When expanding neon pseudo stores, it may miss the implicit uses of sub
regs, which may cause post RA scheduler reorder instructions that
breakes anti dependency.
For example:
VST1d64QPseudo %R0<kill>, 16, %Q9_Q10, pred:14, pred:%noreg
will be expanded to
VST1d64Q %R0<kill>, 16, %D18, pred:14, pred:%noreg;
An instruction that defines %D20 may be scheduled before the store by
mistake.
This patches adds implicit uses for such case. For the example above, it
emits:
VST1d64Q %R0<kill>, 8, %D18, pred:14, pred:%noreg, %Q9_Q10<imp-use>
llvm-svn: 199282
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
llvm-svn: 196090
These are handled almost identically to static mode (and ELF's global address
materialisation), except that a symbol may have "$non_lazy_ptr" appended. This
can be handled by passing appropriate flags along with the instruction instead
of using entirely separate pseudo-instructions.
llvm-svn: 195655
This function-attribute modifies the callee-saved register list and function
epilogue (specifically the return instruction) so that a routine is suitable
for use as an interrupt-handler of the specified type without disrupting
user-mode applications.
rdar://problem/14207019
llvm-svn: 191766
Back in the mists of time (2008), it seems TableGen couldn't handle the
patterns necessary to match ARM's CMOV node that we convert select operations
to, so we wrote a lot of fairly hairy C++ to do it for us.
TableGen can deal with it now: there were a few minor differences to CodeGen
(see tests), but nothing obviously worse that I could see, so we should
probably address anything that *does* come up in a localised manner.
llvm-svn: 188995
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
registers. Previously, the register we being marked as implicitly defined, but
not killed. In some cases this would cause the register scavenger to spill a
dead register.
Also, use an empty register mask to simplify the logic and to reduce the memory
footprint.
rdar://12592448
llvm-svn: 167499
Keep the integer_insertelement test case, the new coalescer can handle
this kind of lane insertion without help from pseudo-instructions.
llvm-svn: 166835
the register info for getEncodingValue. This builds on the
small patch of yesterday to set HWEncoding in the register
file.
One (deprecated) use was turned into a hard number to avoid
needing register info in the old JIT.
llvm-svn: 161628
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
llvm-svn: 152045
My change r146949 added register clobbers to the eh_sjlj_dispatchsetup pseudo
instruction, but on Thumb1 some of those registers cannot be used. This
caused massive failures on the testsuite when compiling for Thumb1. While
fixing that, I noticed that the eh_sjlj_setjmp instruction has a "nofp"
variant, and I realized that dispatchsetup needs the same thing, so I have
added that as well.
llvm-svn: 147204
Work in progress. Parsing for non-writeback, single spaced register lists
works now. The rest have the representations better factored, but still
need more to be able to parse properly.
llvm-svn: 146579
Refactor the instructions into fixed writeback and register-stride
writeback variants to simplify the offset operand (no more optional
register operand using reg0). This is a simpler representation and allows
the assembly parser to more easily handle these instructions.
Add tests for the instruction variants now supported.
llvm-svn: 146278
The EmitBasePointerRecalculation function has 2 problems, one minor and one
fatal. The minor problem is that it inserts the code at the setjmp
instead of in the dispatch block. The fatal problem is that at the point
where this code runs, we don't know whether there will be a base pointer,
so the entire function is a no-op. The base pointer recalculation needs to
be handled as it was before, by inserting a pseudo instruction that gets
expanded late.
Most of the support for the old approach is still here, but it no longer
has any connection to the eh_sjlj_dispatchsetup intrinsic. Clean up the
parts related to the intrinsic and just generate the pseudo instruction
directly.
llvm-svn: 144781
Split am6offset into fixed and register offset variants so the instruction
encodings are explicit rather than relying an a magic reg0 marker.
Needed to being able to parse these.
llvm-svn: 142853
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
llvm-svn: 142670
Apparently we never added code to expand these pseudo instructions, and in
over a year, no one has noticed. Our register allocator must be awesome!
llvm-svn: 137551
This hidden llc option runs the machine code verifier after expanding
ARM pseudo-instructions, but before if-conversion.
The machine code verifier is much better at pointing out liveness errors
that can trip up the register scavenger.
llvm-svn: 136439
t2MOVCC[ri] are just t2MOV[ri] instructions, so properly pseudo-ize them.
The Thumb1 versions, tMOVCC[ri] were only present for use by the size-
reduction pass, so they're no longer necessary at all and can be deleted.
llvm-svn: 134242
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
These operations are expanded to pairs of loads or stores, and the first one
uses the address register update to produce the address for the second one.
So far, the second load/store has also updated the address register, just
for convenience, since that output has never been used. In anticipation of
actually supporting post-increment updates for these operations, this changes
the non-updating operations to use a non-updating load/store for the second
instruction.
llvm-svn: 125013
clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
llvm-svn: 124073
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
llvm-svn: 123991
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
movw r0, :lower16:(L_foo$non_lazy_ptr-(LPC0_0+4))
movt r0, :upper16:(L_foo$non_lazy_ptr-(LPC0_0+4))
LPC0_0:
add r0, pc, r0
It's not yet enabled by default as some tests are failing. I suspect bugs in
down stream tools.
llvm-svn: 123619
Jakob Olesen suggested that we can avoid the need for separate pseudo
instructions here by using COPY_TO_REGCLASS in the patterns. The pattern
gets pretty ugly but it seems to work well. Partial fix for Radar 8711675.
llvm-svn: 121718
Added test to check bl __aeabi_read_tp gets emitted properly for ELF/ASM
as well as ELF/OBJ (including fixup)
Also added support for ELF::R_ARM_TLS_IE32
llvm-svn: 121312
'db', 'ib', 'da') instead of having that mode as a separate field in the
instruction. It's more convenient for the asm parser and much more readable for
humans.
<rdar://problem/8654088>
llvm-svn: 119310
operand from the pseudo instruction to the new instruction as an implicit use.
This will preserve any other flags (e.g., kill) on the operand.
llvm-svn: 113456
For VLD3/VLD4 with double-spaced registers, add the implicit use of the
super register for both the instruction loading the even registers and the
instruction loading the odd registers.
llvm-svn: 113452
instructions prior to regalloc. Since it's getting a little close to
the 2.8 branch deadline, I'll have to leave the rest of the instructions
handled by the NEONPreAllocPass for now, but I didn't want to leave half
of the VLD instructions converted and the other half not.
llvm-svn: 112983
operand is killed, add it to the expanded instruction as an implicit kill
operand instead of marking the individual subregs with kill flags. This
should work better in general and also handles the case for VST3 where one
of the subregs was not referenced in the expanded instruction and so was
not marked killed.
llvm-svn: 112494
with the VST4 instructions. Until after register allocation, we want to
represent sets of adjacent registers by a single super-register. These
VST4 pseudo instructions have a single QQ or QQQQ source register operand.
They get expanded to the real VST4 instructions with 4 separate D register
operands. Once this conversion is complete, we'll be able to remove the
NEONPreAllocPass and avoid some fragile and hacky code elsewhere.
llvm-svn: 112108
than doing the same via constpool:
1. Load from constpool costs 3 cycles on A9, movt/movw pair - just 2.
2. Load from constpool might stall up to 300 cycles due to cache miss.
3. Movt/movw does not use load/store unit.
4. Less constpool entries => better compiler performance.
This is only enabled on ELF systems, since darwin does not have needed
relocations (yet).
llvm-svn: 89720