Commit Graph

85 Commits

Author SHA1 Message Date
Peter Collingbourne c201f27225 hwasan: Emit the globals note even when globals are uninstrumented.
This lets us support the scenario where a binary is linked from a mix
of object files with both instrumented and non-instrumented globals.
This is likely to occur on Android where the decision of whether to use
instrumented globals is based on the API level, which is user-facing.

Previously, in this scenario, it was possible for the comdat from
one of the object files with non-instrumented globals to be selected,
and since this comdat did not contain the note it would mean that the
note would be missing in the linked binary and the globals' shadow
memory would be left uninitialized, leading to a tag mismatch failure
at runtime when accessing one of the instrumented globals.

It is harmless to include the note when targeting a runtime that does
not support instrumenting globals because it will just be ignored.

Differential Revision: https://reviews.llvm.org/D85871
2020-08-13 16:33:22 -07:00
Simon Pilgrim f181c66c03 Fix MSVC "result of 32-bit shift implicitly converted to 64 bits" warning. 2020-07-03 10:54:28 +01:00
Guillaume Chatelet 87e2751cf0 [Alignment][NFC] Use proper getter to retrieve alignment from ConstantInt and ConstantSDNode
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D83082
2020-07-03 08:06:43 +00:00
serge-sans-paille f9c7e3136e Correctly report modified status for HWAddressSanitizer
Differential Revision: https://reviews.llvm.org/D81238
2020-06-18 10:27:44 +02:00
Eli Friedman 4f04db4b54 AllocaInst should store Align instead of MaybeAlign.
Along the lines of D77454 and D79968.  Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.

Differential Revision: https://reviews.llvm.org/D80044
2020-05-16 14:53:16 -07:00
Arthur Eubanks 73a9b7dee0 Add missing pass initialization
Summary: This was preventing MemorySanitizerLegacyPass from appearing in --print-after-all.

Reviewers: vitalybuka

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79661
2020-05-09 21:31:52 -07:00
Evgenii Stepanov 68a9308a0b [hwasan] Allow -hwasan-globals flag to appear more than once. 2020-05-08 16:35:48 -07:00
Jann Horn a22685885d [AddressSanitizer] Instrument byval call arguments
Summary:
In the LLVM IR, "call" instructions read memory for each byval operand.
For example:

```
$ cat blah.c
struct foo { void *a, *b, *c; };
struct bar { struct foo foo; };
void func1(const struct foo);
void func2(struct bar *bar) { func1(bar->foo); }
$ [...]/bin/clang -S -flto -c blah.c -O2 ; cat blah.s
[...]
define dso_local void @func2(%struct.bar* %bar) local_unnamed_addr #0 {
entry:
  %foo = getelementptr inbounds %struct.bar, %struct.bar* %bar, i64 0, i32 0
  tail call void @func1(%struct.foo* byval(%struct.foo) align 8 %foo) #2
  ret void
}
[...]
$ [...]/bin/clang -S -c blah.c -O2 ; cat blah.s
[...]
func2:                                  # @func2
[...]
        subq    $24, %rsp
[...]
        movq    16(%rdi), %rax
        movq    %rax, 16(%rsp)
        movups  (%rdi), %xmm0
        movups  %xmm0, (%rsp)
        callq   func1
        addq    $24, %rsp
[...]
        retq
```

Let ASAN instrument these hidden memory accesses.

This is patch 4/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments

Reviewers: kcc, glider

Reviewed By: glider

Subscribers: hiraditya, dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77619
2020-04-30 17:09:13 +02:00
Jann Horn cfe36e4c6a [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
Summary:
Refactor getInterestingMemoryOperands() so that information about the
pointer operand is returned through an array of structures instead of
passing each piece of information separately by-value.

This is in preparation for returning information about multiple pointer
operands from a single instruction.

A side effect is that, instead of repeatedly generating the same
information through isInterestingMemoryAccess(), it is now simply collected
once and then passed around; that's probably more efficient.

HWAddressSanitizer has a bunch of copypasted code from AddressSanitizer,
so these changes have to be duplicated.

