Commit Graph

294 Commits

Author SHA1 Message Date
Florian Hahn fc97b6173f [LoopUnroll] Peel off iterations if it makes conditions true/false.
If the loop body contains conditions of the form IndVar < #constant, we
can remove the checks by peeling off #constant iterations.

This improves codegen for PR34364.

Reviewers: mkuper, mkazantsev, efriedma

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D43876

llvm-svn: 327671
2018-03-15 21:34:43 +00:00
Andrei Elovikov f9b8035f3c [LoopUnroll] Ignore ephemeral values when checking full unroll profitability.
Summary:
Before this patch call graph is like this in the LoopUnrollPass:

  tryToUnrollLoop
    ApproximateLoopSize
      collectEphemeralValues
      /* Use collected ephemeral values */
    computeUnrollCount
      analyzeLoopUnrollCost
        /* Bail out from the analysis if loop contains CallInst */

This patch moves collection of the ephemeral values to the tryToUnrollLoop
function and passes the collected values into both ApproximateLoopsize (as
before) and additionally starts using them in analyzeLoopUnrollCost:

  tryToUnrollLoop
    collectEphemeralValues
    ApproximateLoopSize(EphValues)
      /* Use EphValues */
    computeUnrollCount(EphValues)
      analyzeLoopUnrollCost(EphValues)
        /* Ignore ephemeral values - they don't contribute to the final cost */
        /* Bail out from the analysis if loop contains CallInst */

Reviewers: mzolotukhin, evstupac, sanjoy

Reviewed By: evstupac

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D43931

llvm-svn: 327617
2018-03-15 09:59:15 +00:00
Yaxun Liu 3c42f1c3c9 LoopUnroll: respect pragma unroll when AllowRemainder is disabled
Currently when AllowRemainder is disabled, pragma unroll count is not
respected even though there is no remainder. This bug causes a loop
fully unrolled in many cases even though the user specifies a unroll
count. Especially it affects OpenCL/CUDA since in many cases a loop
contains convergent instructions and currently AllowRemainder is
disabled for such loops.

Differential Revision: https://reviews.llvm.org/D43826

llvm-svn: 326585
2018-03-02 16:22:32 +00:00
Easwaran Raman a17f220590 Add hasProfileData() to check if a function has profile data. NFC.
Summary:
This replaces calls to getEntryCount().hasValue() with hasProfileData
that does the same thing. This refactoring is useful to do before adding
synthetic function entry counts but also a useful cleanup IMO even
otherwise. I have used hasProfileData instead of hasRealProfileData as
David had earlier suggested since I think profile implies "real" and I
use the phrase "synthetic entry count" and not "synthetic profile count"
but I am fine calling it hasRealProfileData if you prefer.

Reviewers: davidxl, silvas

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D41461

llvm-svn: 321331
2017-12-22 01:33:52 +00:00
Simon Pilgrim 0444e4fcd4 Fix MSVC signed/unsigned comparison warning
llvm-svn: 316161
2017-10-19 15:00:31 +00:00
Eugene Zelenko 306d29977d [Transforms] Fix some Clang-tidy modernize and Include What You Use warnings; other minor fixes (NFC).
llvm-svn: 316128
2017-10-18 21:46:47 +00:00
Hongbin Zheng 73f650435b [LoopInfo][Refactor] Make SetLoopAlreadyUnrolled a member function of the Loop Pass, NFC.
This avoid code duplication and allow us to add the disable unroll metadata elsewhere.

Differential Revision: https://reviews.llvm.org/D38928

llvm-svn: 315850
2017-10-15 07:31:02 +00:00
Vivek Pandya 9590658fb8 [NFC] Convert OptimizationRemarkEmitter old emit() calls to new closure
parameterized emit() calls

Summary: This is not functional change to adopt new emit() API added in r313691.

Reviewed By: anemet

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D38285

llvm-svn: 315476
2017-10-11 17:12:59 +00:00
Adam Nemet 0965da2055 Rename OptimizationDiagnosticInfo.* to OptimizationRemarkEmitter.*
Sync it up with the name of the class actually defined here.  This has been
bothering me for a while...

llvm-svn: 315249
2017-10-09 23:19:02 +00:00
Benjamin Kramer c965b30e54 [LoopUnroll] Fix use after poison.
llvm-svn: 314418
2017-09-28 14:47:39 +00:00
Sanjoy Das def1729dc4 Use a BumpPtrAllocator for Loop objects
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.

Reviewers: chandlerc

Subscribers: mehdi_amini, mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D38201

llvm-svn: 314375
2017-09-28 02:45:42 +00:00
Rui Ueyama 0dbb0f107e Fix -Wunused-variable for Release build.
llvm-svn: 314353
2017-09-27 22:03:15 +00:00
Sanjoy Das 4f3ebd537c Return the LoopUnrollResult from tryToUnrollLoop; NFC
I will use this in a later change.

llvm-svn: 314352
2017-09-27 21:45:22 +00:00
Sanjoy Das 3567d3d2ec Rename LoopUnrollStatus to LoopUnrollResult; NFC
A "Result" suffix is more appropriate here

llvm-svn: 314350
2017-09-27 21:45:19 +00:00
Sanjoy Das 09613b122e Tighten the invariants around LoopBase::invalidate
Summary:
With this change:
 - Methods in LoopBase trip an assert if the receiver has been invalidated
 - LoopBase::clear frees up the memory held the LoopBase instance

This change also shuffles things around as necessary to work with this stricter invariant.

