Commit Graph

631 Commits

Author SHA1 Message Date
Philip Reames ea06d63c35 [LFTR] Use SCEVExpander for the pointer limit case instead of manual IR gen
As noted in the test change, this is not trivially NFC, but all of the changes in output are cases where the SCEVExpander form is more canonical/optimal than the hand generation.  

llvm-svn: 365075
2019-07-03 20:03:46 +00:00
Philip Reames 14f1543425 [LFTR] Remove a stray variable shadow *of the same value* [NFC]
llvm-svn: 365072
2019-07-03 19:08:43 +00:00
Philip Reames e7a258c6d9 [LFTR] Style and comment changes to clarify the narrow vs wide bitwidth evaluation behavior [NFC]
llvm-svn: 365071
2019-07-03 19:03:37 +00:00
Philip Reames abc8f344d6 [LFTR] Sink the decision not use truncate scheme for constants into genLoopLimit [NFC]
We might as well just evaluate the constants using SCEV, and having the cases grouped makes the logic slightly easier to read anyway.

llvm-svn: 365070
2019-07-03 18:41:03 +00:00
Philip Reames 4c80281c96 [LFTR] Remove falsely generalized (dead) code [NFC]
llvm-svn: 365067
2019-07-03 18:24:06 +00:00
Philip Reames 83cca94194 [LFTR] Hoist extend expressions outside of loops w/o waiting for LICM
The motivation for this is two fold:
1) Make the output (and thus tests)  a bit more readable to a human trying to understand the result of the transform
2) Reduce spurious diffs in a potential future change to restructure all of this logic to use SCEVExpander (which hoists by default)

llvm-svn: 365066
2019-07-03 18:18:36 +00:00
Nikita Popov 8023c84433 [LFTR] Rephrase getLoopTest into "based-on" check; NFCI
What we want to know here is whether we're already using this value
for the loop condition, so make the query about that. We can extend
this to a more general "based-on" relationship, rather than a direct
icmp use later.

llvm-svn: 364715
2019-06-29 15:12:59 +00:00
Nikita Popov 61a8b62b4c [LFTR] Remove unnecessary latch check; NFCI
The whole indvars pass works on loops in simplified form, so there
is always a unique latch. Convert the condition into an assertion
in needsLFTR (though we also assert this in later LFTR functions).

Additionally update the comment on getLoopTest() now that we are
dealing with multiple exits.

llvm-svn: 364713
2019-06-29 12:41:02 +00:00
Nikita Popov 2d756c4feb [LFTR] Fix post-inc pointer IV with truncated exit count (PR41998)
Fixes https://bugs.llvm.org/show_bug.cgi?id=41998. Usually when we
have a truncated exit count we'll truncate the IV when comparing
against the limit, in which case exit count overflow in post-inc
form doesn't matter. However, for pointer IVs we don't do that, so
we have to be careful about incrementing the IV in the wide type.

I'm fixing this by removing the IVCount variable (which was
ExitCount or ExitCount+1) and replacing it with a UsePostInc flag,
and then moving the actual limit adjustment to the individual cases
(which are: pointer IV where we add to the wide type, integer IV
where we add to the narrow type, and constant integer IV where we
add to the wide type).

Differential Revision: https://reviews.llvm.org/D63686

llvm-svn: 364709
2019-06-29 09:24:12 +00:00
Philip Reames 1504b6ee7e [IndVars] Remove a bit of manual constant folding [NFC]
SCEV is more than capable of folding (add x, trunc(0)) to x.  

llvm-svn: 364693
2019-06-29 00:19:31 +00:00
Philip Reames 03b2e2d986 [IndVars] Kill a redundant bit of debug output
llvm-svn: 364449
2019-06-26 17:19:09 +00:00
Philip Reames c42a357178 [LFTR] Adjust debug output to include extensions (if any)
llvm-svn: 364346
2019-06-25 20:14:08 +00:00
Sanjoy Das e2291f5af9 Fix typo in comment; NFC
llvm-svn: 364159
2019-06-23 19:22:13 +00:00
Philip Reames d22a2a9a72 [IndVars] Remove dead instructions after folding trivial loop exit
In rL364135, I taught IndVars to fold exiting branches in loops with a zero backedge taken count (i.e. loops that only run one iteration).  This extends that to eliminate the dead comparison left around.  

llvm-svn: 364155
2019-06-23 17:06:57 +00:00
Philip Reames 8deb84c8ef Exploit a zero LoopExit count to eliminate loop exits
This turned out to be surprisingly effective. I was originally doing this just for completeness sake, but it seems like there are a lot of cases where SCEV's exit count reasoning is stronger than it's isKnownPredicate reasoning.

Once this is in, I'm thinking about trying to build on the same infrastructure to eliminate provably untaken checks. There may be something generally interesting here.

