Commit Graph

13 Commits

Author SHA1 Message Date
Arthur Eubanks 691c086d15 [NewPM][BasicAA] basicaa -> basic-aa in Transforms/SLPVectorizer
Following https://reviews.llvm.org/D82607.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D82681
2020-06-26 14:58:41 -07:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Sanjay Patel b6a0faaa0c [SLP] limit vectorization of Constant subclasses (PR33958)
This is a fix for:
https://bugs.llvm.org/show_bug.cgi?id=33958

It seems universally true that we would not want to transform this kind of
sequence on any target, but if that's not correct, then we could view this
as a target-specific cost model problem. We could also white-list ConstantInt,
ConstantFP, etc. rather than blacklist Global and ConstantExpr.

Differential Revision: https://reviews.llvm.org/D67362

llvm-svn: 371931
2019-09-15 13:03:24 +00:00
Sanjay Patel 4ba6717c7e [SLP] add test for vectorization of constant expressions; NFC
Goes with D67362.

llvm-svn: 371879
2019-09-13 18:33:02 +00:00
Sanjay Patel c0728eac15 [SLP] add test for over-vectorization (PR33958); NFC
llvm-svn: 371426
2019-09-09 17:16:03 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Alexey Bataev ce2c8b3360 [SLP]Update test checks for the SPL vectorizer, NFC.
llvm-svn: 350967
2019-01-11 20:21:14 +00:00
Roman Tereshin ed047b0184 [SCEV] Add [zs]ext{C,+,x} -> (D + [zs]ext{C-D,+,x})<nuw><nsw> transform
as well as sext(C + x + ...) -> (D + sext(C-D + x + ...))<nuw><nsw>
similar to the equivalent transformation for zext's

if the top level addition in (D + (C-D + x * n)) could be proven to
not wrap, where the choice of D also maximizes the number of trailing
zeroes of (C-D + x * n), ensuring homogeneous behaviour of the
transformation and better canonicalization of such AddRec's

(indeed, there are 2^(2w) different expressions in `B1 + ext(B2 + Y)` form for
the same Y, but only 2^(2w - k) different expressions in the resulting `B3 +
ext((B4 * 2^k) + Y)` form, where w is the bit width of the integral type)

This patch generalizes sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and
sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformations added in
r209568 relaxing the requirements the following way:

1. C2 doesn't have to be a power of 2, it's enough if it's divisible by 2
 a sufficient number of times;
2. C1 doesn't have to be less than C2, instead of extracting the entire
  C1 we can split it into 2 terms: (00...0XXX + YY...Y000), keep the
  second one that may cause wrapping within the extension operator, and
  move the first one that doesn't affect wrapping out of the extension
  operator, enabling further simplifications;
3. C1 and C2 don't have to be positive, splitting C1 like shown above
 produces a sum that is guaranteed to not wrap, signed or unsigned;
4. in AddExpr case there could be more than 2 terms, and in case of
  AddExpr the 2nd and following terms and in case of AddRecExpr the
  Step component don't have to be in the C2*X form or constant
  (respectively), they just need to have enough trailing zeros,
  which in turn could be guaranteed by means other than arithmetics,
  e.g. by a pointer alignment;
5. the extension operator doesn't have to be a sext, the same
  transformation works and profitable for zext's as well.

Apparently, optimizations like SLPVectorizer currently fail to
vectorize even rather trivial cases like the following:

 double bar(double *a, unsigned n) {
   double x = 0.0;
   double y = 0.0;
   for (unsigned i = 0; i < n; i += 2) {
     x += a[i];
     y += a[i + 1];
   }
   return x * y;
 }

If compiled with `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm`
(!{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"})

it produces scalar code with the loop not unrolled with the unsigned `n` and
`i` (like shown above), but vectorized and unrolled loop with signed `n` and
`i`. With the changes made in this commit the unsigned version will be
vectorized (though not unrolled for unclear reasons).

How it all works:

Let say we have an AddExpr that looks like (C + x + y + ...), where C
is a constant and x, y, ... are arbitrary SCEVs. Let's compute the
minimum number of trailing zeroes guaranteed of that sum w/o the
constant term: (x + y + ...). If, for example, those terms look like
follows:

        i
XXXX...X000
YYYY...YY00
   ...
ZZZZ...0000

then the rightmost non-guaranteed-zero bit (a potential one at i-th
position above) can change the bits of the sum to the left (and at
i-th position itself), but it can not possibly change the bits to the
right. So we can compute the number of trailing zeroes by taking a
minimum between the numbers of trailing zeroes of the terms.

