I had initially assumed this was the problem with
https://github.com/llvm/llvm-project/issues/55271#issuecomment-1133426243
But it turns out that was a simpler issue. This patch is still
more correct than what we were doing before so figured I'd submit
it anyway.
No test case because I'm not sure how to get an undef around
until expansion.
Looking at the test deltas I wonder if it be valid to combine
(sext_inreg (freeze (aextload X))) -> (freeze (sextload X)).
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D126175
abs should only produce a positive value or the signed minimum
value. This means we can't fold abs(undef) to undef as that would
allow more values. Fold to 0 instead to match InstSimplify.
Fixes test mentioned in comment on pr55271.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D126174
Reviewing the code again, I believe the sext is needed on the LHS
or RHS for ICmp and only on the RHS for Add.
Add an opcode check before checking the operand number.
Fixes PR55627.
Differential Revision: https://reviews.llvm.org/D125654
Currently for atomic load, store, and rmw instructions, as long as the
operand is floating-point value, they are casted to integer. Nowadays many
targets can actually support part of atomic operations with floating-point
operands. For example, NVPTX supports atomic load and store of floating-point
values. This patch adds a series interface functions `shouldCastAtomicXXXInIR`,
and the default implementations are same as what we currently do. Later for
targets can have their specialization.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D125652
If the SafeWrap operation is a subtract, we negated the constant
to treat the subtract as an addition. The sext was based on the
operation being addition. So we really need to do (neg (sext (neg C)))
when promoting the constant. This is equivalent to (sext C) for
every value of C except the min signed value. For min signed value
we need to do (zext C) instead.
Fixes PR55490.
Differential Revision: https://reviews.llvm.org/D125653
This is the first commit for the cmov-vs-branch optimization pass.
The goal is to develop a new profile-guided and target-independent cost/benefit analysis
for selecting conditional moves over branches when optimizing for performance.
Initially, this new pass is expected to be enabled only for instrumentation-based PGO.
RFC: https://discourse.llvm.org/t/rfc-cmov-vs-branch-optimization/6040
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D120230
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.
The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.
Differential Revision: https://reviews.llvm.org/D125557
An upcoming patch will extend llvm-symbolizer to provide the source line
information for global variables. The goal is to move AddressSanitizer
off of internal debug info for symbolization onto the DWARF standard
(and doing a clean-up in the process). Currently, ASan reports the line
information for constant strings if a memory safety bug happens around
them. We want to keep this behaviour, so we need to emit debuginfo for
these variables as well.
Reviewed By: dblaikie, rnk, aprantl
Differential Revision: https://reviews.llvm.org/D123534
I noticed https://reviews.llvm.org/D87415 added SDAG combines to fold
FMIN/MAX instrs with NaNs.
The patch implements the same NaN combines for GISel GMIR FMIN/MAX opcodes:
G_FMINNUM(X, NaN) -> X
G_FMAXNUM(X, NaN) -> X
G_FMINIMUM(X, NaN) -> NaN
G_FMAXIMUM(X, NaN) -> NaN
The patch adds AArch64 tests for these combines as well.
Reviewed by: arsenm
Differential revision: https://reviews.llvm.org/D125819
This function tries to match (a >> 8) | (a << 8) as (bswap a) >> 16.
If the SRL isn't masked and the high bits aren't demanded, we still
need to ensure that bits 23:16 are zero. After the right shift they
will be in bits 15:8 which is where the important bits from the SHL
end up. It's only a bswap if the OR on bits 15:8 only takes the bits
from the SHL.
Fixes PR55484.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D125641
The patch does not pass math flags to float VPCmpIntrinsics because LLParser
could not identify float VPCmpIntrinsics as FPMathOperators.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D125600
If we're using shift pairs to mask, then relax the one use limit if the shift amounts are equal - we'll only be generating a single AND node.
AArch64 has a couple of regressions due to this, so I've enforced the existing one use limit inside a AArch64TargetLowering::shouldFoldConstantShiftPairToMask callback.
Part of the work to fix the regressions in D77804
Differential Revision: https://reviews.llvm.org/D125607
Add a new TargetRegisterInfo hook to allow targets to tweak the
priority of live ranges, so that AllocationPriority of the register
class will be treated as more important than whether the range is local
to a basic block or global. This is determined per-MachineFunction.
Differential Revision: https://reviews.llvm.org/D125102
This patch uses VP_REDUCE_AND and VP_REDUCE_OR to replace VP_REDUCE_SMAX,VP_REDUCE_SMIN,VP_REDUCE_UMAX and VP_REDUCE_UMIN for mask vector type.
Differential Revision: https://reviews.llvm.org/D125002
The documentation for this specifically mentions that this should not
happen. We could think about adding target hooks to permit it (and how
to merge IDs) in the future if that is desirable.
This specific test case was merging a scalable-vector slot into a
non-scalable one and dropping the notion of scalability, meaning we
failed to allocate enough stack space for the object.