Differential Revision: https://reviews.llvm.org/D63618

llvm-svn: 364135
2019-06-22 17:54:25 +00:00
Philip Reames a7fd8a806f [LFTR] Fix a (latent?) bug related to nested loops
I can't actually come up with a test case this triggers on without an out of tree change, but in theory, it's a bug in the recently added multiple exit LFTR support.  The root issue is that an exiting block common to two loops can (in theory) have computable exit counts for both loops.  Rewriting the exit of an inner loop in terms of the outer loops IV would cause the inner loop to either a) run forever, or b) terminate on the first iteration.

In practice, we appear to get lucky and not have the exit count computable for the outer loop, except when it's trivially zero.  Given we bail on zero exit counts, we don't appear to ever trigger this.  But I can't come up with a reason we *can't* compute an exit count for the outer loop on the common exiting block, so this may very well be triggering in some cases.

llvm-svn: 363964
2019-06-20 18:45:06 +00:00
Philip Reames eda1ba65ca LFTR for multiple exit loops
Teach IndVarSimply's LinearFunctionTestReplace transform to handle multiple exit loops. LFTR does two key things 1) it rewrites (all) exit tests in terms of a common IV potentially eliminating one in the process and 2) it moves any offset/indexing/f(i) style logic out of the loop.

This turns out to actually be pretty easy to implement. SCEV already has all the information we need to know what the backedge taken count is for each individual exit. (We use that when computing the BE taken count for the loop as a whole.) We basically just need to iterate through the exiting blocks and apply the existing logic with the exit specific BE taken count. (The previously landed NFC makes this super obvious.)

I chose to go ahead and apply this to all loop exits instead of only latch exits as originally proposed. After reviewing other passes, the only case I could find where LFTR form was harmful was LoopPredication. I've fixed the latch case, and guards aren't LFTRed anyways. We'll have some more work to do on the way towards widenable_conditions, but that's easily deferred.

I do want to note that I added one bit after the review.  When running tests, I saw a new failure (no idea why didn't see previously) which pointed out LFTR can rewrite a constant condition back to a loop varying one.  This was theoretically possible with a single exit, but the zero case covered it in practice.  With multiple exits, we saw this happening in practice for the eliminate-comparison.ll test case because we'd compute a ExitCount for one of the exits which was guaranteed to never actually be reached.  Since LFTR ran after simplifyAndExtend, we'd immediately turn around and undo the simplication work we'd just done.  The solution seemed obvious, so I didn't bother with another round of review.

Differential Revision: https://reviews.llvm.org/D62625

llvm-svn: 363883
2019-06-19 21:58:25 +00:00
Philip Reames ce53e2226c [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
(Resumbit of r363292 which was reverted along w/an earlier patch)

llvm-svn: 363877
2019-06-19 20:45:57 +00:00
Philip Reames f8104f01e6 [LFTR] Rename variable to minimize confusion [NFC]
(Recommit of r363293 which was reverted when a dependent patch was.)

As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop. A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.

llvm-svn: 363875
2019-06-19 20:41:28 +00:00
Philip Reames 44475363e8 Teach getSCEVAtScope how to handle loop phis w/invariant operands in loops w/taken backedges
This patch really contains two pieces:
    Teach SCEV how to fold a phi in the header of a loop to the value on the backedge when a) the backedge is known to execute at least once, and b) the value is safe to use globally within the scope dominated by the original phi.
    Teach IndVarSimplify's rewriteLoopExitValues to allow loop invariant expressions which already exist (and thus don't need new computation inserted) even in loops where we can't optimize away other uses.

Differential Revision: https://reviews.llvm.org/D63224

llvm-svn: 363619
2019-06-17 21:06:17 +00:00
Philip Reames fe8bd96ebd Fix a bug w/inbounds invalidation in LFTR (recommit)
Recommit r363289 with a bug fix for crash identified in pr42279.  Issue was that a loop exit test does not have to be an icmp, leading to a null dereference crash when new logic was exercised for that case.  Test case previously committed in r363601.

Original commit comment follows:

This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.

The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.

As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.

(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)

Differential Revision: https://reviews.llvm.org/D62939

llvm-svn: 363613
2019-06-17 20:32:22 +00:00
Florian Hahn dcdd12b68c Revert Fix a bug w/inbounds invalidation in LFTR
Reverting because it breaks a green dragon build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363289 (git commit eb88badff9)

llvm-svn: 363427
2019-06-14 17:23:09 +00:00
Florian Hahn a19809045c Revert [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
Reverting because it depends on r363289, which breaks a green dragon build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363292 (git commit 42a3fc133d)

llvm-svn: 363426
2019-06-14 17:22:56 +00:00
Florian Hahn e1b4b1b46e Revert [LFTR] Rename variable to minimize confusion [NFC]
Reverting because it depends on r363289, which breaks a green dragon
build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363293 (git commit c37be29634)

llvm-svn: 363425
2019-06-14 17:22:49 +00:00
Philip Reames c37be29634 [LFTR] Rename variable to minimize confusion [NFC]
As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop.  A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.

llvm-svn: 363293
2019-06-13 18:40:15 +00:00
Philip Reames 42a3fc133d [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
llvm-svn: 363292
2019-06-13 18:32:55 +00:00
Philip Reames eb88badff9 Fix a bug w/inbounds invalidation in LFTR
This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.

