Commit Graph

242 Commits

Author SHA1 Message Date
Sanjay Patel b22910daab [InstCombine] erase instructions leading up to unreachable
Normal dead code elimination ignores assume intrinsics, so we fail to
delete assumes that are not meaningful (and potentially worse if they
cause conflicts with other assumptions).

The motivating example in https://llvm.org/PR47416 suggests that we
might have problems upstream from here (difference between C and C++),
but this should be a cheap way to make sure we remove more dead code.

Differential Revision: https://reviews.llvm.org/D87149
2020-09-07 10:44:08 -04:00
Roman Lebedev e65f213178
[InstCombine] canonicalizeICmpPredicate(): use InstCombiner::replaceInstUsesWith() instead of RAUW
We really shouldn't use RAUW in InstCombine
because we should consistently update Worklist to avoid extra iterations.
2020-08-29 15:10:14 +03:00
Roman Lebedev 1f90d45b9e
[InstCombine] PHI-of-extractvalues -> extractvalue-of-PHI, aka invokes are bad
While since D86306 we do it's sibling fold for `insertvalue`,
we should also do this for `extractvalue`'s.

And unlike that one, the results here are, quite honestly, shocking,
as it can be observed here on vanilla llvm test-suite + RawSpeed results:

```
| statistic name                                     | baseline  | proposed  |       Δ |       % |    |%| |
|----------------------------------------------------|-----------|-----------|--------:|--------:|-------:|
| asm-printer.EmittedInsts                           | 7945095   | 7942507   |   -2588 |  -0.03% |  0.03% |
| assembler.ObjectBytes                              | 273209920 | 273069800 | -140120 |  -0.05% |  0.05% |
| early-cse.NumCSE                                   | 2183363   | 2183398   |      35 |   0.00% |  0.00% |
| early-cse.NumSimplify                              | 541847    | 550017    |    8170 |   1.51% |  1.51% |
| instcombine.NumAggregateReconstructionsSimplified  | 2139      | 108       |   -2031 | -94.95% | 94.95% |
| instcombine.NumCombined                            | 3601364   | 3635448   |   34084 |   0.95% |  0.95% |
| instcombine.NumConstProp                           | 27153     | 27157     |       4 |   0.01% |  0.01% |
| instcombine.NumDeadInst                            | 1694521   | 1765022   |   70501 |   4.16% |  4.16% |
| instcombine.NumPHIsOfExtractValues                 | 0         | 37546     |   37546 |   0.00% |  0.00% |
| instcombine.NumSunkInst                            | 63158     | 63686     |     528 |   0.84% |  0.84% |
| instcount.NumBrInst                                | 874304    | 871857    |   -2447 |  -0.28% |  0.28% |
| instcount.NumCallInst                              | 1757657   | 1758402   |     745 |   0.04% |  0.04% |
| instcount.NumExtractValueInst                      | 45623     | 11483     |  -34140 | -74.83% | 74.83% |
| instcount.NumInsertValueInst                       | 4983      | 580       |   -4403 | -88.36% | 88.36% |
| instcount.NumInvokeInst                            | 61018     | 59478     |   -1540 |  -2.52% |  2.52% |
| instcount.NumLandingPadInst                        | 35334     | 34215     |   -1119 |  -3.17% |  3.17% |
| instcount.NumPHIInst                               | 344428    | 331116    |  -13312 |  -3.86% |  3.86% |
| instcount.NumRetInst                               | 100773    | 100772    |      -1 |   0.00% |  0.00% |
| instcount.TotalBlocks                              | 1081154   | 1077166   |   -3988 |  -0.37% |  0.37% |
| instcount.TotalFuncs                               | 101443    | 101442    |      -1 |   0.00% |  0.00% |
| instcount.TotalInsts                               | 8890201   | 8833747   |  -56454 |  -0.64% |  0.64% |
| instsimplify.NumSimplified                         | 75822     | 75707     |    -115 |  -0.15% |  0.15% |
| simplifycfg.NumHoistCommonCode                     | 24203     | 24197     |      -6 |  -0.02% |  0.02% |
| simplifycfg.NumHoistCommonInstrs                   | 48201     | 48195     |      -6 |  -0.01% |  0.01% |
| simplifycfg.NumInvokes                             | 2785      | 4298      |    1513 |  54.33% | 54.33% |
| simplifycfg.NumSimpl                               | 997332    | 1018189   |   20857 |   2.09% |  2.09% |
| simplifycfg.NumSinkCommonCode                      | 7088      | 6464      |    -624 |  -8.80% |  8.80% |
| simplifycfg.NumSinkCommonInstrs                    | 15117     | 14021     |   -1096 |  -7.25% |  7.25% |
```
... which tells us that this new fold fires whopping 38k times,
increasing the amount of SimplifyCFG's `invoke`->`call` transforms by +54% (+1513) (again, D85787 did that last time),
decreasing total instruction count by -0.64% (-56454),
and sharply decreasing count of `insertvalue`'s (-88.36%, i.e. 9 times less)
and `extractvalue`'s (-74.83%, i.e. four times less).

This causes geomean -0.01% binary size decrease
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=size-text
and, ignoring `O0-g`, is a geomean -0.01%..-0.05% compile-time improvement
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=instructions

The other thing that tells is, is that while this is a massive win for `invoke`->`call` transform
`InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse()` fold,
which is supposed to be dealing with such aggregate reconstructions,
fires a lot less now. There are two reasons why:
1. After this fold, as it can be seen in tests, we may (will) end up with trivially redundant PHI nodes.
   We don't CSE them in InstCombine presently, which means that EarlyCSE needs to run and then InstCombine rerun.
2. But then, EarlyCSE not only manages to fold such redundant PHI's,
   it also sees that the extract-insert chain recreates the original aggregate,
   and replaces it with the original aggregate.