Reviewed By: arsenm, MaskRay, sdesmalen
Differential Revision: https://reviews.llvm.org/D125699
An upcoming patch will extend llvm-symbolizer to provide the source line
information for global variables. The goal is to move AddressSanitizer
off of internal debug info for symbolization onto the DWARF standard
(and doing a clean-up in the process). Currently, ASan reports the line
information for constant strings if a memory safety bug happens around
them. We want to keep this behaviour, so we need to emit debuginfo for
these variables as well.
Reviewed By: dblaikie, rnk, aprantl
Differential Revision: https://reviews.llvm.org/D123534
The existing redundant copy elimination required a virtual register source, but the same logic works for any physreg where we don't have to worry about clobbers. On RISCV, this helps eliminate redundant CSR reads from VLENB.
Differential Revision: https://reviews.llvm.org/D125564
During early gather/scatter enablement two different approaches
were taken to represent scaled indices:
* A Scale operand whereby byte_offsets = Index * Scale
* An IndexType whereby byte_offsets = Index * sizeof(MemVT.ElementType)
Having multiple representations is bad as shown by this patch which
fixes instances where the two are out of sync. The dedicated scale
operand is more flexible and pervasive so this patch removes the
UNSCALED values from IndexType. This means all indices are scaled
but the scale can be one, hence unscaled. SDNodes now use the scale
operand to answer the "isScaledIndex" question.
I toyed with the idea of keeping the UNSCALED enums and helper
functions but because they will have no uses and force SDNodes to
validate the set of supported values I figured it's best to remove
them. We can re-add them if there's a real need. For similar
reasons I've kept the IndexType enum when a bool could be used as I
think being explicitly looks better.
Depends On D123347
Differential Revision: https://reviews.llvm.org/D123381
If we use multiply it would be with 0x0101 which is 1 more than a power
of 2. On some targets we would expand this to shl+add. By avoiding the
multiply earlier, we can generate better code.
Note, PowerPC doesn't do the shl+add expansion of multiply so one of
the tests increased in instruction count.
Limiting to scalars because it almost always increased the number of
instructions in vector tests.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D125638
This change adds the constant splat versions of m_ICst() (by using
getBuildVectorConstantSplat()) and uses it in
matchOrShiftToFunnelShift(). The getBuildVectorConstantSplat() name is
shortened to getIConstantSplatVal() so that the *SExtVal() version would
have a more compact name.
Differential Revision: https://reviews.llvm.org/D125516
The patch make users not need to know getNode with SDNodeFlags argument may not
pass its flags.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D125659
FunctionLoweringInfo::StatepointRelocationMaps map is used to pass GC pointer
lowering information from statepoint to gc.relocate which may appear ini
different block.
D124444 introduced different lowering for local and non-local relocates.
Local relocates use SDValue and non-local relocates use value exported to VReg.
But I overlooked the fact that StatepointRelocationMap is indexed not by
GCRelocate instruction, but by derived pointer. This works incorrectly when
we have two relocates (one local and another non-local) of the same value,
because they need different relocation records.
This patch fixes the problem by recording relocation information per relocate
instruction, not per derived pointer. This way, each gc.relocate can be lowered
differently.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D125538
FastISel tries to fold loads into the single using instruction.
However, if the register has fixups, then there may be additional
uses through an alias of the register.
In particular, this fixes the problem reported at
https://reviews.llvm.org/D119432#3507087. The load register is
(at the time of load folding) only used in a single call instruction.
However, selection of the bitcast has added a fixup between the
load register and the cross-BB register of the bitcast result.
After fixups are applied, there would now be two uses of the load
register, so load folding is not legal.
Differential Revision: https://reviews.llvm.org/D125459
SelectionDAG::FoldConstantArithmetic determines if operands are foldable constants, so we don't need to bother with isConstantOrConstantVector / Opaque tests before calling it directly.
SelectionDAG::FoldConstantArithmetic determines if operands are foldable constants, so we don't need to bother with isConstantOrConstantVector / Opaque tests before calling it directly.
Pulled out of D77804 as its going to be easier to address the regressions individually.
This patch allows SimplifyDemandedBits to call SimplifyMultipleUseDemandedBits in cases where the source operand has other uses, enabling us to peek through the shifted value if we don't demand all the bits/elts.
The lost RISCV gorc2 fold shouldn't be a problem - instcombine would have already destroyed that pattern - see https://github.com/llvm/llvm-project/issues/50553
Differential Revision: https://reviews.llvm.org/D124839
When GlobalISel fails, we need to report the error, and we need to set
the FailedISel property. We skipped those steps if stack protector
insertion failed, which led to a very strange miscompile.
Differential Revision: https://reviews.llvm.org/D125584
We commonly want to create either an inbounds or non-inbounds GEP
based on a boolean value, e.g. when preserving inbounds from
existing GEPs. Directly accept such a boolean in the API, rather
than requiring a ternary between CreateGEP and CreateInBoundsGEP.
This change is not entirely NFC, because we now preserve an
inbounds flag in a constant expression edge-case in InstCombine.