The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying.  As such, our potential UB triggering use does not change the semantics of the original program.

As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.

(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)

Differential Revision: https://reviews.llvm.org/D62939

llvm-svn: 363289
2019-06-13 18:23:13 +00:00
Philip Reames ae2581cef3 [IndVars] Extend diagnostic -replexitval flag w/ability to bypass hard use hueristic
Note: This does mean that "always" is now more powerful than it was. 
llvm-svn: 363196
2019-06-12 19:52:05 +00:00
Philip Reames a9633d5f0b [LFTR] Use recomputed BE count
This was discussed as part of D62880.  The basic thought is that computing BE taken count after widening should produce (on average) an equally good backedge taken count as the one before widening.  Since there's only one test in the suite which is impacted by this change, and it's essentially equivelent codegen, that seems to be a reasonable assertion.  This change was separated from r362971 so that if this turns out to be problematic, the triggering piece is obvious and easily revertable.

For the nestedIV example from elim-extend.ll, we end up with the following BE counts:
BEFORE: (-2 + (-1 * %innercount) + %limit)
AFTER: (-1 + (sext i32 (-1 + %limit) to i64) + (-1 * (sext i32 %innercount to i64))<nsw>)

Note that before is an i32 type, and the after is an i64.  Truncating the i64 produces the i32. 

llvm-svn: 362975
2019-06-10 19:18:53 +00:00
Philip Reames 5d84ccb230 Prepare for multi-exit LFTR [NFC]
This change does the plumbing to wire an ExitingBB parameter through the LFTR implementation, and reorganizes the code to work in terms of a set of individual loop exits. Most of it is fairly obvious, but there's one key complexity which makes it worthy of consideration. The actual multi-exit LFTR patch is in D62625 for context.

Specifically, it turns out the existing code uses the backedge taken count from before a IV is widened. Oddly, we can end up with a different (more expensive, but semantically equivelent) BE count for the loop when requerying after widening.  For the nestedIV example from elim-extend, we end up with the following BE counts:
BEFORE: (-2 + (-1 * %innercount) + %limit)
AFTER: (-1 + (sext i32 (-1 + %limit) to i64) + (-1 * (sext i32 %innercount to i64))<nsw>)

This is the only test in tree which seems sensitive to this difference. The actual result of using the wider BETC on this example is that we actually produce slightly better code. :)

In review, we decided to accept that test change.  This patch is structured to preserve the old behavior, but a separate change will immediate follow with the behavior change.  (I wanted it separate for problem attribution purposes.)

Differential Revision: https://reviews.llvm.org/D62880

llvm-svn: 362971
2019-06-10 17:51:13 +00:00
Nikita Popov 46d4dba6e6 [IndVarSimplify] Fixup nowrap flags during LFTR (PR31181)
Fix for https://bugs.llvm.org/show_bug.cgi?id=31181 and partial fix
for LFTR poison handling issues in general.

When LFTR moves a condition from pre-inc to post-inc, it may now
depend on value that is poison due to nowrap flags. To avoid this,
we clear any nowrap flag that SCEV cannot prove for the post-inc
addrec.

Additionally, LFTR may switch to a different IV that is dynamically
dead and as such may be arbitrarily poison. This patch will correct
nowrap flags in some but not all cases where this happens. This is
related to the adoption of IR nowrap flags for the pre-inc addrec.
(See some of the switch_to_different_iv tests, where flags are not
dropped or insufficiently dropped.)

Finally, there are likely similar issues with the handling of GEP
inbounds, but we don't have a test case for this yet.

Differential Revision: https://reviews.llvm.org/D60935

llvm-svn: 362292
2019-06-01 09:40:18 +00:00
Philip Reames a74d654374 [LFTR] Strengthen assertions in genLoopLimit [NFCI]
llvm-svn: 360978
2019-05-17 02:18:03 +00:00
Philip Reames 45e7690796 [IndVars] Don't reimplement Loop::isLoopInvariant [NFC]
Using dominance vs a set membership check is indistinguishable from a compile time perspective, and the two queries return equivelent results.  Simplify code by using the existing function.

llvm-svn: 360976
2019-05-17 02:09:03 +00:00
Philip Reames 8e169cd266 [LFTR] Factor out a helper function for readability purpose [NFC]
llvm-svn: 360972
2019-05-17 01:39:58 +00:00
Philip Reames 9283f1847c Clarify comments on helpers used by LFTR [NFC]
I'm slowly wrapping my head around this code, and am making comment improvements where I can.