The take-aways are
1. We maybe should do most trivial, same-BB PHI CSE in InstCombine
2. I need to check if what other patterns remain, and how they can be resolved.
   (i.e. i wonder if `foldAggregateConstructionIntoAggregateReuse()` might go away)

This is a reland of the original commit fcb51d8c24,
because originally i forgot to ensure that the base aggregate types match.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D86530
2020-08-26 09:57:50 +03:00
Roman Lebedev c295c6f2c0
Revert "[InstCombine] PHI-of-extractvalues -> extractvalue-of-PHI, aka invokes are bad"
This reverts commit fcb51d8c24.

As buildbots report, there's apparently some missing check to ensure
that the types of incoming values match the type of PHI.
Let's revert for a moment.
2020-08-26 09:23:22 +03:00
Roman Lebedev fcb51d8c24
[InstCombine] PHI-of-extractvalues -> extractvalue-of-PHI, aka invokes are bad
While since D86306 we do it's sibling fold for `insertvalue`,
we should also do this for `extractvalue`'s.

And unlike that one, the results here are, quite honestly, shocking,
as it can be observed here on vanilla llvm test-suite + RawSpeed results:

```
| statistic name                                     | baseline  | proposed  |       Δ |       % |    |%| |
|----------------------------------------------------|-----------|-----------|--------:|--------:|-------:|
| asm-printer.EmittedInsts                           | 7945095   | 7942507   |   -2588 |  -0.03% |  0.03% |
| assembler.ObjectBytes                              | 273209920 | 273069800 | -140120 |  -0.05% |  0.05% |
| early-cse.NumCSE                                   | 2183363   | 2183398   |      35 |   0.00% |  0.00% |
| early-cse.NumSimplify                              | 541847    | 550017    |    8170 |   1.51% |  1.51% |
| instcombine.NumAggregateReconstructionsSimplified  | 2139      | 108       |   -2031 | -94.95% | 94.95% |
| instcombine.NumCombined                            | 3601364   | 3635448   |   34084 |   0.95% |  0.95% |
| instcombine.NumConstProp                           | 27153     | 27157     |       4 |   0.01% |  0.01% |
| instcombine.NumDeadInst                            | 1694521   | 1765022   |   70501 |   4.16% |  4.16% |
| instcombine.NumPHIsOfExtractValues                 | 0         | 37546     |   37546 |   0.00% |  0.00% |
| instcombine.NumSunkInst                            | 63158     | 63686     |     528 |   0.84% |  0.84% |
| instcount.NumBrInst                                | 874304    | 871857    |   -2447 |  -0.28% |  0.28% |
| instcount.NumCallInst                              | 1757657   | 1758402   |     745 |   0.04% |  0.04% |
| instcount.NumExtractValueInst                      | 45623     | 11483     |  -34140 | -74.83% | 74.83% |
| instcount.NumInsertValueInst                       | 4983      | 580       |   -4403 | -88.36% | 88.36% |
| instcount.NumInvokeInst                            | 61018     | 59478     |   -1540 |  -2.52% |  2.52% |
| instcount.NumLandingPadInst                        | 35334     | 34215     |   -1119 |  -3.17% |  3.17% |
| instcount.NumPHIInst                               | 344428    | 331116    |  -13312 |  -3.86% |  3.86% |
| instcount.NumRetInst                               | 100773    | 100772    |      -1 |   0.00% |  0.00% |
| instcount.TotalBlocks                              | 1081154   | 1077166   |   -3988 |  -0.37% |  0.37% |
| instcount.TotalFuncs                               | 101443    | 101442    |      -1 |   0.00% |  0.00% |
| instcount.TotalInsts                               | 8890201   | 8833747   |  -56454 |  -0.64% |  0.64% |
| instsimplify.NumSimplified                         | 75822     | 75707     |    -115 |  -0.15% |  0.15% |
| simplifycfg.NumHoistCommonCode                     | 24203     | 24197     |      -6 |  -0.02% |  0.02% |
| simplifycfg.NumHoistCommonInstrs                   | 48201     | 48195     |      -6 |  -0.01% |  0.01% |
| simplifycfg.NumInvokes                             | 2785      | 4298      |    1513 |  54.33% | 54.33% |
| simplifycfg.NumSimpl                               | 997332    | 1018189   |   20857 |   2.09% |  2.09% |
| simplifycfg.NumSinkCommonCode                      | 7088      | 6464      |    -624 |  -8.80% |  8.80% |
| simplifycfg.NumSinkCommonInstrs                    | 15117     | 14021     |   -1096 |  -7.25% |  7.25% |
```
... which tells us that this new fold fires whopping 38k times,
increasing the amount of SimplifyCFG's `invoke`->`call` transforms by +54% (+1513) (again, D85787 did that last time),
decreasing total instruction count by -0.64% (-56454),
and sharply decreasing count of `insertvalue`'s (-88.36%, i.e. 9 times less)
and `extractvalue`'s (-74.83%, i.e. four times less).

This causes geomean -0.01% binary size decrease
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=size-text
and, ignoring `O0-g`, is a geomean -0.01%..-0.05% compile-time improvement
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=instructions

The other thing that tells is, is that while this is a massive win for `invoke`->`call` transform
`InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse()` fold,
which is supposed to be dealing with such aggregate reconstructions,
fires a lot less now. There are two reasons why:
1. After this fold, as it can be seen in tests, we may (will) end up with trivially redundant PHI nodes.
   We don't CSE them in InstCombine presently, which means that EarlyCSE needs to run and then InstCombine rerun.
2. But then, EarlyCSE not only manages to fold such redundant PHI's,
   it also sees that the extract-insert chain recreates the original aggregate,
   and replaces it with the original aggregate.

The take-aways are
1. We maybe should do most trivial, same-BB PHI CSE in InstCombine
2. I need to check if what other patterns remain, and how they can be resolved.
   (i.e. i wonder if `foldAggregateConstructionIntoAggregateReuse()` might go away)

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D86530
2020-08-26 09:08:24 +03:00
Roman Lebedev cdd339c568
[InstCombine] PHI-of-insertvalues -> insertvalue-of-PHI's
As per statistic, this happens pretty exceedingly rare,
but i have seen it in exactly the situations the
Phi-aware aggregate reconstruction would have handled,
eventually, and allowed invoke -> call fold later on.

