Ilya Leoshkevich (<iii@linux.ibm.com>) reported an issue that
with -mattr=+alu32 CO-RE has a segfault in BPF MISimplifyPatchable
pass.
The pattern will be transformed by MISimplifyPatchable
pass looks like below:
r5 = ld_imm64 @"b:0:0$0:0"
r2 = ldw r5, 0
... r2 ... // use r2
The pass will remove the intermediate 'ldw' instruction
and replacing all r2 with r5 likes below:
r5 = ld_imm64 @"b:0:0$0:0"
... r5 ... // use r5
Later, the ld_imm64 insn will be replaced with
r5 = <patched immediate>
for field relocation purpose.
With -mattr=+alu32, the input code may become
r5 = ld_imm64 @"b:0:0$0:0"
w2 = ldw32 r5, 0
... w2 ... // use w2
Replacing "w2" with "r5" is incorrect and will
trigger compiler internal errors.
To fix the problem, if the register class of ldw* dest
register is sub_32, we just replace the original ldw*
register with:
w2 = w5
Directly replacing all uses of w2 with in-place
constructed w5 for the use operand seems not working in all cases.
The latest kernel will have -mattr=+alu32 on by default,
so added this flag to all CORE tests.
Tested with latest kernel bpf-next branch as well with this patch.
Differential Revision: https://reviews.llvm.org/D69438
Previously, debuginfo types are annotated to
IR builtin preserve_struct_access_index() and
preserve_union_access_index(), but not
preserve_array_access_index(). The debug info
is useful to identify the root type name which
later will be used for type comparison.
For user access without explicit type conversions,
the previous scheme works as we can ignore intermediate
compiler generated type conversions (e.g., from union types to
union members) and still generate correct access index string.
The issue comes with user explicit type conversions, e.g.,
converting an array to a structure like below:
struct t { int a; char b[40]; };
struct p { int c; int d; };
struct t *var = ...;
... __builtin_preserve_access_index(&(((struct p *)&(var->b[0]))->d)) ...
Although BPF backend can derive the type of &(var->b[0]),
explicit type annotation make checking more consistent
and less error prone.
Another benefit is for multiple dimension array handling.
For example,
struct p { int c; int d; } g[8][9][10];
... __builtin_preserve_access_index(&g[2][3][4].d) ...
It would be possible to calculate the number of "struct p"'s
before accessing its member "d" if array debug info is
available as it contains each dimension range.
This patch enables to annotate IR builtin preserve_array_access_index()
with proper debuginfo type. The unit test case and language reference
is updated as well.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D65664
llvm-svn: 367724
This is a followup patch for https://reviews.llvm.org/D61810/new/,
which adds new intrinsics preserve_{array,union,struct}_access_index.
Currently, only BPF backend utilizes preserve_{array,union,struct}_access_index
intrinsics, so all tests are compiled with BPF target.
https://reviews.llvm.org/D61524 already added some tests for these
intrinsics, but some of them pretty complex.
This patch added a few unit test cases focusing on individual intrinsic
functions.
Also made a few clarification on language reference for these intrinsics.
Differential Revision: https://reviews.llvm.org/D64606
llvm-svn: 366038