llvm-svn: 360968
2019-05-17 01:12:02 +00:00
Philip Reames 75ad8c5d63 Fix a release mode warning introduced in r360694
llvm-svn: 360696
2019-05-14 17:50:06 +00:00
Philip Reames bd8d309111 [IndVars] Extend reasoning about loop invariant exits to non-header blocks
Noticed while glancing through the code for other reasons.  The extension is trivial enough, decided to just do it.

llvm-svn: 360694
2019-05-14 17:20:10 +00:00
Max Kazantsev 2a184af221 [IndVars] Fix corner case with unreachable Phi inputs. PR40454
Logic in `getInsertPointForUses` doesn't account for a corner case when `Def`
only comes to a Phi user from unreachable blocks. In this case, the incoming
value may be arbitrary (and not even available in the input block) and break
the loop-related invariants that are asserted below.

In fact, if we encounter this situation, no IR modification is needed. This
Phi will be simplified away with nearest cleanup.

Differential Revision: https://reviews.llvm.org/D58045
Reviewed By: spatel

llvm-svn: 353816
2019-02-12 09:59:44 +00:00
James Y Knight 7716075a17 [opaque pointer types] Pass value type to GetElementPtr creation.
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.

Differential Revision: https://reviews.llvm.org/D57173

llvm-svn: 352913
2019-02-01 20:44:47 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Max Kazantsev 266c087b9d Return "[IndVars] Smart hard uses detection"
The patch has been reverted because it ended up prohibiting propagation
of a constant to exit value. For such values, we should skip all checks
related to hard uses because propagating a constant is always profitable.

Differential Revision: https://reviews.llvm.org/D53691

llvm-svn: 346397
2018-11-08 11:54:35 +00:00
Max Kazantsev e059f4452b Revert "[IndVars] Smart hard uses detection"
This reverts commit 2f425e9c7946b9d74e64ebbfa33c1caa36914402.

It seems that the check that we still should do the transform if we
know the result is constant is missing in this code. So the logic that
has been deleted by this change is still sometimes accidentally useful.
I revert the change to see what can be done about it. The motivating
case is the following:

@Y = global [400 x i16] zeroinitializer, align 1

define i16 @foo() {
entry:
  br label %for.body

for.body:                                         ; preds = %entry, %for.body
  %i = phi i16 [ 0, %entry ], [ %inc, %for.body ]

  %arrayidx = getelementptr inbounds [400 x i16], [400 x i16]* @Y, i16 0, i16 %i
  store i16 0, i16* %arrayidx, align 1
  %inc = add nuw nsw i16 %i, 1
  %cmp = icmp ult i16 %inc, 400
  br i1 %cmp, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  %inc.lcssa = phi i16 [ %inc, %for.body ]
  ret i16 %inc.lcssa
}

We should be able to figure out that the result is constant, but the patch
breaks it.

Differential Revision: https://reviews.llvm.org/D51584

llvm-svn: 346198
2018-11-06 02:02:05 +00:00
Max Kazantsev 3d347bf545 [IndVars] Smart hard uses detection
When rewriting loop exit values, IndVars considers this transform not profitable if
the loop instruction has a loop user which it believes cannot be optimized away.
In current implementation only calls that immediately use the instruction are considered
as such.

This patch extends the definition of "hard" users to any side-effecting instructions
(which usually cannot be optimized away from the loop) and also allows handling
of not just immediate users, but use chains.

Differentlai Revision: https://reviews.llvm.org/D51584
Reviewed By: etherzhhb

llvm-svn: 345814
2018-11-01 06:47:01 +00:00
Max Kazantsev 541f824d32 [IndVars] Strengthen restricton in rewriteLoopExitValues
For some unclear reason rewriteLoopExitValues considers recalculation
after the loop profitable if it has some "soft uses" outside the loop (i.e. any
use other than call and return), even if we have proved that it has a user inside
the loop which we think will not be optimized away.

There is no existing unit test that would explain this. This patch provides an
example when rematerialisation of exit value is not profitable but it passes
this check due to presence of a "soft use" outside the loop.

It makes no sense to recalculate value on exit if we are going to compute it
due to some irremovable within the loop. This patch disallows applying this
transform in the described situation.

Differential Revision: https://reviews.llvm.org/D51581
Reviewed By: etherzhhb

llvm-svn: 345708
2018-10-31 10:30:50 +00:00
Max Kazantsev 0994abda3a [IndVars] Remove unreasonable checks in rewriteLoopExitValues
A piece of logic in rewriteLoopExitValues has a weird check on number of
users which allowed an unprofitable transform in case if an instruction has
more than 6 users.