Now let's say that our original sum with the constant is effectively
just C + X, where X = x + y + .... Let's also say that we've got 2
guaranteed trailing zeros for X:

         j
CCCC...CCCC
XXXX...XX00  // this is X = (x + y + ...)

Any bit of C to the left of j may in the end cause the C + X sum to
wrap, but the rightmost 2 bits of C (at positions j and j - 1) do not
affect wrapping in any way. If the upper bits cause a wrap, it will be
a wrap regardless of the values of the 2 least significant bits of C.
If the upper bits do not cause a wrap, it won't be a wrap regardless
of the values of the 2 bits on the right (again).

So let's split C to 2 constants like follows:

0000...00CC  = D
CCCC...CC00  = (C - D)

and represent the whole sum as D + (C - D + X). The second term of
this new sum looks like this:

CCCC...CC00
XXXX...XX00
-----------  // let's add them up
YYYY...YY00

The sum above (let's call it Y)) may or may not wrap, we don't know,
so we need to keep it under a sext/zext. Adding D to that sum though
will never wrap, signed or unsigned, if performed on the original bit
width or the extended one, because all that that final add does is
setting the 2 least significant bits of Y to the bits of D:

YYYY...YY00 = Y
0000...00CC = D
-----------  <nuw><nsw>
YYYY...YYCC

Which means we can safely move that D out of the sext or zext and
claim that the top-level sum neither sign wraps nor unsigned wraps.

Let's run an example, let's say we're working in i8's and the original
expression (zext's or sext's operand) is 21 + 12x + 8y. So it goes
like this:

0001 0101  // 21
XXXX XX00  // 12x
YYYY Y000  // 8y

0001 0101  // 21
ZZZZ ZZ00  // 12x + 8y

0000 0001  // D
0001 0100  // 21 - D = 20
ZZZZ ZZ00  // 12x + 8y

0000 0001  // D
WWWW WW00  // 21 - D + 12x + 8y = 20 + 12x + 8y

therefore zext(21 + 12x + 8y) = (1 + zext(20 + 12x + 8y))<nuw><nsw>

This approach could be improved if we move away from using trailing
zeroes and use KnownBits instead. For instance, with KnownBits we could
have the following picture:

    i
10 1110...0011  // this is C
XX X1XX...XX00  // this is X = (x + y + ...)

Notice that some of the bits of X are known ones, also notice that
known bits of X are interspersed with unknown bits and not grouped on
the rigth or left.

We can see at the position i that C(i) and X(i) are both known ones,
therefore the (i + 1)th carry bit is guaranteed to be 1 regardless of
the bits of C to the right of i. For instance, the C(i - 1) bit only
affects the bits of the sum at positions i - 1 and i, and does not
influence if the sum is going to wrap or not. Therefore we could split
the constant C the following way:

    i
00 0010...0011  = D
10 1100...0000  = (C - D)

Let's compute the KnownBits of (C - D) + X:

XX1 1            = carry bit, blanks stand for known zeroes
 10 1100...0000  = (C - D)
 XX X1XX...XX00  = X
--- -----------
 XX X0XX...XX00

Will this add wrap or not essentially depends on bits of X. Adding D
to this sum, however, is guaranteed to not to wrap:

0    X
 00 0010...0011  = D
 sX X0XX...XX00  = (C - D) + X
--- -----------
 sX XXXX   XX11

As could be seen above, adding D preserves the sign bit of (C - D) +
X, if any, and has a guaranteed 0 carry out, as expected.

The more bits of (C - D) we constrain, the better the transformations
introduced here canonicalize expressions as it leaves less freedom to
what values the constant part of ((C - D) + x + y + ...) can take.

Reviewed By: mzolotukhin, efriedma

Differential Revision: https://reviews.llvm.org/D48853

llvm-svn: 337943
2018-07-25 18:01:41 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Michael Zolotukhin d4c724625a Implement sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and
sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformation in Scalar
Evolution.

That helps SLP-vectorizer to recognize consecutive loads/stores.

<rdar://problem/14860614>

llvm-svn: 209568
2014-05-24 08:09:57 +00:00