So while this might be something that other fold
will have to learn about, i believe we should be
doing this transform in general.

Here, we are okay with adding two PHI's to get both the base aggregate,
and the inserted value. I'm not sure it makes much sense to restrict
it to a single phi (to just the inserted value?), because originally
we'd be receiving the final aggregate already..

llvm test-suite + RawSpeed:
```
| statistic name                             | baseline  | proposed  |    Δ |      % | \|%\| |
|--------------------------------------------|-----------|-----------|-----:|-------:|------:|
| instcombine.NumPHIsOfInsertValues          | 0         | 12        |  12  |  0.00% | 0.00% |
| asm-printer.EmittedInsts                   | 8926643   | 8926595   | -48  |  0.00% | 0.00% |
| instcombine.NumCombined                    | 3846614   | 3846640   |  26  |  0.00% | 0.00% |
| instcombine.NumConstProp                   | 24302     | 24293     |  -9  | -0.04% | 0.04% |
| instcombine.NumDeadInst                    | 1620140   | 1620112   | -28  |  0.00% | 0.00% |
| instcount.NumBrInst                        | 898466    | 898464    |  -2  |  0.00% | 0.00% |
| instcount.NumCallInst                      | 1760819   | 1760875   |  56  |  0.00% | 0.00% |
| instcount.NumExtractValueInst              | 45659     | 45649     | -10  | -0.02% | 0.02% |
| instcount.NumInsertValueInst               | 4991      | 4981      | -10  | -0.20% | 0.20% |
| instcount.NumIntToPtrInst                  | 27084     | 27087     |   3  |  0.01% | 0.01% |
| instcount.NumPHIInst                       | 371435    | 371429    |  -6  |  0.00% | 0.00% |
| instcount.NumStoreInst                     | 906011    | 906019    |   8  |  0.00% | 0.00% |
| instcount.TotalBlocks                      | 1105520   | 1105518   |  -2  |  0.00% | 0.00% |
| instcount.TotalInsts                       | 9795737   | 9795776   |  39  |  0.00% | 0.00% |
| simplifycfg.NumInvokes                     | 2784      | 2786      |   2  |  0.07% | 0.07% |
| simplifycfg.NumSimpl                       | 1001840   | 1001850   |  10  |  0.00% | 0.00% |
| simplifycfg.NumSinkCommonInstrs            | 15174     | 15170     |  -4  | -0.03% | 0.03% |
```

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D86306
2020-08-25 10:38:11 +03:00
Roman Lebedev 56c529300e
[NFC][InstCombine] Adjust naming for some methods to match coding standards
Requested as preparatory cleanup in https://reviews.llvm.org/D86306#inline-799065
2020-08-24 22:39:34 +03:00
Roman Lebedev ae7f08812e
[InstCombine] Aggregate reconstruction simplification (PR47060)
This pattern happens in clang C++ exception lowering code, on unwind branch.
We end up having a `landingpad` block after each `invoke`, where RAII
cleanup is performed, and the elements of an aggregate `{i8*, i32}`
holding exception info are `extractvalue`'d, and we then branch to common block
that takes extracted `i8*` and `i32` elements (via `phi` nodes),
form a new aggregate, and finally `resume`'s the exception.

The problem is that, if the cleanup block is effectively empty,
it shouldn't be there, there shouldn't be that `landingpad` and `resume`,
said `invoke` should be a  `call`.

Indeed, we do that simplification in e.g. SimplifyCFG `SimplifyCFGOpt::simplifyResume()`.
But the thing is, all this extra `extractvalue` + `phi` + `insertvalue` cruft,
while it is pointless, does not look like "empty cleanup block".
So the `SimplifyCFGOpt::simplifyResume()` fails, and the exception is has
higher cost than it could have on unwind branch :S

This doesn't happen *that* often, but it will basically happen once per C++
function with complex CFG that called more than one other function
that isn't known to be `nounwind`.

I think, this is a missing fold in InstCombine, so i've implemented it.

I think, the algorithm/implementation is rather self-explanatory:
1. Find a chain of `insertvalue`'s that fully tell us the initializer of the aggregate.
2. For each element, try to find from which aggregate it was extracted.
   If it was extracted from the aggregate with identical type,
   from identical element index, great.
3. If all elements were found to have been extracted from the same aggregate,
   then we can just use said original source aggregate directly,
   instead of re-creating it.
4. If we fail to find said aggregate when looking only in the current block,
   we need be PHI-aware - we might have different source aggregate when coming
   from each predecessor.

I'm not sure if this already handles everything, and there are some FIXME's,
i'll deal with all that later in followups.

I'd be fine with going with post-commit review here code-wise,
but just in case there are thoughts, i'm posting this.