This is patch 3/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments

[glider: renamed llvm::InterestingMemoryOperand::Type to OpType to fix
GCC compilation]

Reviewers: kcc, glider

Reviewed By: glider

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77618
2020-04-30 17:09:13 +02:00
Jann Horn 223a95fdf0 [AddressSanitizer] Split out memory intrinsic handling
Summary:
In both AddressSanitizer and HWAddressSanitizer, we first collect
instructions whose operands should be instrumented and memory intrinsics,
then instrument them. Both during collection and when inserting
instrumentation, they are handled separately.

Collect them separately and instrument them separately. This is a bit
more straightforward, and prepares for collecting operands instead of
instructions in a future patch.

This is patch 2/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments

Reviewers: kcc, glider

Reviewed By: glider

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77617
2020-04-30 17:09:13 +02:00
Alexander Potapenko 7e7754df32 Revert an accidental commit of four AddressSanitizer refactor CLs
I couldn't make arc land the changes properly, for some reason they all got
squashed. Reverting them now to land cleanly.

Summary: This reverts commit cfb5f89b62.

Reviewers: kcc, thejh

Subscribers:
2020-04-30 16:15:43 +02:00
Jann Horn cfb5f89b62 [AddressSanitizer] Refactor ClDebug{Min,Max} handling
Summary:
A following commit will split the loop over ToInstrument into two.
To avoid having to duplicate the condition for suppressing instrumentation
sites based on ClDebug{Min,Max}, refactor it out into a new function.

While we're at it, we can also avoid the indirection through
NumInstrumented for setting FunctionModified.

This is patch 1/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments

Reviewers: kcc, glider

Reviewed By: glider

Subscribers: jfb, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77616
2020-04-30 15:30:46 +02:00
Guillaume Chatelet 805c157e8a [Alignment][NFC] Deprecate Align::None()
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.

Reviewers: xbolva00, courbet, bollu

Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D73099
2020-01-24 12:53:58 +01:00
Peter Collingbourne cd40bd0a32 hwasan: Move .note.hwasan.globals note to hwasan.module_ctor comdat.
As of D70146 lld GCs comdats as a group and no longer considers notes in
comdats to be GC roots, so we need to move the note to a comdat with a GC root
section (.init_array) in order to prevent lld from discarding the note.

Differential Revision: https://reviews.llvm.org/D72936
2020-01-17 13:40:52 -08:00
Evgenii Stepanov dabd2622a8 hwasan: add tag_offset DWARF attribute to optimized debug info
Summary:
Support alloca-referencing dbg.value in hwasan instrumentation.
Update AsmPrinter to emit DW_AT_LLVM_tag_offset when location is in
loclist format.

Reviewers: pcc

Subscribers: srhines, aprantl, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70753
2019-12-12 16:18:54 -08:00
Guillaume Chatelet 1b2842bf90 [Alignment][NFC] CreateMemSet use MaybeAlign
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: arsenm, jvesely, nhaehnle, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71213
2019-12-10 15:17:44 +01:00
Reid Kleckner 05da2fe521 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00
David Spickett 91167e22ec [hwasan] Remove lazy thread-initialisation
This was an experiment made possible by a non-standard feature of the
Android dynamic loader.

It required introducing a flag to tell the compiler which ABI was being
targeted.
This flag is no longer needed, since the generated code now works for
both ABI's.

We leave that flag untouched for backwards compatibility. This also
means that if we need to distinguish between targeted ABI's again
we can do that without disturbing any existing workflows.

We leave a comment in the source code and mention in the help text to
explain this for any confused person reading the code in the future.

