Summary:
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D51241
llvm-svn: 340750
Summary:
This CL implements v128.const for each vector type. New operand types
are added to ensure the vector contents can be serialized without LEB
encoding. Tests are added for instruction selection, encoding,
assembly and disassembly.
Reviewers: aheejin, dschuff, aardappel
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50873
llvm-svn: 340336
Add +fp16fml feature for new FP16 instructions, which are a
mandatory part of FP16 from v8.4-A and an optional part of FP16
from v8.2-A. It doesn't seem to be possible to model this in
LLVM, but the relationship between the options is handled by
the related clang patch.
In keeping with what I think is the usual practice, the fp16fml
extension is accepted regardless of base architecture version.
Builds on/replaces Sjoerd Meijer's patch to add these instructions at
https://reviews.llvm.org/D49839.
Differential Revision: https://reviews.llvm.org/D50228
llvm-svn: 340013
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: jfb, llvm-commits, aheejin, eraman, jgravelle-google, sbc100
Differential Revision: https://reviews.llvm.org/D50568
llvm-svn: 339474
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D49160
llvm-svn: 338164
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010
This is the lead-up to having SPE codegen. Add the rest of the
instructions, along with MC tests.
Differential Revision: https://reviews.llvm.org/D44829
llvm-svn: 337346
Summary:
If LOCK prefix is not the first prefix in an instruction, LLVM
disassembler silently drops the prefix.
The fix is to select a proper instruction with a builtin LOCK prefix if
one exists.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49001
llvm-svn: 336400
This adds the following system registers:
- RAS registers,
- MPAM registers,
- Activitiy monitor registers,
- Trace Extension registers,
- Timing insensitivity of data processing instructions,
- Enhanced Support for Nested Virtualization.
Differential Revision: https://reviews.llvm.org/D48871
llvm-svn: 336193
The %eiz/%riz are dummy registers that force the encoder to emit a SIB byte when it normally wouldn't. By emitting them in the disassembly output we ensure that assembling the disassembler output would also produce a SIB byte.
This should match the behavior of objdump from binutils.
llvm-svn: 335768
When the condition code for an IT instruction is "AL" we get strange "15"
predicates on subsequent instructions. These are dealt with for most
instructions by treating them as "ARMCC::AL", but VFP takes a different path
which didn't have this code.
llvm-svn: 335594
Summary:
One for register based, much like the existing definitions,
and one for stack based (suffix _S).
This allows us to use registers in most of LLVM (which works better),
and stack based in MC (which results in a simpler and more readable
assembler / disassembler).
Tried to keep this change as small as possible while passing tests,
follow-up commit will:
- Add reg->stack conversion in MI.
- Fix asm/disasm in MC to be stack based.
- Fix emitter to be stack based.
tests passing:
llvm-lit -v `find test -name WebAssembly`
test/CodeGen/WebAssembly
test/MC/WebAssembly
test/MC/Disassembler/WebAssembly
test/DebugInfo/WebAssembly
test/CodeGen/MIR/WebAssembly
test/tools/llvm-objdump/WebAssembly
Reviewers: dschuff, sbc100, jgravelle-google, sunfish
Subscribers: aheejin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48183
llvm-svn: 334985
These encodings correspond to the cases in the normal encoding scheme where there is no index and our modrm reading code initially decodes it as such. The VSIB handling code tried to compensate for this, but failed to add the base needed to make later code do the right thing.
Fixes PR37712.
llvm-svn: 334121
A 5-bit value can occur when EVEX.X is 0 due to it being used to extend modrm.rm to encode XMM16-31. But if modrm.rm instead encodes a GPR, the Intel documentation says EVEX.X should be ignored so just mask it to 4 bits once we know its a GPR.
llvm-svn: 333725
EVEX.X is used to extended modrm.rm when the instruction encodes a XMM/YMM/ZMM register. But we aren't properly ignoring it when it encodes a GPR and we end up printing whatever registers exist in X86 register enum after the GPRs.
llvm-svn: 333724
This was an accidental side effect of EVEX.X being used to encode XMM16-XMM31 using modrm.rm with modrm.mod==0x3.
I think there are still more bugs related to this.
llvm-svn: 333722
As part of this effort, duplicate and correct the predicates of some
aliases. Also disable code generation of some short form instructions
for FastISel, as it would otherwise reject them.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D47075
llvm-svn: 333530
Previously, their listed predicates were overridden at the scope level.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46947
llvm-svn: 333405
Previously the compiler was using the microMIPSR3 variants, incorrectly.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46948
llvm-svn: 332820
This implements a new table-gen emitter to create tables for
a wasm disassembler, and a dissassembler to use them.
Comes with 2 tests, that tests a few instructions manually. Is also able to
disassemble large .wasm files with objdump reasonably.
Not working so well, to be addressed in followups:
- objdump appears to be passing an incorrect starting point.
- since the disassembler works an instruction at a time, and it is
disassembling stack instruction, it has no idea of pseudo register assignments.
These registers are required for the instruction printing code that follows.