Reviewers: chandlerc

Subscribers: mehdi_amini, mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D38055

llvm-svn: 313708
2017-09-20 02:31:57 +00:00
Davide Italiano 9a09ae448d [LoopUnroll] Add a cl::opt to force peeling, for testing purposes.
Will be used to test the patch proposed in D37153.

llvm-svn: 311915
2017-08-28 19:50:55 +00:00
Sam Parker 718c8a6a2a [LoopUnroll] Enable option to peel remainder loop
On some targets, the penalty of executing runtime unrolling checks
and then not the unrolled loop can be significantly detrimental to
performance. This results in the need to be more conservative with
the unroll count, keeping a trip count of 2 reduces the overhead as
well as increasing the chance of the unrolled body being executed. But
being conservative leaves performance gains on the table.

This patch enables the unrolling of the remainder loop introduced by
runtime unrolling. This can help reduce the overhead of misunrolled
loops because the cost of non-taken branches is much less than the
cost of the backedge that would normally be executed in the remainder
loop. This allows larger unroll factors to be used without suffering
performance loses with smaller iteration counts.

Differential Revision: https://reviews.llvm.org/D36309

llvm-svn: 310824
2017-08-14 09:25:26 +00:00
Chandler Carruth 7c888dca46 [PM] Fix new LoopUnroll function pass by invalidating loop analysis
results when a loop is completely removed.

This is very hard to manifest as a visible bug. You need to arrange for
there to be a subsequent allocation of a 'Loop' object which gets the
exact same address as the one which the unroll deleted, and you need the
LoopAccessAnalysis results to be significant in the way that they're
stale. And you need a million other things to align.

But when it does, you get a deeply mysterious crash due to actually
finding a stale analysis result. This fixes the issue and tests for it
by directly checking we successfully invalidate things. I have not been
able to get *any* test case to reliably trigger this. Changes to LLVM
itself caused the only test case I ever had to cease to crash.

I've looked pretty extensively at less brittle ways of fixing this and
they are actually very, very hard to do. This is a somewhat strange and
unusual case as we have a pass which is deleting an IR unit, but is not
running within that IR unit's pass framework (which is what handles this
cleanly for the normal loop unroll). And where there isn't a definitive
way to clear *all* of the stale cache entries. And where the pass *is*
updating the core analysis that provides the IR units!

For example, we don't have any of these problems with Function analyses
because it is easy to clear out function analyses when the functions
themselves may have been deleted -- we clear an entire module's worth!
But that is too heavy of a hammer down here in the LoopAnalysisManager
layer.

A better long-term solution IMO is to require that AnalysisManager's
make their keys durable to this kind of thing. Specifically, when
caching an analysis for one IR unit that is conceptually "owned" by
a higher level IR unit, the AnalysisManager should incorporate this into
its data structures so that we can reliably clear these results without
having to teach each and every pass to do so manually as we do here. But
that is a change for another day as it will be a fairly invasive change
to the AnalysisManager infrastructure. Until then, this fortunately
seems to be quite rare.

llvm-svn: 310333
2017-08-08 02:24:20 +00:00
Teresa Johnson 8482e56920 Use profile summary to disable peeling for huge working sets
Summary:
Detect when the working set size of a profiled application is huge,
by comparing the number of counts required to reach the hot percentile
in the profile summary to a large threshold*.

When the working set size is determined to be huge, disable peeling
to avoid bloating the working set further.

*Note that the selected threshold (15K) is significantly larger than the
largest working set value in SPEC cpu2006 (which is gcc at around 11K).

Reviewers: davidxl

Subscribers: mehdi_amini, mzolotukhin, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36288

llvm-svn: 310005
2017-08-03 23:42:58 +00:00
Teresa Johnson 9a18a6f08b Disable loop peeling during full unrolling pass.
Summary:
Peeling should not occur during the full unrolling invocation early
in the pipeline, but rather later with partial and runtime loop
unrolling. The later loop unrolling invocation will also eventually
utilize profile summary and branch frequency information, which
we would like to use to control peeling. And for ThinLTO we want
to delay peeling until the backend (post thin link) phase, just as
we do for most types of unrolling.

Ensure peeling doesn't occur during the full unrolling invocation
by adding a parameter to the shared implementation function, similar
to the way partial and runtime loop unrolling are disabled.

Performance results for ThinLTO suggest this has a neutral to positive
effect on some internal benchmarks.

Reviewers: chandlerc, davidxl

Subscribers: mzolotukhin, llvm-commits, mehdi_amini

Differential Revision: https://reviews.llvm.org/D36258

llvm-svn: 309966
2017-08-03 17:52:38 +00:00
Teresa Johnson ecd901314d [PM] Split LoopUnrollPass and make partial unroller a function pass
Summary:
This is largely NFC*, in preparation for utilizing ProfileSummaryInfo
and BranchFrequencyInfo analyses. In this patch I am only doing the
splitting for the New PM, but I can do the same for the legacy PM as
a follow-on if this looks good.

