Modify FoldBranchToCommonDest to consider the cost of inserting
instructions when attempting to combine predicates to fold blocks.
The threshold can be controlled via a new option:
-simplifycfg-branch-fold-threshold which defaults to '2' to allow
the insertion of a not and another logical operator.
Differential Revision: https://reviews.llvm.org/D86526
Before we speculatively execute a basic block, query the cost of
inserting the necessary select instructions against the phi folding
threshold. For non-trivial insertions, a more accurate decision can
probably be made during machine if-conversion. With minsize we query
the CodeSize cost, otherwise we use SizeAndLatency.
Differential Revision: https://reviews.llvm.org/D82438
SimplifyCFG has two main folds for resumes - one when resume is directly
using the landingpad, and the other one where resume is using a PHI node.
While for the first case, we were already correctly ignoring all the
PHI nodes, and both the debug info intrinsics and lifetime intrinsics,
in the PHI-based-one, we weren't ignoring PHI's in the resume block,
and weren't ignoring lifetime intrinsics. That is clearly a bug.
On RawSpeed library, this results in +9.34% (+81) more invoke->call folds,
-0.19% (-39) landing pads, -0.24% (-81) invoke instructions
but +51 call instructions and -132 basic blocks.
Though, the run-time performance impact appears to be within the noise.
We do not thread blocks with convergent calls, but this check was missing
when we decide to insert PR Phis into it (which we only do for threading).
Differential Revision: https://reviews.llvm.org/D83936
Reviewed By: nikic
Common code sinking is already guarded with a (with default-off!) flag,
so add a flag for hoisting, too.
D84108 will hopefully make hoisting off-by-default too.
SimplifyCFG was incorrectly reporting to the pass manager that it had not made
changes after folding away a PHI. This is detected in the EXPENSIVE_CHECKS
build when the function's hash changes.
Differential Revision: https://reviews.llvm.org/D83985
Sometimes SimplifyCFG may decide to perform jump threading. In order
to do it, it follows the following algorithm:
1. Checks if the block is small enough for threading;
2. If yes, inserts a PR Phi relying that the next iteration will remove it
by performing jump threading;
3. The next iteration checks the block again and performs the threading.
This logic has a corner case: inserting the PR Phi increases block's size
by 1. If the block size at first check was max possible, one more Phi will
exceed this size, and we will neither perform threading nor remove the
created Phi node. As result, we will end up with worse IR than before.
This patch fixes this situation by excluding Phis from block size computation.
Excluding Phis from size computation for threading also makes sense by
itself because in case of threadign all those Phis will be removed.
Differential Revision: https://reviews.llvm.org/D81835
Reviewed By: asbirlea, nikic
It's possible for the first loop trip(s) to set the `Changed` Status, and to a
later one to early exit, in which case `Changed` must be return.
Differential Revision: https://reviews.llvm.org/D82753
Summary:
According to HowToUpdateDebugInfo.rst:
```
Preserving the debug locations of speculated instructions can make
it seem like a condition is true when it's not (or vice versa), which
leads to a confusing single-stepping experience
```
This patch follows the recommendation to drop debug locations on
speculated instructions.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82420
We want to add a way to avoid merging identical calls so as to keep the
separate debug-information for those calls. There is also an asan
usecase where having this attribute would be beneficial to avoid
alternative work-arounds.
Here is the link to the feature request:
https://bugs.llvm.org/show_bug.cgi?id=42783.
`nomerge` is different from `noline`. `noinline` prevents function from
inlining at callsites, but `nomerge` prevents multiple identical calls
from being merged into one.
This patch adds `nomerge` to disable the optimization in IR level. A
followup patch will be needed to let backend understands `nomerge` and
avoid tail merge at backend.
Reviewed By: asbirlea, rnk
Differential Revision: https://reviews.llvm.org/D78659
FoldBranchToCommonDest clones instructions to a different basic block,
but handles debug intrinsics in a separate path. Previously, when
cloning debug intrinsics, their operands were not updated to reference
the correct cloned values. As a result, we would emit debug.value
intrinsics with broken operand references which are discarded in later
passes. This leads to incorrect debuginfo that reports incorrect values
for variables.
Fix this by remapping debug intrinsic operands when cloning them.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45667.
Differential Revision: https://reviews.llvm.org/D79602
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Since intrinsics can now specify when an argument is required to be
constant, it is now OK to replace arguments with variables if they
aren't. This means intrinsics must now be accurately marked with
immarg.
This reverts commit 61b35e4111.
This commit causes a timeout in chromium builds; likely to have a
similar cause to the previous timeout issue caused by this commit (see
6ded69f294 for more details). It is possible that there is no way to
fix this bug that will not cause this issue; further investigations as
to the efficiency of handling large amounts of debug info will be
necessary.
This reverts commit 636c93ed11.
The original patch caused build failures on TSan buildbots. Commit 6ded69f294
fixes this issue by reducing the rate at which empty debug intrinsics
propagate, reducing the memory footprint and preventing a fatal spike.
This fixes a bug where a PHI node that is only referenced by a lifetime.end intrinsic in an otherwise empty cleanuppad can cause SimplyCFG to create an SSA violation while removing the empty cleanuppad. Theoretically the same problem can occur with debug intrinsics.
Differential Revision: https://reviews.llvm.org/D72540
basic blocks
Originally applied in 72ce759928.
Fixed a build failure caused by incorrect use of cast instead of
dyn_cast.
This reverts commit 8b0780f795.
AssumptionCache can be null in SimplifyCFGOptions. However, FoldCondBranchOnPHI() was not properly handling that when passing a null AssumptionCache to simplifyCFG.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: fhahn, lebedev.ri, spatel
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D69963
When basic blocks are killed, either due to being empty or to being an if.then
or if.else block whose complement contains identical instructions, some of the
debug intrinsics in that block are lost. This patch sinks those intrinsics
into the single successor block, setting them Undef if necessary to
prevent debug info from falling out-of-date.
Differential Revision: https://reviews.llvm.org/D70318
Similar to/extension of D70208 (rGee0882bdf866), but this one
may finally allow closing motivating bugs.
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
This is another step towards having FMF apply only to FP values
rather than those + fcmp. See PR38086 for one of the original
discussions/motivations:
https://bugs.llvm.org/show_bug.cgi?id=38086
And the test here is derived from PR39535:
https://bugs.llvm.org/show_bug.cgi?id=39535
Currently, we lose FMF when converting any phi to select in
SimplifyCFG. There are a small number of similar changes needed
to correct within SimplifyCFG, so it should be quick to patch
this pass up.
FMF was extended to select and phi with:
D61917
D67564
Differential Revision: https://reviews.llvm.org/D70208
This transformation is a variation on the GuardWidening transformation we have checked in as it's own pass. Instead of focusing on merge (i.e. hoisting and simplifying) two widenable branches, this transform makes the observation that simply removing a second slowpath block (by reusing an existing one) is often a very useful canonicalization. This may lead to later merging, or may not. This is a useful generalization when the intermediate block has loads whose dereferenceability is hard to establish.
As noted in the patch, this can be generalized further, and will be.
Differential Revision: https://reviews.llvm.org/D69689