24 0000000000000000 x25 0000000000000000 x26 0000000000000000 x27 0000000000000000
x28 0000000000000000 x29 0000007ffffff6f0 x30 00000055555561b4
... and prints after the dump of memory tags around the buggy address.
Every register is saved exactly as it was at the point where the tag mismatch occurs, with the exception of x16/x17. These registers are used in the tag mismatch calculation as scratch registers during __hwasan_check, and cannot be saved without affecting the fast path. As these registers are designated as scratch registers for linking, there should be no important information in them that could aid in debugging.
Reviewers: pcc, eugenis
Reviewed By: pcc, eugenis
Subscribers: srhines, kubamracek, mgorny, javed.absar, krytarowski, kristof.beyls, hiraditya, jdoerfert, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58857
llvm-svn: 355738
Windows ARM64 has PIC relocation model and uses jump table kind
EK_LabelDifference32. This produces jump table entry as
".word LBB123 - LJTI1_2" which represents the distance between the block
and jump table.
A new relocation type (IMAGE_REL_ARM64_REL32) is needed to do the fixup
correctly if they are in different COFF section.
This change saves the jump table to the same COFF section as the
associated code. An ideal fix could be utilizing IMAGE_REL_ARM64_REL32
relocation type.
Patch by Tom Tan!
Differential Revision: https://reviews.llvm.org/D57277
llvm-svn: 352465
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses
The problem with this is that these code blocks typically bloat code
size significantly.
An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
This means that the backend must spill all temporary registers as
required by the platform's C calling convention, even though the
check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.
The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.
To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.
Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.
Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.
The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.
I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:
Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972 | 6.24%
16 | 171765192 | 7.03%
8 | 172917788 | 5.82%
4 | 177054016 | 6.89%
Differential Revision: https://reviews.llvm.org/D56954
llvm-svn: 351920
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This patch supports MS SEH extensions __try/__except/__finally. The intrinsics localescape and localrecover are responsible for communicating escaped static allocas from the try block to the handler.
We need to preserve frame pointers for SEH. So we create a new function/property HasLocalEscape.
Reviewers: rnk, compnerd, mstorsjo, TomTan, efriedma, ssijaric
Reviewed By: rnk, efriedma
Subscribers: smeenai, jrmuizel, alex, majnemer, ssijaric, ehsan, dmajor, kristina, javed.absar, kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D53540
llvm-svn: 351370
- When signing return addresses with -msign-return-address=<scope>{+<key>},
either the A key instructions or the B key instructions can be used. To
correctly authenticate the return address, the unwinder/debugger must know
which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
unwind the stack. To accomplish this, the unwinder/debugger must be able to
first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
inclusion of a 'B' character. Functions that are signed using the B key
variant of the instructions should have and FDE whose associated CIE has a 'B'
in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
high level language into assembly and then, as a second step, into an object
file. To achieve this, I have introduced a new assembly directive
'.cfi_b_key_frame ', that tells the assembler the current frame uses return
address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
augmentation string.
Differential Revision: https://reviews.llvm.org/D51798
llvm-svn: 349895
Summary:
Emit COFF header when printing out the function. This is important as the
header contains two important pieces of information: the storage class for the
symbol and the symbol type information. This bit of information is required for
the linker to correctly identify the type of symbol that it is dealing with.
This patch mimics X86 and ARM COFF behavior for function header emission.
Reviewers: rnk, mstorsjo, compnerd, TomTan, ssijaric
Reviewed By: mstorsjo
Subscribers: dmajor, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55535
llvm-svn: 348875
Summary:
Add a hook to the GCMetadataPrinter for emitting stack maps in
custom format. The hook will be called at stack map generation
time. The default stack map format is used if there is no hook.
For this to be useful a few data structures and accessors are
exposed from the StackMaps class, so the custom printer can
access the stack map data.
This patch authored by Cherry Zhang <cherryyz@google.com>.
Reviewers: thanm, apilipenko, reames
Reviewed By: reames
Subscribers: reames, apilipenko, nemanjai, javed.absar, kbarton, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D53892
llvm-svn: 347584
Add ARM64 unwind codes to MCLayer, as well SEH directives that will be emitted
by the frame lowering patch to follow. We only emit unwind codes into object
object files for now.
Differential Revision: https://reviews.llvm.org/D50166
llvm-svn: 345450
When branch target identification is enabled, all indirectly-callable
functions start with a BTI C instruction. this instruction can only be
the target of certain indirect branches (direct branches and
fall-through are not affected):
- A BLR instruction, in either a protected or unprotected page.
- A BR instruction in a protected page, using x16 or x17.
- A BR instruction in an unprotected page, using any register.
Without BTI, we can use any non call-preserved register to hold the
address for an indirect tail call. However, when BTI is enabled, then
the code being compiled might be loaded into a BTI-protected page, where
only x16 and x17 can be used for indirect tail calls.
Legacy code withiout this restriction can still indirectly tail-call
BTI-protected functions, because they will be loaded into an unprotected
page, so any register is allowed.
Differential revision: https://reviews.llvm.org/D52868
llvm-svn: 343968