*Not NFC since for partial unrolling we lose the updates done to the
loop traversal (adding new sibling and child loops) - according to
Chandler this is not very useful for partial unrolling, but it also
means that the debugging flag -unroll-revisit-child-loops no longer
works for partial unrolling.

Reviewers: chandlerc

Subscribers: mehdi_amini, mzolotukhin, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36157

llvm-svn: 309886
2017-08-02 20:35:29 +00:00
Geoff Berry b0573547f6 [LoopUnroll] Fix bug in computeUnrollCount causing it to not honor MaxCount
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper

Subscribers: mcrosier, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D34532

llvm-svn: 306564
2017-06-28 17:01:15 +00:00
Geoff Berry 66d9bdbca8 [LoopUnroll] Pass SCEV to getUnrollingPreferences hook. NFCI.
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper

Subscribers: jholewinski, arsenm, mzolotukhin, nemanjai, nhaehnle, javed.absar, mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D34531

llvm-svn: 306554
2017-06-28 15:53:17 +00:00
Chandler Carruth 927d8e610a [IR] Redesign the case iterator in SwitchInst to actually be an iterator
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.

All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.

Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.

Differential Revision: https://reviews.llvm.org/D31548

llvm-svn: 300032
2017-04-12 07:27:28 +00:00
Sanjoy Das eed71b9e1c [LoopUnrolling] Re-prioritize Peeling and Partial unrolling
Summary:
In current implementation the loop peeling happens after trip-count based partial unrolling and may
sometimes not happen at all due to it (for example, if trip count is known, but UP.Partial = false). This
is generally bad, the more than there are some situations where peeling is profitable even if the partial
unrolling is disabled.

This patch is a NFC which reorders peeling and partial unrolling application and prepares the code for
implementation of the said optimizations.

Patch by Max Kazantsev!

Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper

Reviewed By: mkuper

Subscribers: mkuper, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D30243

llvm-svn: 296897
2017-03-03 18:19:10 +00:00
Michael Kuperstein c2af82b4b7 [LoopUnroll] Enable PGO-based loop peeling by default.
This enables peeling of loops with low dynamic iteration count by default,
when profile information is available.

Differential Revision: https://reviews.llvm.org/D27734

llvm-svn: 295796
2017-02-22 00:27:34 +00:00
Dehao Chen 7d230325ef Increases full-unroll threshold.
Summary:
The default threshold for fully unroll is too conservative. This patch doubles the full-unroll threshold

This change will affect the following speccpu2006 benchmarks (performance numbers were collected from Intel Sandybridge):

Performance:

403	0.11%
433	0.51%
445	0.48%
447	3.50%
453	1.49%
464	0.75%

Code size:

403	0.56%
433	0.96%
445	2.16%
447	2.96%
453	0.94%
464	8.02%

The compiler time overhead is similar with code size.

Reviewers: davidxl, mkuper, mzolotukhin, hfinkel, chandlerc

Reviewed By: hfinkel, chandlerc

Subscribers: mehdi_amini, zzheng, efriedma, haicheng, hfinkel, llvm-commits

Differential Revision: https://reviews.llvm.org/D28368

llvm-svn: 295538
2017-02-18 03:46:51 +00:00
Chandler Carruth eab3b90a14 [PM] Simplify the new PM interface to the loop unroller and expose two
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.

I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.

Differential Revision: https://reviews.llvm.org/D28897

llvm-svn: 293136
2017-01-26 02:13:50 +00:00
Michael Kuperstein 5dd55e8405 [LoopUnroll] Properly update loopinfo for runtime unrolling by 2
Even when we don't create a remainder loop (that is, when we unroll by 2), we
may duplicate nested loops into the remainder. This is complicated by the fact
the remainder may itself be either inserted into an outer loop, or at the top
level. In the latter case, we may need to create new top-level loops.

Differential Revision: https://reviews.llvm.org/D29156

llvm-svn: 293124
2017-01-26 01:04:11 +00:00
Chandler Carruth ce40fa13ce [PM] Teach LoopUnroll to update the LPM infrastructure as it unrolls
loops.

We do this by reconstructing the newly added loops after the unroll
completes to avoid threading pass manager details through all the mess
of the unrolling infrastructure.

I've enabled some extra assertions in the LPM to try and catch issues
here and enabled a bunch of unroller tests to try and make sure this is
sane.

Currently, I'm manually running loop-simplify when needed. That should
go away once it is folded into the LPM infrastructure.

Differential Revision: https://reviews.llvm.org/D28848

llvm-svn: 293011
2017-01-25 02:49:01 +00:00
Dehao Chen c3f87f02b1 Introduce -unroll-partial-threshold to separate PartialThreshold from Threshold in loop unorller.
Summary: Partial unrolling should have separate threshold with full unrolling.

Reviewers: efriedma, mzolotukhin

Reviewed By: efriedma, mzolotukhin

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D28831

llvm-svn: 292293
2017-01-17 23:39:33 +00:00
Chandler Carruth ca68a3ec47 [PM] Introduce an analysis set used to preserve all analyses over
a function's CFG when that CFG is unchanged.