On RawSpeed, for example, this has the following effect:
```
| statistic name                                    | baseline | proposed |     Δ |       % | abs(%) |
|---------------------------------------------------|---------:|---------:|------:|--------:|-------:|
| instcombine.NumAggregateReconstructionsSimplified |        0 |     1253 |  1253 |   0.00% |  0.00% |
| simplifycfg.NumInvokes                            |      948 |     1355 |   407 |  42.93% | 42.93% |
| instcount.NumInsertValueInst                      |     4382 |     3210 | -1172 | -26.75% | 26.75% |
| simplifycfg.NumSinkCommonCode                     |      574 |      458 |  -116 | -20.21% | 20.21% |
| simplifycfg.NumSinkCommonInstrs                   |     1154 |      921 |  -233 | -20.19% | 20.19% |
| instcount.NumExtractValueInst                     |    29017 |    26397 | -2620 |  -9.03% |  9.03% |
| instcombine.NumDeadInst                           |   166618 |   174705 |  8087 |   4.85% |  4.85% |
| instcount.NumPHIInst                              |    51526 |    50678 |  -848 |  -1.65% |  1.65% |
| instcount.NumLandingPadInst                       |    20865 |    20609 |  -256 |  -1.23% |  1.23% |
| instcount.NumInvokeInst                           |    34023 |    33675 |  -348 |  -1.02% |  1.02% |
| simplifycfg.NumSimpl                              |   113634 |   114708 |  1074 |   0.95% |  0.95% |
| instcombine.NumSunkInst                           |    15030 |    14930 |  -100 |  -0.67% |  0.67% |
| instcount.TotalBlocks                             |   219544 |   219024 |  -520 |  -0.24% |  0.24% |
| instcombine.NumCombined                           |   644562 |   645805 |  1243 |   0.19% |  0.19% |
| instcount.TotalInsts                              |  2139506 |  2135377 | -4129 |  -0.19% |  0.19% |
| instcount.NumBrInst                               |   156988 |   156821 |  -167 |  -0.11% |  0.11% |
| instcount.NumCallInst                             |  1206144 |  1207076 |   932 |   0.08% |  0.08% |
| instcount.NumResumeInst                           |     5193 |     5190 |    -3 |  -0.06% |  0.06% |
| asm-printer.EmittedInsts                          |   948580 |   948299 |  -281 |  -0.03% |  0.03% |
| instcount.TotalFuncs                              |    11509 |    11507 |    -2 |  -0.02% |  0.02% |
| inline.NumDeleted                                 |    97595 |    97597 |     2 |   0.00% |  0.00% |
| inline.NumInlined                                 |   210514 |   210522 |     8 |   0.00% |  0.00% |
```
So we manage to increase the amount of `invoke` -> `call` conversions in SimplifyCFG by almost a half,
and there is a very apparent decrease in instruction and basic block count.

On vanilla llvm-test-suite:
```
| statistic name                                    | baseline | proposed |     Δ |       % | abs(%) |
|---------------------------------------------------|---------:|---------:|------:|--------:|-------:|
| instcombine.NumAggregateReconstructionsSimplified |        0 |      744 |   744 |   0.00% |  0.00% |
| instcount.NumInsertValueInst                      |     2705 |     2053 |  -652 | -24.10% | 24.10% |
| simplifycfg.NumInvokes                            |     1212 |     1424 |   212 |  17.49% | 17.49% |
| instcount.NumExtractValueInst                     |    21681 |    20139 | -1542 |  -7.11% |  7.11% |
| simplifycfg.NumSinkCommonInstrs                   |    14575 |    14361 |  -214 |  -1.47% |  1.47% |
| simplifycfg.NumSinkCommonCode                     |     6815 |     6743 |   -72 |  -1.06% |  1.06% |
| instcount.NumLandingPadInst                       |    14851 |    14712 |  -139 |  -0.94% |  0.94% |
| instcount.NumInvokeInst                           |    27510 |    27332 |  -178 |  -0.65% |  0.65% |
| instcombine.NumDeadInst                           |  1438173 |  1443371 |  5198 |   0.36% |  0.36% |
| instcount.NumResumeInst                           |     2880 |     2872 |    -8 |  -0.28% |  0.28% |
| instcombine.NumSunkInst                           |    55187 |    55076 |  -111 |  -0.20% |  0.20% |
| instcount.NumPHIInst                              |   321366 |   320916 |  -450 |  -0.14% |  0.14% |
| instcount.TotalBlocks                             |   886816 |   886493 |  -323 |  -0.04% |  0.04% |
| instcount.TotalInsts                              |  7663845 |  7661108 | -2737 |  -0.04% |  0.04% |
| simplifycfg.NumSimpl                              |   886791 |   887171 |   380 |   0.04% |  0.04% |
| instcount.NumCallInst                             |   553552 |   553733 |   181 |   0.03% |  0.03% |
| instcombine.NumCombined                           |  3200512 |  3201202 |   690 |   0.02% |  0.02% |
| instcount.NumBrInst                               |   741794 |   741656 |  -138 |  -0.02% |  0.02% |
| simplifycfg.NumHoistCommonInstrs                  |    14443 |    14445 |     2 |   0.01% |  0.01% |
| asm-printer.EmittedInsts                          |  7978085 |  7977916 |  -169 |   0.00% |  0.00% |
| inline.NumDeleted                                 |    73188 |    73189 |     1 |   0.00% |  0.00% |
| inline.NumInlined                                 |   291959 |   291968 |     9 |   0.00% |  0.00% |
```
Roughly similar effect, less instructions and blocks total.

See also: rGe492f0e03b01a5e4ec4b6333abb02d303c3e479e.

Compile-time wise, this appears to be roughly geomean-neutral:
http://llvm-compile-time-tracker.com/compare.php?from=39617aaed95ac00957979bc1525598c1be80e85e&to=b59866cf30420da8f8e3ca239ed3bec577b23387&stat=instructions

And this is a win size-wize in general:
http://llvm-compile-time-tracker.com/compare.php?from=39617aaed95ac00957979bc1525598c1be80e85e&to=b59866cf30420da8f8e3ca239ed3bec577b23387&stat=size-text

See https://bugs.llvm.org/show_bug.cgi?id=47060

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D85787
2020-08-16 23:27:56 +03:00
Sebastian Neubauer 2a6c871596 [InstCombine] Move target-specific inst combining
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.

D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).

This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic

A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.

This allows to move about 3000 lines out from InstCombine to the targets.

Differential Revision: https://reviews.llvm.org/D81728
2020-07-22 15:59:49 +02:00
Nikita Popov d12ec0f752 [InstCombine] Fix store merge worklist management (PR46680)
Fixes https://bugs.llvm.org/show_bug.cgi?id=46680.

Just like insertions through IRBuilder, InsertNewInstBefore()
should be using the deferred worklist mechanism, so that processing
of newly added instructions is prioritized.

There's one side-effect of the worklist order change which could be
classified as a regression. An add op gets pushed through a select
that at the time is not a umax. We could add a reverse transform
that tries to push adds in the reverse direction to restore a min/max,
but that seems like a sure way of getting infinite loops... Seems
like something that should best wait on min/max intrinsics.