Patch by Matthew Malcomson

Differential Revision: https://reviews.llvm.org/D69574
2019-11-04 10:58:46 +00:00
Guillaume Chatelet 0e62011df8 [Alignment][NFC] Remove dependency on GlobalObject::setAlignment(unsigned)
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: arsenm, mehdi_amini, jvesely, nhaehnle, hiraditya, steven_wu, dexonsmith, dang, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68944

llvm-svn: 374880
2019-10-15 11:24:36 +00:00
Guillaume Chatelet ab11b9188d [Alignment][NFC] Remove AllocaInst::setAlignment(unsigned)
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: jholewinski, arsenm, jvesely, nhaehnle, eraman, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D68141

llvm-svn: 373207
2019-09-30 13:34:44 +00:00
Peter Collingbourne c336557f02 hwasan: Compatibility fixes for short granules.
We can't use short granules with stack instrumentation when targeting older
API levels because the rest of the system won't understand the short granule
tags stored in shadow memory.

Moreover, we need to be able to let old binaries (which won't understand
short granule tags) run on a new system that supports short granule
tags. Such binaries will call the __hwasan_tag_mismatch function when their
outlined checks fail. We can compensate for the binary's lack of support
for short granules by implementing the short granule part of the check in
the __hwasan_tag_mismatch function. Unfortunately we can't do anything about
inline checks, but I don't believe that we can generate these by default on
aarch64, nor did we do so when the ABI was fixed.

A new function, __hwasan_tag_mismatch_v2, is introduced that lets code
targeting the new runtime avoid redoing the short granule check. Because tag
mismatches are rare this isn't important from a performance perspective; the
main benefit is that it introduces a symbol dependency that prevents binaries
targeting the new runtime from running on older (i.e. incompatible) runtimes.

Differential Revision: https://reviews.llvm.org/D68059

llvm-svn: 373035
2019-09-27 01:02:10 +00:00
Philip Reames 27820f9909 [Instruction] Add hasMetadata(Kind) helper [NFC]
It's a common idiom, so let's add the obvious wrapper for metadata kinds which are basically booleans.

llvm-svn: 370933
2019-09-04 17:28:48 +00:00
Evgeniy Stepanov ed4fefb0df [hwasan] Fix test failure in r369721.
Try harder to emulate "old runtime" in the test.
To get the old behavior with the new runtime library, we need both
disable personality function wrapping and enable landing pad
instrumentation.

llvm-svn: 369977
2019-08-26 21:44:55 +00:00
Peter Collingbourne 5b31ac5096 hwasan: Fix use of uninitialized memory.
Reported by e.g.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/23071/steps/build%20with%20ninja/logs/stdio

llvm-svn: 369815
2019-08-23 21:37:20 +00:00
Peter Collingbourne 21a1814417 hwasan: Untag unwound stack frames by wrapping personality functions.
One problem with untagging memory in landing pads is that it only works
correctly if the function that catches the exception is instrumented.
If the function is uninstrumented, we have no opportunity to untag the
memory.

To address this, replace landing pad instrumentation with personality function
wrapping. Each function with an instrumented stack has its personality function
replaced with a wrapper provided by the runtime. Functions that did not have
a personality function to begin with also get wrappers if they may be unwound
past. As the unwinder calls personality functions during stack unwinding,
the original personality function is called and the function's stack frame is
untagged by the wrapper if the personality function instructs the unwinder
to keep unwinding. If unwinding stops at a landing pad, the function is
still responsible for untagging its stack frame if it resumes unwinding.

The old landing pad mechanism is preserved for compatibility with old runtimes.

Differential Revision: https://reviews.llvm.org/D66377

llvm-svn: 369721
2019-08-23 01:28:44 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
Peter Collingbourne 0930643ff6 hwasan: Instrument globals.
Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.

Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.

Based on ideas discussed with @evgeny777 in D56672.

Differential Revision: https://reviews.llvm.org/D65770

llvm-svn: 368102
2019-08-06 22:07:29 +00:00
Peter Collingbourne 196931a7dd hwasan: Remove unused field CurModuleUniqueId. NFCI.
llvm-svn: 367717
2019-08-02 20:14:58 +00:00
Roman Lebedev 081e990d08 [IR] Value: add replaceUsesWithIf() utility
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.

I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.