This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.

I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.

Differential Revision: https://reviews.llvm.org/D28627

llvm-svn: 292054
2017-01-15 06:32:49 +00:00
Chandler Carruth 3bab7e1a79 [PM] Separate the LoopAnalysisManager from the LoopPassManager and move
the latter to the Transforms library.

While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.

Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.

We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.

This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.

I haven't split the unittest though because testing one component
without the other seems nearly intractable.

Differential Revision: https://reviews.llvm.org/D28452

llvm-svn: 291662
2017-01-11 09:43:56 +00:00
Chandler Carruth 410eaeb064 [PM] Rewrite the loop pass manager to use a worklist and augmented run
arguments much like the CGSCC pass manager.

This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.

An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.

This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.

While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.

I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.

Differential Revision: https://reviews.llvm.org/D28292

llvm-svn: 291651
2017-01-11 06:23:21 +00:00
Dehao Chen cc76344ef5 Use continuous boosting factor for complete unroll.
Summary:
The current loop complete unroll algorithm checks if unrolling complete will reduce the runtime by a certain percentage. If yes, it will apply a fixed boosting factor to the threshold (by discounting cost). The problem for this approach is that the threshold abruptly. This patch makes the boosting factor a function of runtime reduction percentage, capped by a fixed threshold. In this way, the threshold changes continuously.

The patch also simplified the code by reducing one parameter in UP.

The patch only affects code-gen of two speccpu2006 benchmark:

445.gobmk binary size decreases 0.08%, no performance change.
464.h264ref binary size increases 0.24%, no performance change.

Reviewers: mzolotukhin, chandlerc

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D26989

llvm-svn: 290737
2016-12-30 00:50:28 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Dehao Chen c3be225895 Change LoopUnrollPass cost from int to unsigned to make it consistent. (NFC)
llvm-svn: 288463
2016-12-02 03:17:07 +00:00
Michael Kuperstein b151a641aa [LoopUnroll] Implement profile-based loop peeling
This implements PGO-driven loop peeling.

The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.

This is currently disabled by default.

Differential Revision: https://reviews.llvm.org/D25963

llvm-svn: 288274
2016-11-30 21:13:57 +00:00
Haicheng Wu 731b04ca43 [LoopUnroll] Move code to exit early. NFC.
Just to save some compilation time.

Differential Revision: https://reviews.llvm.org/D26784

llvm-svn: 287800
2016-11-23 19:39:26 +00:00
Dehao Chen 41d72a8632 Use profile info to adjust loop unroll threshold.
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.

Reviewers: davidxl, mzolotukhin

Subscribers: sanjoy, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D26527

llvm-svn: 287186
2016-11-17 01:17:02 +00:00
Evgeny Stupachenko c2698cd903 Minor unroll pass refacoring.
Summary:
Unrolled Loop Size calculations moved to a function.
Constant representing number of optimized instructions
 when "back edge" becomes "fall through" replaced with
 variable.
Some comments added.

Reviewers: mzolotukhin

Differential Revision: http://reviews.llvm.org/D21719

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 286389
2016-11-09 19:56:39 +00:00
Haicheng Wu 430b3e4893 [LoopUnroll] Check partial unrolling is enabled before initialization. NFC.
Differential Revision: https://reviews.llvm.org/D23891

llvm-svn: 285330
2016-10-27 18:40:02 +00:00
Michael Kuperstein cffedc4a94 Fix 80-char violations. NFC.
llvm-svn: 285092
2016-10-25 18:31:23 +00:00
John Brawn 84b21835f1 [LoopUnroll] Keep the loop test only on the first iteration of max-or-zero loops
When we have a loop with a known upper bound on the number of iterations, and
furthermore know that either the number of iterations will be either exactly
that upper bound or zero, then we can fully unroll up to that upper bound
keeping only the first loop test to check for the zero iteration case.

Most of the work here is in plumbing this 'max-or-zero' information from the
part of scalar evolution where it's detected through to loop unrolling. I've
also gone for the safe default of 'false' everywhere but howManyLessThans which
could probably be improved.

Differential Revision: https://reviews.llvm.org/D25682

llvm-svn: 284818
2016-10-21 11:08:48 +00:00
Haicheng Wu 1ef17e90b2 Reapply "[LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop"
Reappy r284044 after revert in r284051. Krzysztof fixed the error in r284049.

The original summary:

This patch tries to fully unroll loops having break statement like this

for (int i = 0; i < 8; i++) {
    if (a[i] == value) {
        found = true;
        break;
    }
}

GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.

The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.

The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.

llvm-svn: 284053
2016-10-12 21:29:38 +00:00
Haicheng Wu 45e4ef737d Revert "[LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop"
This reverts commit r284044.

llvm-svn: 284051
2016-10-12 21:02:22 +00:00
Haicheng Wu 6cac34fd41 [LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop
This patch tries to fully unroll loops having break statement like this

for (int i = 0; i < 8; i++) {
    if (a[i] == value) {
        found = true;
        break;
    }
}

GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.

The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.