Differential Revision: https://reviews.llvm.org/D84109
2020-07-19 15:05:45 +02:00
Roman Lebedev e2b75cafcb
[NFCI][InstCombine] Move store merging from `visitStoreInst()` into `visitUnconditionalBranchInst()`
Summary:
As @nikic is pointing out in https://bugs.llvm.org/show_bug.cgi?id=46680#c5,
InstCombine should not have forward instruction scans,
so let's move this transform into the proper place.

This is pretty much NFCI.

Reviewers: nikic, spatel

Reviewed By: nikic

Subscribers: hiraditya, llvm-commits, nikic

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D83670
2020-07-14 10:41:51 +03:00
Roman Lebedev c3b8bd1eea
[InstCombine] Always try to invert non-canonical predicate of an icmp
Summary:
The actual transform i was going after was:
https://rise4fun.com/Alive/Tp9H
```
Name: zz
Pre: isPowerOf2(C0) && isPowerOf2(C1) && C1 == C0
%t0 = and i8 %x, C0
%r = icmp eq i8 %t0, C1
  =>
%t = icmp eq i8 %t0, 0
%r = xor i1 %t, -1

Name: zz
Pre: isPowerOf2(C0)
%t0 = and i8 %x, C0
%r = icmp ne i8 %t0, 0
  =>
%t = icmp eq i8 %t0, 0
%r = xor i1 %t, -1
```
but as it can be seen from the current tests, we already canonicalize most of it,
and we are only missing handling multi-use non-canonical icmp predicates.

If we have both `!=0` and `==0`, even though we can CSE them,
we end up being stuck with them. We should canonicalize to the `==0`.

I believe this is one of the cleanup steps i'll need after `-scalarizer`
if i end up proceeding with my WIP alloca promotion helper pass.

Reviewers: spatel, jdoerfert, nikic

Reviewed By: nikic

Subscribers: zzheng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D83139
2020-07-04 18:12:04 +03:00
Sanjay Patel c9e8c9e3ea [InstCombine] fold fmul/fdiv with fabs operands
fabs(X) * fabs(Y) --> fabs(X * Y)
fabs(X) / fabs(Y) --> fabs(X / Y)

If both operands of fmul/fdiv are positive, then the result must be positive.

There's a NAN corner-case that prevents removing the more specific fold just
above this one:
fabs(X) * fabs(X) -> X * X
That fold works even with NAN because the sign-bit result of the multiply is
not specified if X is NAN.

We can't remove that and use the more general fold that is proposed here
because once we convert to this:
fabs (X * X)
...it is not legal to simplify the 'fabs' out of that expression when X is NAN.
That's because fabs() guarantees that the sign-bit is always cleared - even
for NAN values.

So this patch has the potential to lose information, but it seems unlikely if
we do the more specific fold ahead of this one.

Differential Revision: https://reviews.llvm.org/D82277
2020-06-25 11:35:38 -04:00
Simon Pilgrim 6c6adde84f InstCombineInternal.h - reduce AliasAnalysis.h include to forward declaration. NFC.
Fix implicit include dependencies in source files and replace legacy AliasAnalysis typedef with AAResults where necessary.
2020-06-24 19:27:38 +01:00
Roman Lebedev e3d8cb1e1d
[InstCombine] Negator: cache negation results (PR46362)
It is possible that we can try to negate the same value multiple times.
For example, PHI nodes may happen to have multiple incoming values
(all of which must be the same value) for the same incoming basic block.
It may happen that we try to negate such a PHI node, and succeed,
and that might result in having now-different incoming values..

To avoid that, and in general to reduce the amount of duplicated
work we might be doing, let's introduce a cache where
we'll track results of negating each value.

The added test was previously failing -verify after -instcombine.

Fixes https://bugs.llvm.org/show_bug.cgi?id=46362
2020-06-17 22:47:20 +03:00
Roman Lebedev c4166f3d84
[NFC][InstCombine] Negator: add thin negate() wrapped before visit() 2020-06-17 22:47:20 +03:00
Chris Jackson c6c65164af [DebugInfo] Reduce SalvageDebugInfo() functions
- Now all SalvageDebugInfo() calls will mark undef if the salvage
  attempt fails.

 Reviewed by: vsk, Orlando

 Differential Revision: https://reviews.llvm.org/D78369
2020-06-08 19:28:18 +01:00
Sanjay Patel 26ebe936f3 [InstCombine] fix use of base VectorType; NFC
SimplifyDemandedVectorElts() bails out on ScalableVectorType
anyway, but we can exit faster with the external check.

Move this to a helper function because there are likely other
vector folds that we can try here.
2020-06-01 14:28:31 -04:00
Sanjay Patel ff9045dc9c [InstCombine] clean up foldItoFPtoI; NFC
Mostly cosmetic improvements to variable names and logic to ease
refactoring suggested in D79116.
2020-05-08 12:13:42 -04:00
Roman Lebedev a0004358a8
[InstCombine] Negator: 'or' with no common bits set is just 'add'
In `InstCombiner::visitAdd()`, we have
```
  // A+B --> A|B iff A and B have no bits set in common.
  if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
    return BinaryOperator::CreateOr(LHS, RHS);
```
so we should handle such `or`'s here, too.
2020-04-28 19:16:32 +03:00
Roman Lebedev 352fef3f11
[InstCombine] Negator - sink sinkable negations
Summary:
As we have discussed previously (e.g. in D63992 / D64090 / [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]]), `sub` instruction
can almost be considered non-canonical. While we do convert `sub %x, C` -> `add %x, -C`,
we sparsely do that for non-constants. But we should.

Here, i propose to interpret `sub %x, %y` as `add (sub 0, %y), %x` IFF the negation can be sinked into the `%y`

This has some potential to cause endless combine loops (either around PHI's, or if there are some opposite transforms).
For former there's `-instcombine-negator-max-depth` option to mitigate it, should this expose any such issues
For latter, if there are still any such opposing folds, we'd need to remove the colliding fold.
In any case, reproducers welcomed!