Differential Revision: https://reviews.llvm.org/D51404
Reviewed By: etherzhhb

llvm-svn: 342444
2018-09-18 04:57:18 +00:00
Max Kazantsev 5fe3620261 [NFC] Turn unsigned counters into boolean flags
llvm-svn: 342360
2018-09-17 06:33:29 +00:00
Max Kazantsev e6413919ce [IndVars][NFC] Refactor to make modifications of Changed transparent
IndVarSimplify's design is somewhat odd in the way how it reports that
some transform has made a change. It has a `Changed` field which can
be set from within any function, which makes it hard to track whether or
not it was set properly after a transform was made. It leads to oversights
in setting this flag where needed, see example in PR38855.

This patch removes the `Changed` field, turns it into a local and unifies
the signatures of all relevant transform functions to return boolean value
which designates whether or not this transform has made a change.

Differential Revision: https://reviews.llvm.org/D51850
Reviewed By: skatkov

llvm-svn: 341893
2018-09-11 03:57:22 +00:00
Max Kazantsev fde88578e5 [IndVars] Set Changed if rewriteFirstIterationLoopExitValues changes IR. PR38863
Currently, `rewriteFirstIterationLoopExitValues` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.

Differential Revision: https://reviews.llvm.org/D51779
Reviewed By: skatkov

llvm-svn: 341779
2018-09-10 06:50:16 +00:00
Max Kazantsev 4d10ba37b9 [IndVars] Set Changed if sinkUnusedInvariants changes IR. PR38863
Currently, `sinkUnusedInvariants` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.

Differential Revision: https://reviews.llvm.org/D51777
Reviewed By: skatkov

llvm-svn: 341777
2018-09-10 06:32:00 +00:00
Abderrazek Zaafrani c30dfb2dfc [SimplifyIndVar] Avoid generating truncate instructions with non-hoisted Laod operand.
Differential Revision: https://reviews.llvm.org/D49151

llvm-svn: 341726
2018-09-07 22:41:57 +00:00
Max Kazantsev 9e6845d8e1 [IndVars] Set Changed when we delete dead instructions. PR38855
IndVars does not set `Changed` flag when it eliminates dead instructions. As result,
it may make IR modifications and report that it has done nothing. It leads to inconsistent
preserved analyzes results.

Differential Revision: https://reviews.llvm.org/D51770
Reviewed By: skatkov

llvm-svn: 341633
2018-09-07 07:23:39 +00:00
Max Kazantsev f90154069c Revert "[IndVars] Turn isValidRewrite into an assertion" because it seems wrong
llvm-svn: 341517
2018-09-06 05:52:47 +00:00
Max Kazantsev 51690c4f52 [IndVars] Turn isValidRewrite into an assertion
Function rewriteLoopExitValues contains a check on isValidRewrite which
is needed to make sure that SCEV does not convert the pattern
`gep Base, (&p[n] - &p[0])` into `gep &p[n], Base - &p[0]`. This problem
has been fixed in SCEV long ago, so this check is just obsolete.

This patch converts it into an assertion to make sure that the SCEV will
not mess up this case in the future.

Differential Revision: https://reviews.llvm.org/D51582
Reviewed By: atrick

llvm-svn: 341516
2018-09-06 05:21:25 +00:00
Max Kazantsev f34115c627 [NFC] Add assert to detect LCSSA breaches early
llvm-svn: 341347
2018-09-04 06:34:40 +00:00
Max Kazantsev 2cbba56337 [IndVars] Fix usage of SCEVExpander to not mess with SCEVConstant. PR38674
This patch removes the function `expandSCEVIfNeeded` which behaves not as
it was intended. This function tries to make a lookup for exact existing expansion
and only goes to normal expansion via `expandCodeFor` if this lookup hasn't found
anything. As a result of this, if some instruction above the loop has a `SCEVConstant`
SCEV, this logic will return this instruction when asked for this `SCEVConstant` rather
than return a constant value. This is both non-profitable and in some cases leads to
breach of LCSSA form (as in PR38674).

Whether or not it is possible to break LCSSA with this algorithm and with some
non-constant SCEVs is still in question, this is still being investigated. I wasn't
able to construct such a test so far, so maybe this situation is impossible. If it is,
it will go as a separate fix.

Rather than do it, it is always correct to just invoke `expandCodeFor` unconditionally:
it behaves smarter about insertion points, and as side effect of this it will choose a
constant value for SCEVConstants. For other SCEVs it may end up finding a better insertion
point. So it should not be worse in any case.

NOTE: So far the only known case for which this transform may break LCSSA is mapping
of SCEVConstant to an instruction. However there is a suspicion that the entire algorithm
can compromise LCSSA form for other cases as well (yet not proved).

Differential Revision: https://reviews.llvm.org/D51286
Reviewed By: etherzhhb

llvm-svn: 341345
2018-09-04 05:01:35 +00:00
Max Kazantsev 0c4b84e2df [NFC] A loop can never contain Ret instruction
llvm-svn: 340808
2018-08-28 09:26:28 +00:00
David Blaikie 31b98d2e99 Move Analysis/Utils/Local.h back to Transforms
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)

llvm-svn: 333954
2018-06-04 21:23:21 +00:00
Nicola Zaghen d34e60ca85 Rename DEBUG macro to LLVM_DEBUG.
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.