The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.

Differential Revision: https://reviews.llvm.org/D24790

llvm-svn: 284044
2016-10-12 20:24:32 +00:00
Dehao Chen 977853b7c5 Update loop unroller cost model to make sure debug info does not affect optimization decisions.
Summary: Debug info should *not* affect optimization decisions. This patch updates loop unroller cost model to make it not affected by debug info.

Reviewers: davidxl, mzolotukhin

Subscribers: haicheng, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D25098

llvm-svn: 282894
2016-09-30 18:30:04 +00:00
Adam Nemet f57cc62abf [LoopUnroll] Port to the new streaming interface for opt remarks.
llvm-svn: 282834
2016-09-30 03:44:16 +00:00
Jonas Paulsson 58c5a7f55a [SystemZ] Implementation of getUnrollingPreferences().
This commit enables more unrolling for SystemZ by implementing the
SystemZTargetTransformInfo::getUnrollingPreferences() method.

It has been found that it is better to only unroll moderately, so the
DefaultUnrollRuntimeCount has been moved into UnrollingPreferences in order
to set this to a lower value for SystemZ (4).

Reviewers: Evgeny Stupachenko, Ulrich Weigand.
https://reviews.llvm.org/D24451

llvm-svn: 282570
2016-09-28 09:41:38 +00:00
Haicheng Wu 109f4f3509 [LoopUnroll] Correct a debug message. NFC.
Differential Revision: https://reviews.llvm.org/D24299

llvm-svn: 280865
2016-09-07 21:30:16 +00:00
Adam Nemet 4f155b6e91 [LoopUnroll] Use OptimizationRemarkEmitter directly not via the analysis pass
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used.  See the new comments in
the patch.

Instead we use it directly just like the inliner does in D22694.

As expected there is some additional overhead after removing the caching
provided by analysis passes.  The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%.  As before, this only
affects -Rpass-with-hotness and not default compilation.

llvm-svn: 279829
2016-08-26 15:58:34 +00:00
Michael Zolotukhin bd63d436c1 [LoopUnroll] By default disable unrolling when optimizing for size.
Summary:
In clang commit r268509 we started to invoke loop-unroll pass from the
driver even under -Os. However, we happen to not initialize optsize
thresholds properly, which si fixed with this change.

r268509 led to some big compile time regressions, because we started to
unroll some loops that we didn't unroll before. With this change I hope
to recover most of the regressions. We still are slightly slower than
before, because we do some checks here and there in loop-unrolling
before we bail out, but at least the slowdown is not that huge now.

Reviewers: hfinkel, chandlerc

Subscribers: mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D23388

llvm-svn: 279585
2016-08-23 23:13:15 +00:00
Haicheng Wu e787763275 [LoopUnroll] Move a simple check earlier. NFC.
Move the check of CallInst earlier to skip expensive recursive operations.

Differential Revision: https://reviews.llvm.org/D23611

llvm-svn: 278998
2016-08-17 22:42:58 +00:00
Sean Silva 0746f3bfa4 Consistently use LoopAnalysisManager
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).

Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.

Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278079
2016-08-09 00:28:52 +00:00
Adam Nemet 12937c361f [LoopUnroll] Include hotness of region in opt remark
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.

The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.

This is how the patch affects the O3 pipeline:

         Dominator Tree Construction
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Rotate Loops
           Loop Invariant Code Motion
           Unswitch loops
         Simplify the CFG
         Dominator Tree Construction
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Combine redundant instructions
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Induction Variable Simplification
           Recognize loop idioms
           Delete dead loops
           Unroll loops
...

llvm-svn: 277203
2016-07-29 19:29:47 +00:00
Sean Silva e3c18a5ae8 [PM] Port LoopUnroll.
We just set PreserveLCSSA to always true since we don't have an
analogous method `mustPreserveAnalysisID(LCSSA)`.

Also port LoopInfo verifier pass to test LoopUnrollPass.

llvm-svn: 276063
2016-07-19 23:54:23 +00:00
David Majnemer 4a697c312f [LoopUnroll] Don't crash trying to unroll loop with EH pad exit
We do not support splitting cleanuppad or catchswitches.  This is
problematic for passes which assume that a loop is in loop simplify
form (the loop would have a dedicated exit block instead of sharing it).

While it isn't great that we don't support this for cleanups, we still
cannot make loop-simplify form an assertable precondition because
indirectbr will also disable these sorts of CFG cleanups.

This fixes PR28132.

llvm-svn: 272739
2016-06-15 00:19:56 +00:00
Evgeny Stupachenko 3e2f389a7e The patch set unroll disable pragma when unroll
with user specified count has been applied.

Summary:
Previously SetLoopAlreadyUnrolled() set the disable pragma only if
there was some loop metadata.
Now it set the pragma in all cases. This helps to prevent multiple
unroll when -unroll-count=N is given.