Reviewers: spatel, nikic, efriedma, xbolva00

Reviewed By: spatel

Subscribers: xbolva00, mgorny, hiraditya, reames, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68408
2020-04-21 22:00:23 +03:00
Sanjay Patel 978166f209 [InstCombine] improve types/names for logic-of-icmp helper function; NFC 2020-04-21 10:16:45 -04:00
Sanjay Patel ba72389269 [InstCombine] improve types/names for logic-of-icmp helper functions; NFC 2020-04-21 09:18:22 -04:00
Christopher Tetreault 155740cc33 Clean up usages of asserting vector getters in Type
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.

Reviewers: sdesmalen, rriddle, efriedma

Reviewed By: sdesmalen

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77263
2020-04-08 15:15:41 -07:00
Nikita Popov 4ede730096 [InstCombine] Don't limit uses in eraseInstFromFunction()
eraseInstFromFunction() adds the operands of the erased instructions,
as those might now be dead as well. However, this is limited to
instructions with less than 8 operands.

This check doesn't make a lot of sense to me. As the instruction
gets removed afterwards, I don't see a potential for anything
overly pathological happening here (as we can only add those
operands to the worklist once). The impact on CTMark is in
the noise. We also have the same code in instruction sinking
and don't limit the operand count there.

Differential Revision: https://reviews.llvm.org/D77325
2020-04-04 18:37:30 +02:00
Nikita Popov 28f67bd5c5 [InstCombine] Fix worklist management in varargs transform
Add a replaceUse() helper to mirror replaceOperand() for the
rare cases where we're working directly on uses.

NFC apart from worklist order changes.
2020-03-29 18:04:12 +02:00
Nikita Popov dc81923659 [InstCombine] Remove ExpensiveCombines option
D75801 removed the last and only user of this option, so we can
drop it now. The original idea behind this was to only run expensive
transforms under -O3, but apart from the one known bits transform,
this has never really taken off. I believe nowadays the recommendation
is to put expensive transforms in AggressiveInstCombine instead,
though that isn't terribly popular either :)

Differential Revision: https://reviews.llvm.org/D76540
2020-03-22 16:56:28 +01:00
Nikita Popov 4ef272ec9c [InstCombine] DCE instructions earlier
When InstCombine initially populates the worklist, it already
performs constant folding and DCE. However, as the instructions
are initially visited in program order, this DCE can pick up only
the last instruction of a dead chain, the rest would only get
picked up in the main InstCombine run.

To avoid this, we instead perform the DCE in separate pass over the
collected instructions in reverse order, which will allow us to
pick up full dead instruction chains. We already need to do this
reverse iteration anyway to populate the worklist, so this
shouldn't add extra cost.

This by itself only fixes a small part of the problem though:
The same basic issue also applies during the main InstCombine loop.
We generally always want DCE to occur as early as possible,
because it will allow one-use folds to happen. Address this by also
performing DCE while adding deferred instructions to the main worklist.

This drops the number of tests that perform more than 2 InstCombine
iterations from ~80 to ~40. There's some spurious test changes due
to operand order / icmp toggling.

Differential Revision: https://reviews.llvm.org/D75008
2020-02-27 18:45:59 +01:00
Nikita Popov 56f7de5baa [InstCombine] Remove trivially empty ranges from end
InstCombine removes pairs of start+end intrinsics that don't
have anything in between them. Currently this is done by starting
at the start intrinsic and scanning forwards. This patch changes
it to start at the end intrinsic and scan backwards.

The motivation here is as follows: When we process the start
intrinsic, we have not yet looked at the following instructions,
which may still get folded/removed. If they do, we will only be
able to remove the start/end pair on the next iteration. When we
process the end intrinsic, all the instructions before it have
already been visited, and we don't run into this problem.

Differential Revision: https://reviews.llvm.org/D75011
2020-02-26 20:04:11 +01:00
Nikita Popov 878cb38a5c [InstCombine] Add replaceOperand() helper
Adds a replaceOperand() helper, which is like Instruction.setOperand()
but adds the old operand to the worklist. This reduces the amount of
missing or incorrect worklist management.

This only applies the helper to a relatively small subset of
setOperand() calls in InstCombine, namely those of the pattern
`I.setOperand(); return &I;`, where it is most obviously applicable.

Differential Revision: https://reviews.llvm.org/D73803
2020-02-03 19:00:17 +01:00
Nikita Popov e6c9ab4fb7 [InstCombine] Rename worklist methods; NFC
This renames Worklist.AddDeferred() to Worklist.add() and
Worklist.Add() to Worklist.push(). The intention here is that
Worklist.add() should be the go-to method for explicit worklist
management, while the raw Worklist.push() is mostly for
InstCombine internals. I will then migrate uses of Worklist.push()
to Worklist.add() in followup changes.

As suggested by spatel on D73411 I'm also changing the remaining
method names to lowercase first character, in line with current
coding standards.

Differential Revision: https://reviews.llvm.org/D73745
2020-02-03 18:56:51 +01:00
Nikita Popov 0b83c5a78f [InstCombine] Combine neg of shl of sub (PR44529)
Fixes https://bugs.llvm.org/show_bug.cgi?id=44529. We already have
a combine to sink a negation through a left-shift, but it currently
only works if the shift operand is negatable without creating any
instructions. This patch introduces freelyNegateValue() as a more
powerful extension of dyn_castNegVal(), which allows negating a
value as long as this doesn't end up increasing instruction count.
Specifically, this patch adds support for negating A-B to B-A.

This mechanism could in the future be extended to handle general
negation chains that a) start at a proper 0-X negation and b) only
require one operand to be freely negatable. This would end up as a
weaker form of D68408 aimed at the most obviously profitable subset
that eliminates a negation entirely.

Differential Revision: https://reviews.llvm.org/D72978
2020-01-22 23:03:58 +01:00
Nikita Popov b4dd928ffb [InstCombine] Make combineLoadToNewType a method; NFC
So it can be reused as part of other combines.
In particular for D71164.
2020-01-14 20:40:03 +01:00
Nikita Popov 0e322c8a1f [InstCombine] Preserve nuw on sub of geps (PR44419)
Fix https://bugs.llvm.org/show_bug.cgi?id=44419 by preserving the
nuw on sub of geps. We only do this if the offset has a multiplication
as the final operation, as we can't be sure the operations is nuw
in the other cases without more thorough analysis.