In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.

Differential Revision: https://reviews.llvm.org/D43624

llvm-svn: 332240
2018-05-14 12:53:11 +00:00
David Blaikie 2be3922807 Fix a couple of layering violations in Transforms
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.

Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.

Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.

llvm-svn: 328165
2018-03-21 22:34:23 +00:00
Benjamin Kramer c7fc81e659 Use phi ranges to simplify code. No functionality change intended.
llvm-svn: 321585
2017-12-30 15:27:33 +00:00
Michael Zolotukhin 6af4f232b5 Remove redundant includes from lib/Transforms.
llvm-svn: 320628
2017-12-13 21:31:01 +00:00
Adrian Prantl fbb6fbf709 IndVarSimplify: preserve debug information attached to widened PHI nodes.
This fixes PR35015.

https://bugs.llvm.org/show_bug.cgi?id=35015

Differential Revision: https://reviews.llvm.org/D39345

llvm-svn: 317282
2017-11-02 23:17:06 +00:00
Eugene Zelenko dd40f5e7c1 [Transforms] Fix some Clang-tidy modernize and Include What You Use warnings; other minor fixes (NFC).
llvm-svn: 315940
2017-10-16 21:34:24 +00:00
Hongbin Zheng d36f2030e2 [SimplifyIndVar] Replace IVUsers with loop invariant whenever possible
Differential Revision: https://reviews.llvm.org/D38415

llvm-svn: 315551
2017-10-12 02:54:11 +00:00
Serguei Katkov 38414b57f9 [IndVars] Add an option to be able to disable LFTR
This change adds an option disable-lftr to be able to disable Linear Function Test Replace optimization.
By default option is off so current behavior is not changed.

Reviewers: reames, sanjoy, wmi, andreadb, apilipenko
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33979

llvm-svn: 305055
2017-06-09 06:11:59 +00:00
Galina Kistanova 55344aba7e Added LLVM_FALLTHROUGH to address warning: this statement may fall through. NFC.
llvm-svn: 304637
2017-06-03 05:19:10 +00:00
Sanjoy Das e6bca0eecb Rename WeakVH to WeakTrackingVH; NFC
This relands r301424.

llvm-svn: 301812
2017-05-01 17:07:49 +00:00
Sanjoy Das 2cbeb00f38 Reverts commit r301424, r301425 and r301426
Commits were:

"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"

The changes assumed pointers are 8 byte aligned on all architectures.

llvm-svn: 301429
2017-04-26 16:37:05 +00:00
Sanjoy Das 01de557738 Rename WeakVH to WeakTrackingVH; NFC
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.

Reviewers: dblaikie, davide

Reviewed By: davide

Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle

Differential Revision: https://reviews.llvm.org/D32266

llvm-svn: 301424
2017-04-26 16:20:52 +00:00
Simon Pilgrim 00b34996b4 Use MutableArrayRef for APFloat::convertToInteger
As discussed on D31074, use MutableArrayRef for destination integer buffers to help assert before stack overflows happen.

llvm-svn: 298253
2017-03-20 14:40:12 +00:00
Simon Pilgrim 610ad9b53f Strip trailing whitespace
llvm-svn: 298249
2017-03-20 13:55:35 +00:00
Sanjoy Das 85cd132068 [IndVars] Add an assert
We've already checked that the loop is in simplify form before, but a
little paranoia never hurt anyone.

llvm-svn: 295680
2017-02-20 23:37:11 +00:00
Chandler Carruth ca68a3ec47 [PM] Introduce an analysis set used to preserve all analyses over
a function's CFG when that CFG is unchanged.

This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.

I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.

Differential Revision: https://reviews.llvm.org/D28627

llvm-svn: 292054
2017-01-15 06:32:49 +00:00
Chandler Carruth 3bab7e1a79 [PM] Separate the LoopAnalysisManager from the LoopPassManager and move
the latter to the Transforms library.

While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.

Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.

We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.

This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.

I haven't split the unittest though because testing one component
without the other seems nearly intractable.

Differential Revision: https://reviews.llvm.org/D28452

llvm-svn: 291662
2017-01-11 09:43:56 +00:00
Chandler Carruth 410eaeb064 [PM] Rewrite the loop pass manager to use a worklist and augmented run
arguments much like the CGSCC pass manager.

This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.

An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.

This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.

While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.

I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.