Reviewers: jdoerfert, spatel, RKSimon, craig.topper

Reviewed By: jdoerfert

Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65528

llvm-svn: 367548
2019-08-01 12:32:08 +00:00
Christudasan Devadasan 006cf8c03d Added address-space mangling for stack related intrinsics
Modified the following 3 intrinsics:
int_addressofreturnaddress,
int_frameaddress & int_sponentry.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D64561

llvm-svn: 366679
2019-07-22 12:42:48 +00:00
Peter Collingbourne 3b82b92c6b hwasan: Initialize the pass only once.
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.

Differential Revision: https://reviews.llvm.org/D64843

llvm-svn: 366379
2019-07-17 21:45:19 +00:00
Rui Ueyama 49a3ad21d6 Fix parameter name comments using clang-tidy. NFC.
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:

$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
    -DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
    -DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
    -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
    -config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
    ::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}

llvm-svn: 366177
2019-07-16 04:46:31 +00:00
Peter Collingbourne e5c4b468f0 hwasan: Pad arrays with non-1 size correctly.
Spotted by eugenis.

Differential Revision: https://reviews.llvm.org/D64783

llvm-svn: 366171
2019-07-16 03:25:50 +00:00
Peter Collingbourne 1366262b74 hwasan: Improve precision of checks using short granule tags.
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:

* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
  is in bounds of the granule and the pointer tag is equal to the last byte of
  the granule.

Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).

When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.

Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.

Also update the documentation to cover both short granule tags and
outlined checks.

Differential Revision: https://reviews.llvm.org/D63908

llvm-svn: 365551
2019-07-09 20:22:36 +00:00
Peter Collingbourne 7108df964a hwasan: Remove the old frame descriptor mechanism.
Differential Revision: https://reviews.llvm.org/D63470

llvm-svn: 364665
2019-06-28 17:53:26 +00:00
Peter Collingbourne 5378afc02a hwasan: Use llvm.read_register intrinsic to read the PC on aarch64 instead of taking the function's address.
This shaves an instruction (and a GOT entry in PIC code) off prologues of
functions with stack variables.

Differential Revision: https://reviews.llvm.org/D63472

llvm-svn: 364608
2019-06-27 23:24:07 +00:00
Peter Collingbourne d57f7cc15e hwasan: Use bits [3..11) of the ring buffer entry address as the base stack tag.
This saves roughly 32 bytes of instructions per function with stack objects
and causes us to preserve enough information that we can recover the original
tags of all stack variables.

Now that stack tags are deterministic, we no longer need to pass
-hwasan-generate-tags-with-calls during check-hwasan. This also means that
the new stack tag generation mechanism is exercised by check-hwasan.

Differential Revision: https://reviews.llvm.org/D63360

llvm-svn: 363636
2019-06-17 23:39:51 +00:00
Peter Collingbourne fb9ce100d1 hwasan: Add a tag_offset DWARF attribute to instrumented stack variables.
The goal is to improve hwasan's error reporting for stack use-after-return by
recording enough information to allow the specific variable that was accessed
to be identified based on the pointer's tag. Currently we record the PC and
lower bits of SP for each stack frame we create (which will eventually be
enough to derive the base tag used by the stack frame) but that's not enough
to determine the specific tag for each variable, which is the stack frame's
base tag XOR a value (the "tag offset") that is unique for each variable in
a function.

In IR, the tag offset is most naturally represented as part of a location
expression on the llvm.dbg.declare instruction. However, the presence of the
tag offset in the variable's actual location expression is likely to confuse
debuggers which won't know about tag offsets, and moreover the tag offset
is not required for a debugger to determine the location of the variable on
the stack, so at the DWARF level it is represented as an attribute so that
it will be ignored by debuggers that don't know about it.

Differential Revision: https://reviews.llvm.org/D63119

llvm-svn: 363635
2019-06-17 23:39:41 +00:00
Evgeniy Stepanov 7f281b2c06 HWASan exception support.
Summary:
Adds a call to __hwasan_handle_vfork(SP) at each landingpad entry.

Reusing __hwasan_handle_vfork instead of introducing a new runtime call
in order to be ABI-compatible with old runtime library.