Differential Revision: https://reviews.llvm.org/D72048
2020-01-11 11:01:12 +01:00
Daniil Suchkov 4c9d0da838 Revert "[InstCombine] Fold PHIs with equal incoming pointers"
This reverts commit a2f6ae9abf.
It is reverted due to clang-cmake-armv7-selfhost buildbot failure.
2019-11-14 17:42:01 +07:00
Daniil Suchkov a2f6ae9abf [InstCombine] Fold PHIs with equal incoming pointers
This is a resubmission of bbb29738b5 that
was reverted due to clang tests failures. It includes the fix and
additional IR tests for the missed case.

Summary:
In case when all incoming values of a PHI are equal pointers, this
transformation inserts a definition of such a pointer right after
definition of the base pointer and replaces with this value both PHI and
all it's incoming pointers. Primary goal of this transformation is
canonicalization of this pattern in order to enable optimizations that
can't handle PHIs. Non-inbounds pointers aren't currently supported.

Reviewers: spatel, RKSimon, lebedev.ri, apilipenko

Reviewed By: apilipenko

Tags: #llvm

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D68128
2019-11-14 17:04:32 +07:00
Daniil Suchkov cba4a27745 Temporarily revert "[InstCombine] Fold PHIs with equal incoming pointers"
Revert due to sanitizer-windows buildbot failure.

This reverts commit bbb29738b5.
2019-11-13 17:14:11 +07:00
Daniil Suchkov bbb29738b5 [InstCombine] Fold PHIs with equal incoming pointers
In case when all incoming values of a PHI are equal pointers, this
transformation inserts a definition of such a pointer right after
definition of the base pointer and replaces with this value both PHI and
all it's incoming pointers. Primary goal of this transformation is
canonicalization of this pattern in order to enable optimizations that
can't handle PHIs. Non-inbounds pointers aren't currently supported.

Reviewers: spatel, RKSimon, lebedev.ri, apilipenko

Reviewed By: apilipenko

Tags: #llvm

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D68128
2019-11-13 17:00:34 +07:00
aqjune 4187cb138b Add InstCombine/InstructionSimplify support for Freeze Instruction
Summary:
- Add llvm::SimplifyFreezeInst
- Add InstCombiner::visitFreeze
- Add llvm tests

Reviewers: majnemer, sanjoy, reames, lebedev.ri, spatel

Reviewed By: reames, lebedev.ri

Subscribers: reames, lebedev.ri, filcab, regehr, trentxintong, llvm-commits

Differential Revision: https://reviews.llvm.org/D29013
2019-11-12 12:13:26 +09:00
Vedant Kumar a087b78bc4 Wrong debug info generated at -O2 (-O0 is correct)
Instcombiner pass was erasing trivially dead instruction without updating dependent llvm.dbg.value.
which was not showing programmer current state of variables while debugging.
As a part of this fix I did following,
Iterate throught all the users (llvm.dbg) of a instruction which is trivially dead and set each if them undef, Before deleting the instruction.
Now user will see optimized out, when try to print those variables.
This fixes
https://bugs.llvm.org/show_bug.cgi?id=43893

This is my first fix to llvm.

Patch by kamlesh kumar!

Differential Revision: https://reviews.llvm.org/D69809
2019-11-07 11:19:41 -08:00
David Green 186155b89c [InstCombine] Signed saturation patterns
This adds an instcombine matcher for code that attempts to perform signed
saturating arithmetic by casting to a higher type. Unsigned cases are already
matched, this adds extra matches for the more complex signed cases, which
involves matching the min(max(add a b)) nodes with proper extends to ensure
legality.

Differential Revision: https://reviews.llvm.org/D68651

llvm-svn: 375505
2019-10-22 15:39:47 +00:00
Piotr Sobczak a861c9aef9 [InstCombine] Allow values with multiple users in SimplifyDemandedVectorElts
Summary:
Allow for ignoring the check for a single use in SimplifyDemandedVectorElts
to be able to simplify operands if DemandedElts is known to contain
the union of elements used by all users.
It is a responsibility of a caller of SimplifyDemandedVectorElts to
supply correct DemandedElts.

Simplify a series of extractelement instructions if only a subset of
elements is used.

Reviewers: reames, arsenm, majnemer, nhaehnle

Reviewed By: nhaehnle

Subscribers: wdng, jvesely, nhaehnle, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67345

llvm-svn: 375395
2019-10-21 08:12:47 +00:00
Roman Lebedev 7015a5c54b [InstCombine] conditional sign-extend of high-bit-extract: 'or' pattern.
In this pattern, all the "magic" bits that we'd `add` are all
high sign bits, and in the value we'd be adding to they are all unset,
not unexpectedly, so we can have an `or` there:
https://rise4fun.com/Alive/ups

It is possible that `haveNoCommonBitsSet()` should be taught about this
pattern so that we never have an `add` variant, but the reasoning would
need to be recursive (because of that `select`), so i'm not really sure
that would be worth it just yet.

llvm-svn: 375378
2019-10-20 20:52:06 +00:00
Roman Lebedev 49483a3bc2 [InstCombine] Shift amount reassociation in shifty sign bit test (PR43595)
Summary:
This problem consists of several parts:
* Basic sign bit extraction - `trunc? (?shr %x, (bitwidth(x)-1))`.
  This is trivial, and easy to do, we have a fold for it.
* Shift amount reassociation - if we have two identical shifts,
  and we can simplify-add their shift amounts together,
  then we likely can just perform them as a single shift.
  But this is finicky, has one-use restrictions,
  and shift opcodes must be identical.