Differential Revision: https://reviews.llvm.org/D28292

llvm-svn: 291651
2017-01-11 06:23:21 +00:00
Xin Tong 02b1397ac3 Fix a typo and also test a new machine for commit. NFC.
llvm-svn: 291532
2017-01-10 03:13:52 +00:00
Xin Tong ee5cb65ada Fix a typo. NFC
llvm-svn: 291335
2017-01-07 04:30:58 +00:00
Simon Pilgrim 7d18a70dac Fix spelling mistakes in Transforms comments. NFC.
Identified by Pedro Giffuni in PR27636.

llvm-svn: 287488
2016-11-20 13:19:49 +00:00
Wei Mi d2948cef70 [IndVars] Change the order to compute WidenAddRec in widenIVUse.
When both WidenIV::getWideRecurrence and WidenIV::getExtendedOperandRecurrence
return non-null but different WideAddRec, if getWideRecurrence is called
before getExtendedOperandRecurrence, we won't bother to call
getExtendedOperandRecurrence again. But As we know it is possible that after
SCEV folding, we cannot prove the legality using the SCEVAddRecExpr returned
by getWideRecurrence. Meanwhile if getExtendedOperandRecurrence returns non-null
WideAddRec, we know for sure that it is legal to do widening for current instruction.
So it is better to put getExtendedOperandRecurrence before getWideRecurrence, which
will increase the chance of successful widening.

Differential Revision: https://reviews.llvm.org/D26059

llvm-svn: 286987
2016-11-15 17:34:52 +00:00
Andrea Di Biagio 9bcb064f19 [IndVarSimplify][DebugLoc] When widening the exit loop condition, correctly reuse the debug location of the original comparison.
When the loop exit condition is canonicalized as a != compaison, reuse the
debug location of the original (non canonical) comparison.

Before this patch, the debug location of the new icmp was obtained from the
loop latch terminator. This patch fixes the issue by correctly setting the
IRBuilder's "current debug location" to the location of the original compare.

Differential Revision: https://reviews.llvm.org/D25953

llvm-svn: 285185
2016-10-26 10:28:32 +00:00
Andrea Di Biagio 824cabd06d [IndVarSimplify][Dwarf] When widening the IV increment, correctly set the debug loc.
When indvars widened an induction variable, the debug location for the loop
increment computation was incorrectly set equal to the debug loc of the loop
latch terminator.

This patch fixes the issue by propagating the correct location from the
original loop increment instruction to the new widened increment.

Differential Revision: https://reviews.llvm.org/D25872

llvm-svn: 285083
2016-10-25 16:45:17 +00:00
Artur Pilipenko 5c6ef75485 [IndVarSimplify] Teach calculatePostIncRange to take guards into account
Reviewed By: sanjoy

Differential Revision: https://reviews.llvm.org/D25739

llvm-svn: 284632
2016-10-19 19:43:54 +00:00
Artur Pilipenko f2d5dc5dc6 [IndVarSimplify] Use control-dependent range information to prove non-negativity
This change is motivated by the case when IndVarSimplify doesn't widen a comparison of IV increment because it can't prove IV increment being non-negative. We end up with a redundant trunc of the widened increment on this example.

for.body:
  %i = phi i32 [ %start, %for.body.lr.ph ], [ %i.inc, %for.inc ]
  %within_limits = icmp ult i32 %i, 64
  br i1 %within_limits, label %continue, label %for.end

continue:
  %i.i64 = zext i32 %i to i64
  %arrayidx = getelementptr inbounds i32, i32* %base, i64 %i.i64
  %val = load i32, i32* %arrayidx, align 4
  br label %for.inc

for.inc:
  %i.inc = add nsw nuw i32 %i, 1
  %cmp = icmp slt i32 %i.inc, %limit
  br i1 %cmp, label %for.body, label %for.end

There is a range check inside of the loop which guarantees the IV to be non-negative. NSW on the increment guarantees that the increment is also non-negative. Teach IndVarSimplify to use the range check to prove non-negativity of loop increments.

Reviewed By: sanjoy

Differential Revision: https://reviews.llvm.org/D25738

llvm-svn: 284629
2016-10-19 18:59:03 +00:00
Igor Laevsky 04423cf785 [LCSSA] Implement linear algorithm for the isRecursivelyLCSSAForm
For each block check that it doesn't have any uses outside of it's innermost loop.

Differential Revision: https://reviews.llvm.org/D25364

llvm-svn: 283877
2016-10-11 13:37:22 +00:00
Mehdi Amini 732afdd09a Turn cl::values() (for enum) from a vararg function to using C++ variadic template
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:

 va_start(ValueArgs, Desc);

with Desc being a StringRef.

Differential Revision: https://reviews.llvm.org/D25342

llvm-svn: 283671
2016-10-08 19:41:06 +00:00
Evgeny Stupachenko dc8a254663 Wisely choose sext or zext when widening IV.
Summary:
The patch fixes regression caused by two earlier patches D18777 and D18867.