For now, all such registers appear in the output as $0.
Patch by Wouter van Oortmerssen
Differential Revision: https://reviews.llvm.org/D45848
llvm-svn: 332052
Summary:
and use the -msgx flag as a requirement
for the SGX instructions.
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D46436
llvm-svn: 331742
Previously for instructions like fxsave we would print "opaque ptr" as part of the memory operand. Now we print nothing.
We also no longer accept "opaque ptr" in the parser. We still accept any size to be specified for these instructions, but we may want to consider only parsing when no explicit size is specified. This what gas does.
llvm-svn: 331243
This allows the instruction selection to follow mode in Intel syntax. And allows a suffix to be used to change size.
This matches gas behavior from what I could tell.
llvm-svn: 331138
This encoding is recognized by the CPU, but the behavior is undefined. This makes the disassembler handle it correctly so we don't print bswapl with a 16-bit register.
llvm-svn: 330682
This demonstrates a bug where the encoding for a 16-bit bswap prints a 16-bit register and a 32-bit mnemonic. Intel docs say 16-bit bswap is undefined. We should either claim it as an invalid encoding or we should print a 16-bit mnemonic.
objdump does print the encoding as bswap with a 16-bit register. But it doesn't seem to ever print a suffix.
llvm-svn: 330621
Three new instructions:
umonitor - Sets up a linear address range to be
monitored by hardware and activates the monitor.
The address range should be a writeback memory
caching type.
umwait - A hint that allows the processor to
stop instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
tpause - Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.
Also modifying the description of the mfence
instruction, as the rep prefix (0xF3) was allowed
before, which would conflict with umonitor during
disassembly.
Before:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
mfence
After:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
umonitor %rax
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45253
llvm-svn: 330462
The destination size of the movzx/movsx instruction is controlled by the normal operand size mechanisms. Only the input type is fixed.
This means that a 0x66 prefix on the encoding for zext/sext 16->32 should really produce a 16->16 instruction. Functionally this is equivalent to a GR16->GR16 move since bits 16 and above will be preserved. So nothing is actually extended.
llvm-svn: 330078
Hint to hardware to move the cache line containing the
address to a more distant level of the cache without
writing back to memory.
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45256
llvm-svn: 329992
Similar to the wbinvd instruction, except this
one does not invalidate caches. Ring 0 only.
The encoding matches a wbinvd instruction with
an F3 prefix.
Reviewers: craig.topper, zvi, ashlykov
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D43816
llvm-svn: 329847
This patch handling:
Enable parsing of raw encodings of system registers .
Allows UNPREDICTABLE sysregs to be decoded to a raw number in the same way that disasslib does, rather than llvm crashing.
Disassemble msr/mrs with unpredictable sysregs as SoftFail.
Fix regression due to SoftFailing some encodings.
Patch by Chris Ryder
Differential revision:https://reviews.llvm.org/D43374
llvm-svn: 326803
The following set of instructions was originally planned to be added for Power 9
and so code was added to support them. However, a decision was made later on to
withdraw support for these instructions in the hardware.
xscmpnedp
xvcmpnesp
xvcmpnedp
This patch removes support for the instructions that were not added.
Differential Revision: https://reviews.llvm.org/D43641
llvm-svn: 325918
Summary:
This patch makes the decoder understand old AMD 3DNow!
instructions that have never been properly supported in the X86
disassembler, despite being supported in other subsystems. Hopefully
this should make the X86 decoder more complete with respect to binaries
containing legacy code.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits, maksfb, bruno
Differential Revision: https://reviews.llvm.org/D43311
llvm-svn: 325295
The bound instruction does not have reversed operands in gas.
Fixes PR27653.
Patch by Maya Madhavan.
Differential Revision: https://reviews.llvm.org/D43243
llvm-svn: 325178
ARMDisassembler now depends on the banked register tables in ARMUtils, so the
LLVMBuild.txt needed updating to reflect this.
Original commit mesage:
[ARM] Fix disassembly of invalid banked register moves
When disassembling banked register move instructions, we don't have an
assembly syntax for the unallocated register numbers, so we have to
return Fail rather than SoftFail. Previously we were returning SoftFail,
then crashing in the InstPrinter as we have no way to represent these
encodings in an assembly string.
This also switches the decoder to use the table-generated list of banked
registers, removing the duplicated list of encodings.
Differential revision: https://reviews.llvm.org/D43066
llvm-svn: 324606
The broken bot (clang-ppc64le-linux-multistage) is doign a shared-object build,
so I guess using lookupBankedRegByEncoding in the disassembler is a layering
violation?
llvm-svn: 324604
When disassembling banked register move instructions, we don't have an
assembly syntax for the unallocated register numbers, so we have to
return Fail rather than SoftFail. Previously we were returning SoftFail,
then crashing in the InstPrinter as we have no way to represent these
encodings in an assembly string.
This also switches the decoder to use the table-generated list of banked
registers, removing the duplicated list of encodings.