But there is a super-pattern where both of these work together.
to produce sign bit test from two shifts + comparison.
We do indeed already handle this in most cases.
But since we get that fold transitively, it has one-use restrictions.
And what's worse, in this case the right-shifts aren't required to be
identical, and we can't handle that transitively:

If the total shift amount is bitwidth-1, only a sign bit will remain
in the output value. But if we look at this from the perspective of
two shifts, we can't fold - we can't possibly know what bit pattern
we'd produce via two shifts, it will be *some* kind of a mask
produced from original sign bit, but we just can't tell it's shape:
https://rise4fun.com/Alive/cM0 https://rise4fun.com/Alive/9IN

But it will *only* contain sign bit and zeros.
So from the perspective of sign bit test, we're good:
https://rise4fun.com/Alive/FRz https://rise4fun.com/Alive/qBU
Superb!

So the simplest solution is to extend `reassociateShiftAmtsOfTwoSameDirectionShifts()` to also have a
sudo-analysis mode that will ignore extra-uses, and will only check
whether a) those are two right shifts and b) they end up with bitwidth(x)-1
shift amount and return either the original value that we sign-checking,
or null.

This does not have any functionality change for
the existing `reassociateShiftAmtsOfTwoSameDirectionShifts()`.

All that being said, as disscussed in the review, this yet again
increases usage of instsimplify in instcombine as utility.
Some day that may need to be reevaluated.

https://bugs.llvm.org/show_bug.cgi?id=43595

Reviewers: spatel, efriedma, vsk

Reviewed By: spatel

Subscribers: xbolva00, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68930

llvm-svn: 375371
2019-10-20 19:38:50 +00:00
Roman Lebedev 0c73be590e [InstCombine] Move isSignBitCheck(), handle rest of the predicates
True, no test coverage is being added here. But those non-canonical
predicates that are already handled here already have no test coverage
as far as i can tell. I tried to add tests for them, but all the patterns
already get handled elsewhere.

llvm-svn: 373962
2019-10-07 20:53:08 +00:00
Roman Lebedev ae3315af07 [InstCombine] Bypass high bit extract before variable sign-extension (PR43523)
https://rise4fun.com/Alive/8BY - valid for lshr+trunc+variable sext
https://rise4fun.com/Alive/7jk - the variable sext can be redundant

https://rise4fun.com/Alive/Qslu - 'exact'-ness of first shift can be preserver

https://rise4fun.com/Alive/IF63 - without trunc we could view this as
                                  more general "drop redundant mask before right-shift",
                                  but let's handle it here for now
https://rise4fun.com/Alive/iip - likewise, without trunc, variable sext can be redundant.

There's more patterns for sure - e.g. we can have 'lshr' as the final shift,
but that might be best handled by some more generic transform, e.g.
"drop redundant masking before right-shift" (PR42456)

I'm singling-out this sext patch because you can only extract
high bits with `*shr` (unlike abstract bit masking),
and i *know* this fold is wanted by existing code.

I don't believe there is much to review here,
so i'm gonna opt into post-review mode here.

https://bugs.llvm.org/show_bug.cgi?id=43523

llvm-svn: 373542
2019-10-02 23:02:12 +00:00
Roman Lebedev 23646952e2 [InstCombine] Fold (A - B) u>=/u< A --> B u>/u<= A iff B != 0
https://rise4fun.com/Alive/KtL

This also shows that the fold added in D67412 / r372257
was too specific, and the new fold allows those test cases
to be handled more generically, therefore i delete now-dead code.

This is yet again motivated by
D67122 "[UBSan][clang][compiler-rt] Applying non-zero offset to nullptr is undefined behaviour"

llvm-svn: 372912
2019-09-25 19:06:40 +00:00
Sanjay Patel 80bea345d1 [InstCombine] fold sign-bit compares of srem
(srem X, pow2C) sgt/slt 0 can be reduced using bit hacks by masking
off the sign bit and the module (low) bits:
https://rise4fun.com/Alive/jSO
A '2' divisor allows slightly more folding:
https://rise4fun.com/Alive/tDBM

Any chance to remove an 'srem' use is probably worthwhile, but this is limited
to the one-use improvement case because doing more may expose other missing
folds. That means it does nothing for PR21929 yet:
https://bugs.llvm.org/show_bug.cgi?id=21929

Differential Revision: https://reviews.llvm.org/D67334

llvm-svn: 371610
2019-09-11 12:04:26 +00:00
Roman Lebedev 473a063a5e [InstCombine] Fold '((%x * %y) u/ %x) != %y' to '@llvm.umul.with.overflow' + overflow bit extraction
Summary:
`((%x * %y) u/ %x) != %y` is one of (3?) common ways to check that
some unsigned multiplication (will not) overflow.
Currently, we don't catch it. We could:
```
$ /repositories/alive2/build-Clang-unknown/alive -root-only ~/llvm-patch1.ll
Processing /home/lebedevri/llvm-patch1.ll..

----------------------------------------
Name: no overflow
  %o0 = mul i4 %y, %x
  %o1 = udiv i4 %o0, %x
  %r = icmp ne i4 %o1, %y
  ret i1 %r
=>
  %n0 = umul_overflow i4 %x, %y
  %o0 = extractvalue {i4, i1} %n0, 0
  %o1 = udiv %o0, %x
  %r = extractvalue {i4, i1} %n0, 1
  ret %r

Done: 1
Optimization is correct!

----------------------------------------
Name: no overflow
  %o0 = mul i4 %y, %x
  %o1 = udiv i4 %o0, %x
  %r = icmp eq i4 %o1, %y
  ret i1 %r
=>
  %n0 = umul_overflow i4 %x, %y
  %o0 = extractvalue {i4, i1} %n0, 0
  %o1 = udiv %o0, %x
  %n1 = extractvalue {i4, i1} %n0, 1
  %r = xor %n1, -1
  ret i1 %r

Done: 1
Optimization is correct!

```

Reviewers: nikic, spatel, efriedma, xbolva00, RKSimon

Reviewed By: nikic

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65144

llvm-svn: 370348
2019-08-29 12:47:20 +00:00
Simon Pilgrim b569624049 Fix uninitialized variable warning in cppcheck. NFCI.
InstCombiner::MaxArraySizeForCombine is set outside the constructor so we need to ensure it has a default initialization value.

llvm-svn: 370220
2019-08-28 15:19:49 +00:00