Reviewers: mzolotukhin

Differential Revision: http://reviews.llvm.org/D20765

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 272195
2016-06-08 20:21:24 +00:00
Michael Zolotukhin 585649895f [LoopUnroll] Set correct thresholds for new recently enabled unrolling heuristic.
In r270478, where I enabled the new heuristic I posted testing results,
which I got when explicitly passed the thresholds values via CL options.
However, setting the CL options init-values is not enough to change the
default values of thresholds, so I'm changing them in another place now.

llvm-svn: 271615
2016-06-03 00:16:46 +00:00
Evgeny Stupachenko b787522d28 The patch fixes r271071
Summary:
unused variables in Release mode:
  BasicBlock *Header
  unsigned OrigCount
put under DEBUG

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 271076
2016-05-28 00:14:58 +00:00
Evgeny Stupachenko ea2aef4a1d The patch refactors unroll pass.
Summary:
Unroll factor (Count) calculations moved to a new function.
Early exits on pragma and "-unroll-count" defined factor added.
New type of unrolling "Force" introduced (previously used implicitly).
New unroll preference "AllowRemainder" introduced and set "true" by default.
(should be set to false for architectures that suffers from it).

Reviewers: hfinkel, mzolotukhin, zzheng

Differential Revision: http://reviews.llvm.org/D19553

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 271071
2016-05-27 23:15:06 +00:00
Benjamin Kramer 82de7d323d Apply clang-tidy's misc-move-constructor-init throughout LLVM.
No functionality change intended, maybe a tiny performance improvement.

llvm-svn: 270997
2016-05-27 14:27:24 +00:00
Michael Zolotukhin 1ecdedad8d [LoopUnrollAnalyzer] Fix a crash in analyzeLoopUnrollCost.
Condition might be simplified to a Constant, but it doesn't have to be
ConstantInt, so we should dyn_cast, instead of cast.

This fixes PR27886.

llvm-svn: 270924
2016-05-26 21:42:51 +00:00
Michael Zolotukhin 8f7a242c7b Re-enable "[LoopUnroll] Enable advanced unrolling analysis by default" one more time.
This reverts commit r270577.

llvm-svn: 270630
2016-05-24 23:00:05 +00:00
Hans Wennborg b64e4390a3 Revert r270518, which re-enabled "[LoopUnroll] Enable advanced unrolling analysis by default.
Chromium builds are still hitting the assert in PR27874.

llvm-svn: 270577
2016-05-24 16:10:12 +00:00
Michael Zolotukhin 96c150d154 Revert "Revert r270478 "[LoopUnroll] Enable advanced unrolling analysis by default.""
This reverts commit r270512 and reapplies r270478. Originally it caused
PR27847, but it was fixed in r270517.

llvm-svn: 270518
2016-05-24 01:22:20 +00:00
Hans Wennborg 6951028b61 Revert r270478 "[LoopUnroll] Enable advanced unrolling analysis by default."
This caused PR27847.

llvm-svn: 270512
2016-05-23 23:42:35 +00:00
Michael Zolotukhin be080fc51d [LoopUnroll] Enable advanced unrolling analysis by default.
Summary:
This patch turns on LoopUnrollAnalyzer by default. To mitigate compile
time regressions, I chose very conservative thresholds for now. Later we
can make them more aggressive, but it might require being smarter in
which loops we're optimizing. E.g. currently the biggest issue is that
with more agressive thresholds we unroll many cold loops, which
increases compile time for no performance benefit (performance of those
loops is improved, but it doesn't matter since they are cold).

Test results for compile time(using 4 samples to reduce noise):
```
MultiSource/Benchmarks/VersaBench/ecbdes/ecbdes 5.19%
SingleSource/Benchmarks/Polybench/medley/reg_detect/reg_detect  4.19%
MultiSource/Benchmarks/FreeBench/fourinarow/fourinarow  3.39%
MultiSource/Applications/JM/lencod/lencod 1.47%
MultiSource/Benchmarks/Fhourstones-3_1/fhourstones3_1 -6.06%
```

I didn't see any performance changes in the testsuite, but it improves
some internal tests.

Reviewers: hfinkel, chandlerc

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D20482

llvm-svn: 270478
2016-05-23 19:10:19 +00:00
Michael Zolotukhin d2268a73bc [LoopUnrollAnalyzer] Take into account cost of instructions controlling branches, along with their operands.
Previously, we didn't add their and their operands cost, which could've
resulted in unrolling loops for no actual benefit.

llvm-svn: 269985
2016-05-18 21:20:12 +00:00
Michael Zolotukhin 963a6d9c69 Revert "Revert "[Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the...""
This reverts commit r269395.

Try to reapply with a fix from chapuni.

llvm-svn: 269486
2016-05-13 21:23:25 +00:00
Michael Zolotukhin 9be3b8b9bb Revert "[Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the..."
This reverts commit r269388.

It caused some bots to fail, I'm reverting it until I investigate the
issue.

llvm-svn: 269395
2016-05-13 06:32:25 +00:00
Michael Zolotukhin b7b8052982 [Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the...
Summary:
...loop after the last iteration.

This is really hard to do correctly. The core problem is that we need to
model liveness through the induction PHIs from iteration to iteration in
order to get the correct results, and we need to correctly de-duplicate
the common subgraphs of instructions feeding some subset of the
induction PHIs. All of this can be driven either from a side effect at
some iteration or from the loop values used after the loop finishes.