Differential revision: https://reviews.llvm.org/D43066
llvm-svn: 324600
Instructions affected:
mthc1, mfhc1, add.d, sub.d, mul.d, div.d,
mov.d, neg.d, cvt.w.d, cvt.d.s, cvt.d.w, cvt.s.d
These instructions are now defined for
microMIPS32r3 + microMIPS32r6 in MicroMipsInstrFPU.td
since they shared their encoding with those already defined
in microMIPS32r6InstrInfo.td and have been therefore
removed from the latter file.
Some instructions present in MicroMipsInstrFPU.td which
did not have both AFGR64 and FGR64 variants defined have
been altered to do so.
Differential revision: https://reviews.llvm.org/D42738
llvm-svn: 324584
This fixes bugzilla 33011
https://bugs.llvm.org/show_bug.cgi?id=33011
Defines bits {19-16} as zero or unpredictable as specified by the ARM ARM in
sections A8.8.116 and A8.8.117.
It fixes also the usage of PC register as destination register for MVN
register-shifted register version as specified in A8.8.117.
Differential Revision: https://reviews.llvm.org/D41905
llvm-svn: 323954
- Alter abs for micromips to have both AFGR64 and FGR64
variants, same as sqrt
- Remove sqrt and abs from MicroMips32r6InstrInfo.td,
use micromips FGR64 variants
- Restrict non-micromips abs/sqrt with NotInMicroMips
predicate
Differential revision: https://reviews.llvm.org/D41439
llvm-svn: 323184
While the suffix isn't required to disambiguate the instructions, it is required in order to parse the instructions when the suffix is specified in order to match the GNU assembler.
llvm-svn: 322354
This behavior existed to work with an old version of the gnu assembler on MacOS that only accepted this form. Newer versions of GNU assembler and the current LLVM derived version of the assembler on MacOS support movq as well.
llvm-svn: 321898
Previously prefetch was only considered legal if sse was enabled, but it should be supported with 3dnow as well.
The prfchw flag now imply at least some form of prefetch without the write hint is available, either the sse or 3dnow version. This is true even if 3dnow and sse are explicitly disabled.
Similarly prefetchwt1 feature implies availability of prefetchw and the the prefetcht0/1/2/nta instructions. This way we can support _MM_HINT_ET0 using prefetchw and _MM_HINT_ET1 with prefetchwt1. And its assumed that if we have levels for the write hint we would have levels for the non-write hint, thus why we enable the sse prefetch instructions.
I believe this behavior is consistent with gcc. I've updated the prefetch.ll to test all of these combinations.
llvm-svn: 321335
Implement the 'Current Cache Size' register that has been introduced
as part of the Armv8.3 architecture. I originally missed this, and
(hopefully) should be the final patch for assembler support.
Differential Revision: https://reviews.llvm.org/D41396
llvm-svn: 321155
Stores failed to decode at all since they didn't have a
DecoderNamespace set. Loads worked, but did not change
the register width displayed to match the numbmer of
enabled channels.
The number of printed registers for vaddr is still wrong,
but I don't think that's encoded in the instruction so
there's not much we can do about that.
Image atomics are still broken. MIMG is the same
encoding for SI/VI, but the image atomic classes
are split up into encoding specific versions unlike
every other MIMG instruction. They have isAsmParserOnly
set on them for some reason. dmask is also special for
these, so we probably should not have it as an explicit
operand as it is now.
llvm-svn: 320614
All files and parts of files related to microMIPS4R6 are removed.
When target is microMIPS4R6, errors are printed.
This is LLVM part of patch.
Differential Revision: https://reviews.llvm.org/D35625
llvm-svn: 320350
This adds assembly & disassembly support for the e500mc "external pid"
instructions.
See https://reviews.llvm.org/D39249.
Patch by vit9696 <vit9696@avp.su>
llvm-svn: 320287
Summary:
This patch fixes an issue so that the right alias is printed when the instruction has tied operands. It checks the number of operands in the resulting instruction as opposed to the alias, and then skips over tied operands that should not be printed in the alias.
This allows to generate the preferred assembly syntax for the AArch64 'ins' instruction, which should always be displayed as 'mov' according to the ARM Architecture Reference Manual. Several unit tests have changed as a result, but only to reflect the preferred disassembly. Some other InstAlias patterns (movk/bic/orr) needed a slight adjustment to stop them becoming the default and breaking other unit tests.
Please note that the patch is mostly the same as https://reviews.llvm.org/D29219 which was reverted because of an issue found when running TableGen with the Address Sanitizer. That issue has been addressed in this iteration of the patch.
Reviewers: rengolin, stoklund, huntergr, SjoerdMeijer, rovka
Reviewed By: rengolin, SjoerdMeijer
Subscribers: fhahn, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D40030
llvm-svn: 318650
This adjusts the tests to hopfully pacify the
llvm-clang-x86_64-expensive-checks-win buildbot.
Unlike many other instructions, these instructions have aliases which
take coprocessor registers, gpr register, accumulator (and dsp accumulator)
registers, floating point registers, floating point control registers and
coprocessor 2 data and control operands.
