This includes a fix for cases where things get marked as overdefined in
ResolvedUndefsIn, but we later discover a constant. To avoid crashing,
we consistently bail out on overdefined values in the visitors. This is
similar to the previous behavior with forcedconstant.
This reverts the revert commit 02b72f564c.
This version includes a fix for a set of crashes caused by marking
values depending on a yet unknown & tracked call as overdefined.
In some cases, we would later discover that the call has a constant
result and try to mark a user of it as constant, although it was already
marked as overdefined. Most instruction handlers bail out early if the
instruction is already overdefined. But that is not necessary for
CastInsts for example. By skipping values that depend on skipped
calls, we resolve the crashes and also improve the precision in some
cases (see resolvedundefsin-tracked-fn.ll).
Note that we may not skip PHI nodes that may depend on a skipped call,
but they can be safely marked as overdefined, as we bail out early if
the PHI node is overdefined.
This reverts the revert commit
a74b31a3e9cd844c7ce2087978568e3f5ec8519.
This causes a crash for the reproducer below
enum { a };
enum b { c, d };
e;
static _Bool g(struct f *h, enum b i) {
i &&j();
return a;
}
static k(char h, enum b i) {
_Bool l = g(e, i);
l;
}
m(h) {
k(h, c);
g(h, d);
}
This reverts commit aadb635e04.
This patch removes forcedconstant to simplify things for the
move to ValueLattice, which includes constant ranges, but no
forced constants.
This patch removes forcedconstant and changes ResolvedUndefsIn
to mark instructions with unknown operands as overdefined. This
means we do not do simplifications based on undef directly in SCCP
any longer, but this seems to hardly come up in practice (see stats
below), presumably because InstCombine & others take care
of most of the relevant folds already.
It is still beneficial to keep ResolvedUndefIn, as it allows us delaying
going to overdefined until we propagated all known information.
I also built MultiSource, SPEC2000 and SPEC2006 and compared
sccp.IPNumInstRemoved and sccp.NumInstRemoved. It looks like the impact
is quite low:
Tests: 244
Same hash: 238 (filtered out)
Remaining: 6
Metric: sccp.IPNumInstRemoved
Program base patch diff
test-suite...arks/VersaBench/dbms/dbms.test 4.00 3.00 -25.0%
test-suite...TimberWolfMC/timberwolfmc.test 38.00 34.00 -10.5%
test-suite...006/453.povray/453.povray.test 158.00 155.00 -1.9%
test-suite.../CINT2000/176.gcc/176.gcc.test 668.00 668.00 0.0%
test-suite.../CINT2006/403.gcc/403.gcc.test 1209.00 1209.00 0.0%
test-suite...arks/mafft/pairlocalalign.test 76.00 76.00 0.0%
Tests: 244
Same hash: 238 (filtered out)
Remaining: 6
Metric: sccp.NumInstRemoved
Program base patch diff
test-suite...arks/mafft/pairlocalalign.test 185.00 175.00 -5.4%
test-suite.../CINT2006/403.gcc/403.gcc.test 2059.00 2056.00 -0.1%
test-suite.../CINT2000/176.gcc/176.gcc.test 2358.00 2357.00 -0.0%
test-suite...006/453.povray/453.povray.test 317.00 317.00 0.0%
test-suite...TimberWolfMC/timberwolfmc.test 12.00 12.00 0.0%
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D61314
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
The motivating example is:
extern int patatino;
int goo() {
int x = 0;
for (int i = 0; i < 1000000; ++i) {
x *= patatino;
}
return x;
}
Currently SCCP will not realize that this function returns always zero,
therefore will try to unroll and vectorize the loop at -O3 producing an
awful lot of (useless) code. With this change, it will just produce:
0000000000000000 <g>:
xor %eax,%eax
retq
llvm-svn: 289175
We visit and/or, we try to derive a lattice value for the
instruction even if one of the operands is overdefined.
If the non-overdefined value is still 'unknown' just return and wait
for ResolvedUndefsIn to "plug in" the correct value. This simplifies
the logic a bit. While I'm here add tests for missing cases.
llvm-svn: 287709
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
Upgrade to use new Tcl exec based test harness. This exposes 3 bugs that
were previously not being reported:
test/Transforms/GlobalDCE/2002-08-17-FunctionDGE.ll
test/Transforms/GlobalOpt/memset.ll
test/Transforms/IndVarsSimplify/exit_value_tests.llx
llvm-svn: 36065