Reviewers: pcc

Subscribers: kubamracek, hiraditya, #sanitizers, llvm-commits

Tags: #sanitizers, #llvm

Differential Revision: https://reviews.llvm.org/D61968

llvm-svn: 360959
2019-05-16 23:54:41 +00:00
Leonard Chan 0cdd3b1d81 [NewPM] Port HWASan and Kernel HWASan
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.

Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.

Differential Revision: https://reviews.llvm.org/D61709

llvm-svn: 360707
2019-05-14 21:17:21 +00:00
Fangrui Song b5f3984541 [CommandLine] Provide parser<unsigned long> instantiation to allow cl::opt<uint64_t> on LP64 platforms
Summary:
And migrate opt<unsigned long long> to opt<uint64_t>

Fixes PR19665

Differential Revision: https://reviews.llvm.org/D60933

llvm-svn: 359068
2019-04-24 02:40:20 +00:00
Peter Collingbourne df57979ba7 hwasan: Enable -hwasan-allow-ifunc by default.
It's been on in Android for a while without causing problems, so it's time
to make it the default and remove the flag.

Differential Revision: https://reviews.llvm.org/D60355

llvm-svn: 357960
2019-04-09 00:25:59 +00:00
James Y Knight 7716075a17 [opaque pointer types] Pass value type to GetElementPtr creation.
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.

Differential Revision: https://reviews.llvm.org/D57173

llvm-svn: 352913
2019-02-01 20:44:47 +00:00
James Y Knight 14359ef1b6 [opaque pointer types] Pass value type to LoadInst creation.
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.

Differential Revision: https://reviews.llvm.org/D57172

llvm-svn: 352911
2019-02-01 20:44:24 +00:00
James Y Knight 13680223b9 [opaque pointer types] Add a FunctionCallee wrapper type, and use it.
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.

Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.

Then:
- update the CallInst/InvokeInst instruction creation functions to
  take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.

One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.

However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)

Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.

Differential Revision: https://reviews.llvm.org/D57315

llvm-svn: 352827
2019-02-01 02:28:03 +00:00
James Y Knight fadf25068e Revert "[opaque pointer types] Add a FunctionCallee wrapper type, and use it."
This reverts commit f47d6b38c7 (r352791).

Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.

llvm-svn: 352800
2019-01-31 21:51:58 +00:00
James Y Knight f47d6b38c7 [opaque pointer types] Add a FunctionCallee wrapper type, and use it.
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.

Then:
- update the CallInst/InvokeInst instruction creation functions to
  take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.

One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.

However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)

Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.

Differential Revision: https://reviews.llvm.org/D57315

llvm-svn: 352791
2019-01-31 20:35:56 +00:00
Peter Collingbourne 1a8acfb768 hwasan: If we split the entry block, move static allocas back into the entry block.
Otherwise they are treated as dynamic allocas, which ends up increasing
code size significantly. This reduces size of Chromium base_unittests
by 2MB (6.7%).

Differential Revision: https://reviews.llvm.org/D57205

llvm-svn: 352152
2019-01-25 02:08:46 +00:00
Peter Collingbourne 020ce3f026 hwasan: Read shadow address from ifunc if we don't need a frame record.
This saves a cbz+cold call in the interceptor ABI, as well as a realign
in both ABIs, trading off a dcache entry against some branch predictor
entries and some code size.

Unfortunately the functionality is hidden behind a flag because ifunc is
known to be broken on static binaries on Android.

Differential Revision: https://reviews.llvm.org/D57084

llvm-svn: 351989
2019-01-23 22:39:11 +00:00
Peter Collingbourne 73078ecd38 hwasan: Move memory access checks into small outlined functions on aarch64.
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses

The problem with this is that these code blocks typically bloat code
size significantly.

An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
  This means that the backend must spill all temporary registers as
  required by the platform's C calling convention, even though the
  check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
  which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.

The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.

To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.

Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.

Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.

The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.

I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:

Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972  | 6.24%
  16 | 171765192  | 7.03%
   8 | 172917788  | 5.82%
   4 | 177054016  | 6.89%

Differential Revision: https://reviews.llvm.org/D56954

llvm-svn: 351920
2019-01-23 02:20:10 +00:00