For the moment, these aliases are treated as pseudo instructions which are
expanded into the underlying instruction. As a result, disassembling these
instructions shows the underlying instruction and not the alias.
Reviewers: slthakur, atanasyan
Differential Revision: https://reviews.llvm.org/D35253
llvm-svn: 318207
Previously, the 'movep' instruction was defined for microMIPS32r3 and
shared that definition with microMIPS32R6. 'movep' was re-encoded for
microMIPS32r6, so this patch provides the correct encoding.
Secondly, correct the encoding of the 'rs' and 'rt' operands which have
an instruction specific encoding for the registers those operands accept.
Finally, correct the decoding of the 'dst_regs' operand which was extracting
the relevant field from the instruction, but was actually extracting the
field from the alreadly extracted field.
Reviewers: atanasyan
Differential Revision: https://reviews.llvm.org/D39495
llvm-svn: 317475
These instructions were previously marked as codegen only preventing
them from being assembled as microMIPS or disassembled.
Reviewers: atanasyan, abeserminji
Differential Revision: https://reviews.llvm.org/D39123
llvm-svn: 316656
This introduces a new operand type to encode the whether the index register should be XMM/YMM/ZMM. And new code to fixup the results created by readSIB.
This has the nice effect of removing a bunch of code that hard coded the name of every GATHER and SCATTER instruction to map the index type.
This fixes PR32807.
llvm-svn: 316273
Previously these instructions were marked codegen only and had
an under-specified instruction description that did not record the
fcc register.
Reviewers: atanasyan, abeserminji
Differential Revision: https://reviews.llvm.org/D38847
llvm-svn: 315905
Previously, instructions that were defined to use the FGR64 register class
were associated with the Mips64 table which was incorrect.
Reviewers: nitesh.jain, atanasyan
Differential Revision: https://reviews.llvm.org/D38454
llvm-svn: 314976
Summary:
Intel documentation shows the memory operand as the first operand. But we currently treat it as the second operand. Conceptually the order doesn't matter since it doesn't write memory. We have aliases to parse with the operands in either order and the isel matching is commutable.
For the register®ister form order does matter for the assembly parser. PR22995 was previously filed and fixed by changing the register®ister form from MRMSrcReg to MRMDestReg to match gas. Ideally the memory form should match by using MRMDestMem.
I believe this supercedes D38025 which was trying to switch the register®ister form back to pre-PR22995.
Reviewers: aymanmus, RKSimon, zvi
Reviewed By: aymanmus
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38120
llvm-svn: 314639
New instructions are added to AArch32 and AArch64 to aid
floating-point multiplication and addition of complex numbers, where
the complex numbers are packed in a vector register as a pair of
elements. The Imaginary part of the number is placed in the more
significant element, and the Real part of the number is placed in the
less significant element.
This patch adds assembler for the ARM target.
Differential Revision: https://reviews.llvm.org/D36789
llvm-svn: 314511
The other members of the dext family of instructions (dextm, dextu) are
traditionally handled by the assembler selecting the right variant of
'dext' depending on the values of the position and size operands.
When these instructions are disassembled, rather than reporting the
actual instruction, an equivalent aliased form of 'dext' is generated
and is reported. This is to mimic the behaviour of binutils.
Reviewers: slthakur, nitesh.jain, atanasyan
Differential Revision: https://reviews.llvm.org/D34887
llvm-svn: 313276
Traditionally GAS has provided automatic selection between dins, dinsm and
dinsu. Binutils also disassembles all instructions in that family as 'dins'
rather than the actual instruction.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D34877
llvm-svn: 313267
New instructions are added to AArch32 and AArch64 to aid
floating-point multiplication and addition of complex numbers,
where the complex numbers are packed in a vector register as a
pair of elements. The Imaginary part of the number is placed in the
more significant element, and the Real part of the number is placed
in the less significant element.
Differential Revision: https://reviews.llvm.org/D36792
llvm-svn: 312228
The IDSAR6 system register has been introduced to identify the
v8.3-a Javascript data type conversion and v8.2-a dot product
support.
Differential Revision: https://reviews.llvm.org/D37068
llvm-svn: 312225
Differential Revision: https://reviews.llvm.org/D36788
M lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
M lib/Target/X86/Disassembler/X86DisassemblerDecoder.h
A test/MC/Disassembler/X86/prefixes-i386.s
A test/MC/Disassembler/X86/prefixes-x86_64.s
M test/MC/Disassembler/X86/prefixes.txt
llvm-svn: 311882
Armv8.3-A adds instructions that convert a double-precision floating
point number to a signed 32-bit integer with round towards zero,
designed for improving Javascript performance.
Differential Revision: https://reviews.llvm.org/D36785
llvm-svn: 311448
This adjusts the tests to hopfully pacify the llvm-clang-x86_64-expensive-checks-win
buildbot.
Unlike many other instructions, these instructions have aliases which
take coprocessor registers, gpr register, accumulator (and dsp accumulator)
registers, floating point registers, floating point control registers and
coprocessor 2 data and control operands.