This patch implements this by storing the forward-propagating analysis
of each instruction in a cache to recall whether it was free and whether
it has become live and thus counted toward the total unroll cost. Then,
at each sink for a value in the loop, we recursively walk back through
every value that feeds the sink, including looping back through the
iterations as needed, until we have marked the entire input graph as
live. Because we cache this, we never visit instructions more than twice
-- once when we analyze them and put them into the cache, and once when
we count their cost towards the unrolled loop. Also, because the cache
is only two bits and because we are dealing with relatively small
iteration counts, we can store all of this very densely in memory to
avoid this from becoming an excessively slow analysis.

The code here is still pretty gross. I would appreciate suggestions
about better ways to factor or split this up, I've stared too long at
the algorithmic side to really have a good sense of what the design
should probably look at.

Also, it might seem like we should do all of this bottom-up, but I think
that is a red herring. Specifically, the simplification power is *much*
greater working top-down. We can forward propagate very effectively,
even across strange and interesting recurrances around the backedge.
Because we use data to propagate, this doesn't cause a state space
explosion. Doing this level of constant folding, etc, would be very
expensive to do bottom-up because it wouldn't be until the last moment
that you could collapse everything. The current solution is essentially
a top-down simplification with a bottom-up cost accounting which seems
to get the best of both worlds. It makes the simplification incremental
and powerful while leaving everything dead until we *know* it is needed.

Finally, a core property of this approach is its *monotonicity*. At all
times, the current UnrolledCost is a conservatively low estimate. This
ensures that we will never early-exit from the analysis due to exceeding
a threshold when if we had continued, the cost would have gone back
below the threshold. These kinds of bugs can cause incredibly hard to
track down random changes to behavior.

We could use a techinque similar (but much simpler) within the inliner
as well to avoid considering speculated code in the inline cost.

Reviewers: chandlerc

Subscribers: sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D11758

llvm-svn: 269388
2016-05-13 01:42:39 +00:00
Hans Wennborg 719b26ba54 Loop unroller: set thresholds for optsize and minsize functions to zero
Before r268509, Clang would disable the loop unroll pass when optimizing
for size. That commit enabled it to be able to support unroll pragmas
in -Os builds. However, this regressed binary size in one of Chromium's
DLLs with ~100 KB.

This restores the original behaviour of no unrolling at -Os, but doing it
in LLVM instead of Clang makes more sense, and also allows the pragmas to
keep working.

Differential revision: http://reviews.llvm.org/D20115

llvm-svn: 269124
2016-05-10 21:45:55 +00:00
Dehao Chen d55bc4c7ab clang-format some files in preparation of coming patch reviews.
llvm-svn: 268583
2016-05-05 00:54:54 +00:00
Andrew Kaylor aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Vedant Kumar 6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
Andrew Kaylor f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Fiona Glaser 045afc4f66 Loop Unroll: add options and tweak to make Partial unrolling more useful
1. Add FullUnrollMaxCount option that works like MaxCount, but also limits
   the unroll count for fully unrolled loops. So if a loop has an iteration
   count over this, it won't fully unroll.
2. Add CLI options for MaxCount and the new option, so they can be tested
   (plus a test).
3. Make partial unrolling obey MaxCount.

An example use-case (the out of tree one this is originally designed for) is
a target’s TTI can analyze a loop and decide on a max unroll count separate
from the size threshold, e.g. based on register pressure, then constrain
LoopUnroll to not exceed that, regardless of the size of the unrolled loop.

llvm-svn: 265562
2016-04-06 16:57:25 +00:00
Fiona Glaser 16332ba861 LoopUnroll: only allow non-modulo Partial unrolling when Runtime=true
Patch by Evgeny Stupachenko <evstupac@gmail.com>.

llvm-svn: 265558
2016-04-06 16:43:45 +00:00
Zia Ansari a82a58a4e5 Enable unroll for constant bound loops when TripCount is not modulo of unroll factor, reducing it to maximum power-of-2 that satisfies threshold limit.
Commit for Evgeny Stupachenko (evstupac@gmail.com)

Differential Revision: http://reviews.llvm.org/D18290

llvm-svn: 265337
2016-04-04 19:24:46 +00:00
David L Kreitzer 8d441eb936 Enable non-power-of-2 #pragma unroll counts.
Patch by Evgeny Stupachenko.

Differential Revision: http://reviews.llvm.org/D18202

llvm-svn: 264407
2016-03-25 14:24:52 +00:00
Justin Lebar 6827de19b2 [LoopUnroll] Respect the convergent attribute.
Summary:
Specifically, when we perform runtime loop unrolling of a loop that
contains a convergent op, we can only unroll k times, where k divides
the loop trip multiple.

Without this change, we'll happily unroll e.g. the following loop

  for (int i = 0; i < N; ++i) {
    if (i == 0) convergent_op();
    foo();
  }

into

  int i = 0;
  if (N % 2 == 1) {
    convergent_op();
    foo();
    ++i;
  }
  for (; i < N - 1; i += 2) {
    if (i == 0) convergent_op();
    foo();
    foo();
  }.

This is unsafe, because we've just added a control-flow dependency to
the convergent op in the prelude.