Reviewers: reames, sanjoy

Differential Revision: http://reviews.llvm.org/D24280

From: Li Huang
llvm-svn: 282650
2016-09-28 23:39:39 +00:00
Artur Pilipenko b78ad9d41f Revert -r278269 [IndVarSimplify] Eliminate zext of a signed IV when the IV is known to be non-negative
This change needs to be reverted in order to revert -r278267 which cause performance regression on MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt from LNT and some other bechmarks.

See comments on https://reviews.llvm.org/D18777 for details.

llvm-svn: 279432
2016-08-22 13:12:07 +00:00
Duncan P. N. Exon Smith 362d120488 Scalar: Avoid dereferencing end() in IndVarSimplify
IndVarSimplify::sinkUnusedInvariants calls
BasicBlock::getFirstInsertionPt on the ExitBlock and moves instructions
before it.  This can return end(), so it's not safe to dereference.  Add
an iterator-based overload to Instruction::moveBefore to avoid the UB.

llvm-svn: 278886
2016-08-17 01:54:41 +00:00
Sanjoy Das 3502511548 [IndVars] Ignore (s|z)exts that don't extend the induction variable
`IVVisitor::visitCast` used to have the invariant that if the
instruction it was passed was a sext or zext instruction, the result of
the instruction would be wider than the induction variable.  This is no
longer true after rL275037, so this change teaches `IndVarSimplify` s
implementation of `IVVisitor::visitCast` to work with the relaxed
invariant.

A corresponding change to SimplifyIndVar to preserve the said invariant
after rL275037 would also work, but given how `IVVisitor::visitCast` is
spelled (no indication of said invariant), I figured the current fix is
cleaner.

Fixes PR28935.

llvm-svn: 278584
2016-08-13 00:58:31 +00:00
Ehsan Amiri dbcfea9811 Extend trip count instead of truncating IV in LFTR, when legal
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because

(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).

I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.

To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.

This commit contains changes in a newly added testcase which was not included in the previous commit (which was reverted later on).

https://reviews.llvm.org/D23075

llvm-svn: 278421
2016-08-11 21:31:40 +00:00
Ehsan Amiri 3818f1b38a revert 278334
llvm-svn: 278337
2016-08-11 14:51:14 +00:00
Ehsan Amiri b9fcc2b171 Extend trip count instead of truncating IV in LFTR, when legal
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because

(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).

I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.

To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.

https://reviews.llvm.org/D23075

llvm-svn: 278334
2016-08-11 13:51:20 +00:00
Andrew Kaylor 498d3113c3 [IndVarSimplify] Eliminate zext of a signed IV when the IV is known to be non-negative
Patch by Li Huang

Differential Revision: https://reviews.llvm.org/D18867

llvm-svn: 278269
2016-08-10 18:56:35 +00:00
Wei Mi 575435012c Fix the runtime error caused by "Use ValueOffsetPair to enhance value reuse during SCEV expansion".
The patch is to fix the bug in PR28705. It was caused by setting wrong return
value for SCEVExpander::findExistingExpansion. The return values of findExistingExpansion
have different meanings when the function is used in different ways so it is easy to make
mistake. The fix creates two new interfaces to replace SCEVExpander::findExistingExpansion,
and specifies where each interface is expected to be used.

Differential Revision: https://reviews.llvm.org/D22942

llvm-svn: 278161
2016-08-09 20:40:03 +00:00
Sean Silva 0746f3bfa4 Consistently use LoopAnalysisManager
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).

Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.

Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278079
2016-08-09 00:28:52 +00:00
Sanjoy Das ff9eea2278 [IndVars] Reflow oddly formatted condition; NFC
llvm-svn: 276319
2016-07-21 18:58:01 +00:00
Michael Kuperstein 835facd863 [PM] Normalize FIXMEs for missing PreserveCFG to have the same wording.
llvm-svn: 273974
2016-06-28 00:54:12 +00:00
Sanjoy Das 91e6ba6399 [IndVarSimplify] Run clang-format over some oddly formatted bits
NFC (whitespace only change)

llvm-svn: 273732
2016-06-24 21:23:32 +00:00
Sanjoy Das 4d4339d1e8 [PM] Port IndVarSimplify to the new pass manager
Summary:
There are some rough corners, since the new pass manager doesn't have
(as far as I can tell) LoopSimplify and LCSSA, so I've updated the
tests to run them separately in the old pass manager in the lit tests.
We also don't have an equivalent for AU.setPreservesCFG() in the new
pass manager, so I've left a FIXME.

Reviewers: bogner, chandlerc, davide

Subscribers: sanjoy, mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D20783

llvm-svn: 271846
2016-06-05 18:01:19 +00:00
Sanjoy Das f90e28d6fd [IndVars] Remove -liv-reduce
It is an off-by-default option that no one seems to use[0], and given
that SCEV directly understands the overflow instrinsics there is no real
need for it anymore.

[0]: http://lists.llvm.org/pipermail/llvm-dev/2016-April/098181.html

llvm-svn: 271845
2016-06-05 18:01:12 +00:00