For the moment, these aliases are treated as pseudo instructions which are
expanded into the underlying instruction. As a result, disassembling these
instructions shows the underlying instruction and not the alias.
Reviewers: slthakur, atanasyan
Differential Revision: https://reviews.llvm.org/D35253
llvm-svn: 310834
Add assembler and disassembler support for the ARMv8.3-A pointer
authentication instructions.
Differential Revision: https://reviews.llvm.org/D36517
llvm-svn: 310709
Added assembler and disassembler support for the new Release
Consistent processor consistent instructions, introduced with ARM
v8.3-A for AArch64.
Differential Revision: https://reviews.llvm.org/D36522
llvm-svn: 310575
This reverts r310243. Only MVFR2 is actually restricted to v8 and it'll be a
little while before we can get a proper fix together. Better that we allow
incorrect code than reject correct in the meantime.
llvm-svn: 310384
This patch addresses two issues with assembly and disassembly for VMRS/VMSR:
1.currently VMRS/VMSR instructions accessing fpsid, mvfr{0-2} and fpexc, are
accepted for non ARMv8-A targets.
2. all VMRS/VMSR instructions accept writing/reading to PC and SP, when only
ARMv7-A and ARMv8-A should be allowed to write/read to SP and none to PC.
This patch addresses those issues and adds tests for these cases.
Differential Revision: https://reviews.llvm.org/D36306
llvm-svn: 310243
This adds support for the new 128-bit vector float instructions of z14.
Note that these instructions actually only operate on the f128 type,
since only each 128-bit vector register can hold only one 128-bit
float value. However, this is still preferable to the legacy 128-bit
float instructions, since those operate on pairs of floating-point
registers (so we can hold at most 8 values in registers), while the
new instructions use single vector registers (so we hold up to 32
value in registers).
Adding support includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions. This includes allocating the f128
type now to the VR128BitRegClass instead of FP128BitRegClass.
- Scheduler description support for the instructions.
Note that for a small number of operations, we have no new vector
instructions (like integer <-> 128-bit float conversions), and so
we use the legacy instruction and then reformat the operand
(i.e. copy between a pair of floating-point registers and a
vector register).
llvm-svn: 308196
This adds support for the new 32-bit vector float instructions of z14.
This includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions, including new LLVM intrinsics.
- Scheduler description support for the instructions.
- Update to the vector cost function calculations.
In general, CodeGen support for the new v4f32 instructions closely
matches support for the existing v2f64 instructions.
llvm-svn: 308195
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for new instructions (except vector 32-bit float and 128-bit float).
- CodeGen for new instructions, including new LLVM intrinsics.
- Scheduler description for the new processor.
- Detection of z14 as host processor.
Support for the new 32-bit vector float and 128-bit vector float
instructions is provided by separate patches.
llvm-svn: 308194
Unlike many other instructions, these instructions have aliases which
take coprocessor registers, gpr register, accumulator (and dsp accumulator)
registers, floating point registers, floating point control registers and
coprocessor 2 data and control operands.
For the moment, these aliases are treated as pseudo instructions which are
expanded into the underlying instruction. As a result, disassembling these
instructions shows the underlying instruction and not the alias.
Reviewers: slthakur, atanasyan
Differential Revision: https://reviews.llvm.org/D35253
The last version of this patch broke one of the expensive checks buildbots,
this version changes the failing test/MC/Mips/mt/invalid.s and other invalid
tests to write the errors to a file and run FileCheck on that, rather than
relying on the 'not llvm-mc ... <%s 2>&1 | Filecheck %s' idiom.
Hopefully this will sarisfy the buildbot.
llvm-svn: 308023
Unlike many other instructions, these instructions have aliases which
take coprocessor registers, gpr register, accumulator (and dsp accumulator)
registers, floating point registers, floating point control registers and
coprocessor 2 data and control operands.
For the moment, these aliases are treated as pseudo instructions which are
expanded into the underlying instruction. As a result, disassembling these
instructions shows the underlying instruction and not the alias.
Reviewers: slthakur, atanasyan
Differential Revision: https://reviews.llvm.org/D35253
llvm-svn: 307836
This adds all remaining instructions that were still missing, mostly
privileged and semi-privileged system-level instructions. These are
provided for use with the assembler and disassembler only.
This brings the LLVM assembler / disassembler to parity with the
GNU binutils tools.
llvm-svn: 306876
There are a few instructions provided by the high-word facility (z196)
that we cannot easily exploit for code generation. This patch at least
adds those missing instructions for the assembler and disassembler.
This means that now all nonprivileged instructions up to z13 are
supported by the LLVM assembler / disassembler.
llvm-svn: 306821
After fixing (r306173) a failing test in the lld test suite (r306173),
reland r306095.
Original commit message:
[mips] Fix register positions in the aui/daui instructions
Swapped the position of the rt and rs register in the aui/daui
instructions for mips32r6 and mips64r6. With this change, the format of
the generated instructions complies with specifications and GCC.