In general, runtime unrolling loops that contain convergent ops is safe
only if we don't have emit a prelude, which occurs when the unroll count
divides the trip multiple.

Reviewers: resistor

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D17526

llvm-svn: 263509
2016-03-14 23:15:34 +00:00
Sanjay Patel f831fdb56a fix variable name; NFC
llvm-svn: 262953
2016-03-08 19:07:42 +00:00
Sanjay Patel 5c96723622 use range-based loop; NFCI
llvm-svn: 262952
2016-03-08 19:06:12 +00:00
Michael Zolotukhin 9f520ebc54 [LoopUnrollAnalyzer] Check that we're using SCEV for the same loop we're simulating.
Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect.

Reviewers: chandlerc, hfinkel

Subscribers: sanjoy, llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D17632

llvm-svn: 261958
2016-02-26 02:57:05 +00:00
Chandler Carruth 31088a9d58 [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

llvm-svn: 261316
2016-02-19 10:45:18 +00:00
Michael Zolotukhin 1da4afdfc9 Factor out UnrollAnalyzer to Analysis, and add unit tests for it.
Summary:
Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests.
The change itself is supposed to be NFC, except adding a couple of tests.

I plan to add more tests as I add new functionality and find/fix bugs.

Reviewers: chandlerc, hfinkel, sanjoy

Subscribers: zzheng, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D16623

llvm-svn: 260169
2016-02-08 23:03:59 +00:00
Justin Bogner b8d82abb78 LoopUnroll: Move the actual unrolling logic to a standalone function. NFC
This is pure code motion - break the actual work out of runOnLoop into
a reusable standalone function.

llvm-svn: 257445
2016-01-12 05:21:37 +00:00
Justin Bogner 921b04e9a4 LoopUnroll: Make canUnrollCompletely static - it doesn't use any state. NFC
llvm-svn: 257427
2016-01-12 01:06:32 +00:00
Justin Bogner a1dd493159 LoopUnroll: Clean up the maze of initialization for unroll parameters. NFC
The layering of where the various loop unroll parameters are
initialized and overridden here was very confusing, making it pretty
difficult to tell just how the various sources interacted. Instead, we
put all of the initialization logic together in a single function so
that it's obvious what overrides what.

llvm-svn: 257426
2016-01-12 00:55:26 +00:00
Justin Bogner 0fb7ed5726 LoopUnroll: Use the optsize threshold for minsize as well
Currently we're unrolling loops more in minsize than in optsize, which
means -Oz will have a larger code size than -Os. That doesn't make any
sense.

This resolves the FIXME about this in LoopUnrollPass and extends the
optsize test to make sure we use the smaller threshold for minsize as
well.

llvm-svn: 257402
2016-01-11 22:39:43 +00:00
Justin Bogner 883a3ea67f LPM: Make callers of LPM.deleteLoopFromQueue update LoopInfo directly. NFC
As of r255720, the loop pass manager will DTRT when passes update the
loop info for removed loops, so they no longer need to reach into
LPPassManager APIs to do this kind of transformation. This change very
nearly removes the need for the LPPassManager to even be passed into
loop passes - the only remaining pass that uses the LPM argument is
LoopUnswitch.

llvm-svn: 255797
2015-12-16 18:40:20 +00:00
Justin Bogner 843fb204b7 LPM: Stop threading `Pass *` through all of the loop utility APIs. NFC
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:

- The APIs have access to pretty well any Pass state they want, so
  it's hard to tell what they may or may not do.

- Other APIs have copied these and pass around a `Pass *` even though
  they don't even use it. Some of these just hand a nullptr to the API
  since the callers don't even have a pass available.

- Passes in the new pass manager don't work like the current ones, so
  the APIs can't be used as is there.

Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.

llvm-svn: 255669
2015-12-15 19:40:57 +00:00
Benjamin Kramer 6db3338cb1 [ScalarOpts] Remove dead code.
Does not touch debug dumpers. NFC.

llvm-svn: 250417
2015-10-15 15:08:58 +00:00
Michael Zolotukhin deade19630 [Unroll] Do not crash trying to propagate a value to vector load.
llvm-svn: 248333
2015-09-22 22:27:12 +00:00
Michael Zolotukhin 8bb31dd08a [Unroll] Follow-up for r247769: fix a bug in UnrolledInstAnalyzer::visitLoad.
Apart from checking that GlobalVariable is a constant, we should check
that it's not a weak constant, in which case we can't propagate its
value.

llvm-svn: 248327
2015-09-22 21:41:29 +00:00
Michael Zolotukhin fc314be0ec [Unroll] Fix a bug in UnrolledInstAnalyzer::visitLoad.
We only checked that a global is initialized with constants, which is
incorrect. We should be checking that GlobalVariable *is* a constant,
not just initialized with it.

llvm-svn: 247769
2015-09-16 03:25:09 +00:00
James Molloy efbba72cb2 Add GlobalsAA as preserved to a bunch of transforms
GlobalsAA must by definition be preserved in function passes, but the passmanager doesn't know that. Make each pass explicitly preserve GlobalsAA.

llvm-svn: 247263
2015-09-10 10:22:12 +00:00