Patch by Milos Stojanovic.
llvm-svn: 306174
ELF/mips-plt-r6.s in lld-test is failing. Reverting the change.
Original commit message:
[mips] Fix register positions in the aui/daui instructions
Swapped the position of the rt and rs register in the aut/daui
instructions for mips32r6 and mips64r6. With this change, the format of
the generated instructions complies with specifications and GCC.
Patch by Milos Stojanovic.
llvm-svn: 306099
Swapped the position of the rt and rs register in the aut/daui instructions
for mips32r6 and mips64r6. With this change, the format of the generated
instructions complies with specifications and GCC.
Patch by Milos Stojanovic.
Differential Revision: https://reviews.llvm.org/D33988
llvm-svn: 306095
Intrinsic already existed for llvm.SI.tbuffer.store
Needed tbuffer.load and also re-implementing the intrinsic as llvm.amdgcn.tbuffer.*
Added CodeGen tests for the 2 new variants added.
Left the original llvm.SI.tbuffer.store implementation to avoid issues with existing code
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr
Differential Revision: https://reviews.llvm.org/D30687
llvm-svn: 306031
A new Gfx9 dasm test added with approx 29000 cases.
Existing tests extended by (approx.):
* Gfx7 asm: 5000 test cases
* Gfx8 asm: 5000 test cases
* Gfx9 asm: 14400 test cases
* Gfx8 dasm: 5200 test cases
llvm-svn: 305702
Note that if we need the result of both the divide and the modulo then we
compute the modulo based on the result of the divide and not using the new
hardware instruction.
Commit on behalf of STEFAN PINTILIE.
Differential Revision: https://reviews.llvm.org/D33940
llvm-svn: 305210
Changed immediate type for repl.ph from uimm10 to simm10 as per the specs.
Repl.qb still accepts uimm8. Both instructions now mimic the behaviour of
GNU as.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D33594
llvm-svn: 304918
This adds assembler / disassembler support for the decimal
floating-point instructions. Since LLVM does not yet have
support for decimal float types, these cannot be used for
codegen at this point.
llvm-svn: 304203
This adds assembler / disassembler support for the hexadecimal
floating-point instructions. Since the Linux ABI does not use
any hex float data types, these are not useful for codegen.
llvm-svn: 304202
AVX512_VPOPCNTDQ is a new feature set that was published by Intel.
The patch represents the LLVM side of the addition of two new intrinsic based instructions (vpopcntd and vpopcntq).
Differential Revision: https://reviews.llvm.org/D33169
llvm-svn: 303858
According to Power ISA V3.0 document, the first source operand of mtvsrdd is constant 0 if r0 is specified. So the corresponding register constraint should be g8rc_nox0.
This bug caused wrong output generated by 401.bzip2 when -mcpu=power9 and fdo are specified.
Differential Revision: https://reviews.llvm.org/D32880
llvm-svn: 302834
We don't use it and it was removed in gfx9, and the encoding
bit repurposed.
Additionally actually using it requires changing the output register
class, which wasn't done anyway.
llvm-svn: 302814
This adds a few missing instructions for the assembler and
disassembler. Those should be the last missing general-
purpose (Chapter 7) instructions for the z10 ISA.
llvm-svn: 302667
This adds the remaining general arithmetic instructions
for assembler / disassembler use. Most of these are not
useful for codegen; a few might be, and those are listed
in the README.txt for future improvements.
llvm-svn: 302665
The assembler and disassmebler test cases started out formatted and
sorted in a particular way, but this got lost over time as patches
were added. Reformat them again. NFC.
llvm-svn: 302642
That's only a required extension as of v8.1a.
Remove it from the "generic" CPU as well: it should only support the
base ISA (and binutils agrees).
Also unify the MC tests into crc.s and arm64-crc32.s
llvm-svn: 302077
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).
Reapplied - this time without changing line endings of existing files.
Differential Revision: https://reviews.llvm.org/D32769
llvm-svn: 302041
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).
Differential Revision: https://reviews.llvm.org/D32769
llvm-svn: 302028
The unused dummy src2_modifiers is missing, so it crashes
when trying to print it.
I tried to fully remove src2_modifiers, but there are some
irritations in the places where it is converted to mad since
it starts to require modifying use lists while iterating over
them.
llvm-svn: 299861
- corrected DS_GWS_* opcodes (see VI_Shader_Programming#16.pdf for detailed description)
- address operand is not used
- several opcodes have data operand
- all opcodes have offset modifier
- DS_AND_SRC2_B32: corrected typo in mnemo
- DS_WRAP_RTN_F32 replaced with DS_WRAP_RTN_B32
- added CI/VI opcodes:
- DS_CONDXCHG32_RTN_B64
- DS_GWS_SEMA_RELEASE_ALL
- added VI opcodes:
- DS_CONSUME
- DS_APPEND
- DS_ORDERED_COUNT
Differential Revision: https://reviews.llvm.org/D31707
llvm-svn: 299767
mfvrd and mffprd are both alias to mfvrsd.
This patch enables correct parsing of the aliases, but we still emit a mfvrsd.
Committing on behalf of brunoalr (Bruno Rosa).
Differential Revision: https://reviews.llvm.org/D29177
llvm-svn: 297849
This patch does the following.
1. Adds an Intrinsic int_x86_clzero which works with __builtin_ia32_clzero
2. Identifies clzero feature using cpuid info. (Function:8000_0008, Checks if EBX[0]=1)
3. Adds the clzero feature under znver1 architecture.
4. The custom inserter is added in Lowering.
5. A testcase is added to check the intrinsic.
6. The clzero instruction is added to assembler test.
Patch by Ganesh Gopalasubramanian with a couple formatting tweaks, a disassembler test, and using update_llc_test.py from me.
Differential revision: https://reviews.llvm.org/D29385
llvm-svn: 294558
This patch checks the number of operands in the resulting
instruction instead of just the alias, then skips over
tied operands when generating the printing method.
This allows us to generate the preferred assembly syntax
for the AArch64 'ins' instruction, which should always be
displayed as 'mov' according to the ARMARM.
Several unit tests have changed as a result, but only to
reflect the preferred disassembly.
Some other InstAlias patterns (movk/bic/orr) needed a
slight adjustment to stop them becoming the default
and breaking other unit tests.
Patch by Graham Hunter.
Differential Revision: https://reviews.llvm.org/D29219
llvm-svn: 294437
Summary:
Adds the following instructions:
* mfpmr
* mtpmr
* icblc
* icblq
* icbtls
Fix the scheduling for mtspr on e5500, which uses CFX0, instead of
SFX0/SFX1 as on e500mc.
Addresses PR 31538.
Differential Revision: https://reviews.llvm.org/D29002
llvm-svn: 293417
Summary: Small change to get the FREEP instruction to decode properly.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29193
llvm-svn: 293314
Reason: broke ASAN bots with a global buffer overflow.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/2291
Each test contains 20-30K test cases but takes only several (from 4 to 10)
seconds to complete on average machine. The tests cover the majority of
AMDGPU Gfx7/Gfx8 instructions, including many dark corners, and intended
to quickly find out if something is broken.
llvm-svn: 292974
Each test contains 20-30K test cases but takes only several (from 4 to 10)
seconds to complete on average machine. The tests cover the majority of
AMDGPU Gfx7/Gfx8 instructions, including many dark corners, and intended
to quickly find out if something is broken.
llvm-svn: 292922
Permit explicit $fcc<X> operand in c.cond.fmt instruction.
Add c.cond.fmt to the MIPS to microMIPS instruction mapping table.
Check that $fcc1 - $fcc7 are unusable for MIPS-I to MIPS-III for
c.cond.fmt, bc1t, bc1f.
Reviewers: seanbruno, zoran.jovanovic, vkalintiris
Differential Revision: https://reviews.llvm.org/D24510
llvm-svn: 292117
Summary: Real instruction should copy constraints from real instruction. This allows auto-generated disassembler to correctly process tied operands.
Reviewers: nhaustov, vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D27847
llvm-svn: 290336
Since 32-bit instructions with 32-bit input immediate behavior
are used to materialize 16-bit constants in 32-bit registers
for 16-bit instructions, determining the legality based
on the size is incorrect. Change operands to have the size
specified in the type.
Also adds a workaround for a disassembler bug that
produces an immediate MCOperand for an operand that
is supposed to be OPERAND_REGISTER.
The assembler appears to accept out of bounds immediates and
truncates them, but this seems to be an issue for 32-bit
already.
llvm-svn: 289306
Add assembler support for all atomic instructions that weren't already
supported. Some of those could be used to implement codegen for 128-bit
atomic operations, but this isn't done here yet.
llvm-svn: 288526
Add assembler support for instructions manipulating the FPC.
Also add codegen support via the GCC compatibility builtins:
__builtin_s390_sfpc
__builtin_s390_efpc
llvm-svn: 288525
This adds assembler support for the instructions provided by the
execution-hint facility (NIAI and BP(R)P). This required adding
support for the new relocation types for 12-bit and 24-bit PC-
relative offsets used by the BP(R)P instructions.
llvm-svn: 288031
This patch adds assembler support for the remaining branch instructions:
the non-relative branch on count variants, and all variants of branch
on index.
The only one of those that can be readily exploited for code generation
is BRCTH (branch on count using a high 32-bit register as count). Do
use it, however, it is necessary to also introduce a hew CHIMux pseudo
to allow comparisons of a 32-bit value agains a short immediate to go
into a high register as well (implemented via CHI/CIH).
This causes a bit of codegen changes overall, but those have proven to
be neutral (or even beneficial) in performance measurements.
llvm-svn: 288029
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.
To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks. It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.
Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.
Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa). These are converted back to a branch sequence
after register allocation. Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.
Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.
llvm-svn: 288028
This adds support for the compare logical and trap (memory)
instructions that were added as part of the miscellaneous
instruction extensions feature with zEC12.
llvm-svn: 286587
This adds support for the LZRF/LZRG/LLZRGF instructions that were
added on z13, and uses them for code generation were appropriate.
SystemZDAGToDAGISel::tryRISBGZero is updated again to prefer LLZRGF
over RISBG where both would be possible.
llvm-svn: 286586
This adds support for the 31-to-64-bit zero extension instructions
LLGT and LLGTR and uses them for code generation where appropriate.
Since this operation can also be performed via RISBG, we have to
update SystemZDAGToDAGISel::tryRISBGZero so that we prefer LLGT
over RISBG in case both are possible. The patch includes some
simplification to the tryRISBGZero code; this is not intended
to cause any (further) functional change in codegen.
llvm-svn: 286585
This completes assembler / disassembler support for all BFP
instructions provided by the floating-point extensions facility.
The instructions added here are not currently used for codegen.
llvm-svn: 286285
Add several instructions that operate on the program mask
or the addressing mode. These are not really needed for
code generation under Linux, but are provided for completeness
for the assembler/disassembler.
llvm-svn: 286284
Add the 16 access registers as LLVM registers. This allows removing
a lot of special cases in the assembler and disassembler where we
were handling access registers; this can all just use the generic
register code now.
Also add a bunch of instructions to operate on access registers,
for assembler/disassembler use only. No change in code generation
intended.
llvm-svn: 286283
Rework patterns for branches, call & return instructions,
compare-and-branch, compare-and-trap, and conditional move
instructions.
In particular, simplify creation of patterns for the extended
opcodes of instructions that take a CC mask.
Also, use semantical instruction classes for all the instructions
instead of open-coding them in SystemZInstrInfo.td.
Adds a couple of the basic branch instructions (that are unused
for codegen) for the assembler/disassembler.
llvm-svn: 286263
Fixes Bug 30808.
Note that passing subtarget information to predicates seems too complicated, so gfx8-specific def smrd_offset_20 introduced.
Old gfx6/7-specific def renamed to smrd_offset_8 for clarity.
Lit tests updated.
Differential Revision: https://reviews.llvm.org/D26085
llvm-svn: 285590
LLVM currently treats the first operand of MVCK as if it were a
regular base+index+displacement address. However, it is in fact
a base+displacement combined with a length register field.
While the two might look syntactically similar, there are two
semantic differences:
- %r0 is a valid length register, even though it cannot be used
as an index register.
- In an expression with just a single register like 0(%rX), the
register is treated as base with normal addresses, while it is
treated as the length register (with an empty base) for MVCK.
Fixed by adding a new operand parser class BDRAddr and reworking
the assembler parser to distinguish between address + length
register operands and regular addresses.
llvm-svn: 285574
Most z13 vector instructions have a base form where the data type of
the operation (whether to consider the vector to be 16 bytes, 8
halfwords, 4 words, or 2 doublewords) is encoded into a mask field,
and then a set of extended mnemonics where the mask field is not
present but the data type is encoded into the mnemonic name.
Currently, LLVM only supports the type-specific forms (since those
are really the ones needed for code generation), but not the base
type-generic forms.
To complete the assembler support and make it fully compatible with
the GNU assembler, this commit adds assembler aliases for all the
base forms of the various vector instructions.
It also adds two more alias forms that are documented in the PoP:
VFPSO/VFPSODB/WFPSODB -- generic form of VFLCDB etc.
VNOT -- special variant of VNO
llvm-svn: 284586
The vfee[bhf], vfene[bhf], and vistr[bhf] assembler mnemonics are
documented in the Principles of Operation to have an optional last
operand to encode arbitrary values in a mask field.
This commit adds support for those optional operands, and cleans up
the patterns to generate vector string instruction as bit. No change
to code generation intended.
llvm-svn: 284585
For compatiblity with binutils, define these instructions to take
two registers with a 16bit unsigned immediate. Both of the registers
have to be same for dahi and dati.
Reviewers: dsanders, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D21473
llvm-svn: 284218
These instructions were only defined for microMIPSR6 previously. Add
definitions for MIPSR6, correct definitions for microMIPSR6, flag these
instructions as having unmodelled side effects (they disable/enable
virtual processors) and add missing disassember tests for microMIPSR6.
Reviewers: vkalintiris
Differential Review: https://reviews.llvm.org/D24291
llvm-svn: 284115
Add rsqrt.[ds], recip.[ds] for MIPS. Correct the microMIPS definitions for
architecture support and register usage.
Reviewers: vkalintiris, zoran.jovanoic
Differential Review: https://reviews.llvm.org/D24499
llvm-svn: 283334
Add rsqrt.[ds], recip.[ds] for MIPS. Correct the microMIPS definitions for
architecture support and register usage.
Reviewers: vkalintiris, zoran.jovanoic
Differential Review: https://reviews.llvm.org/D24499
llvm-svn: 282485
For compatiblity with binutils, define these instructions to take
two registers with a 16bit unsigned immediate. Both of the registers
have to be same for dahi and dati.
Reviewers: vkalintiris, dsanders, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D21473
llvm-svn: 281724