This is an extension of **profi** post-processing step that rebalances counts
in CFGs that have basic blocks w/o probes (aka "unknown" blocks). Specifically,
the new version finds many more "unknown" subgraphs and marks more "unknown"
basic blocks as hot (which prevents unwanted optimization passes).
I see up to 0.5% perf on some (large) binaries, e.g., clang-10 and gcc-8.
The algorithm is still linear and yields no build time overhead.
LLVM Programmer’s Manual strongly discourages the use of `std::vector<bool>` and suggests `llvm::BitVector` as a possible replacement.
This patch does just that for llvm.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D117121
After D116332, some icmps no longer fold with the target-independent
constant folder. The SimplifyCFG code assumed that the comparison
would always fold, which is not guaranteed. Explicitly check that the
result is either true or false.
Differential Revision: https://reviews.llvm.org/D117184
This patch fixes an issue in which SSA value reference within a
DIArgList would be unnecessarily dropped by llvm-link, even when
invoking on a single file (which should be a no-op). The reason for the
difference is that the ValueMapper does not refer to the
RF_IgnoreMissingLocals flag for LocalAsMetadata contained within a
DIArgList; this flag is used for direct LocalAsMetadata uses to preserve
SSA references even when the ValueMapper does not have an explicit
mapping for the referenced SSA value, which appears to always be the
case when using llvm-link in this manner.
Differential Revision: https://reviews.llvm.org/D114355
Use the AttributeSet constructor instead. There's no good reason
why AttrBuilder itself should exact the AttributeSet from the
AttributeList. Moving this out of the AttrBuilder generally results
in cleaner code.
The empty() method is a footgun: It only checks whether there are
non-string attributes, which is not at all obvious from its name,
and of dubious usefulness. td_empty() is entirely unused.
Drop these methods in favor of hasAttributes(), which checks
whether there are any attributes, regardless of whether these are
string or enum attributes.
I strongly believe we need some variant of this.
The main problem is e.g. that the glibc's assert has 4 parameters,
but the profitability check is only okay with one extra phi node,
so D116692 doesn't even trigger on most of the expected cases.
While that restriction probably makes sense in normal code, if we
are about to run off of a cliff (into an `unreachable`), this
successor block is unlikely so the cost to setup these PHI nodes
should not be on the hotpath, and shouldn't matter performance-wise.
Likewise, we don't sink if there are unconditional predecessors
UNLESS we'd sink at least one non-speculatable instruction,
which is a performance workaround, but if we are about to run into
`unreachable`, it shouldn't matter.
Note that we only allow the case where there are at
most unconditiona branches on the way to the unreachable block.
Differential Revision: https://reviews.llvm.org/D117045
Similar to memset, memset_pattern{4,8,16} all will return and do not
unwind. Use fallthrough to include all attributes also set for memset.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114904
analyzeGlobal() looks through non-constexpr cast instructions when
looking for users. However, this particular place only strips the
casts again if they are constexprs. We should be looking through all
casts here.
Not all allocation functions are removable if unused. An example of a non-removable allocation would be a direct call to the replaceable global allocation function in C++. An example of a removable one - at least according to historical practice - would be malloc.
As discussed in https://github.com/llvm/llvm-project/issues/53020 / https://reviews.llvm.org/D116692,
SCEV is forbidden from reasoning about 'backedge taken count'
if the branch condition is a poison-safe logical operation,
which is conservatively correct, but is severely limiting.
Instead, we should have a way to express those
poison blocking properties in SCEV expressions.
The proposed semantics is:
```
Sequential/in-order min/max SCEV expressions are non-commutative variants
of commutative min/max SCEV expressions. If none of their operands
are poison, then they are functionally equivalent, otherwise,
if the operand that represents the saturation point* of given expression,
comes before the first poison operand, then the whole expression is not poison,
but is said saturation point.
```
* saturation point - the maximal/minimal possible integer value for the given type
The lowering is straight-forward:
```
compare each operand to the saturation point,
perform sequential in-order logical-or (poison-safe!) ordered reduction
over those checks, and if reduction returned true then return
saturation point else return the naive min/max reduction over the operands
```
https://alive2.llvm.org/ce/z/Q7jxvH (2 ops)
https://alive2.llvm.org/ce/z/QCRrhk (3 ops)
Note that we don't need to check the last operand: https://alive2.llvm.org/ce/z/abvHQS
Note that this is not commutative: https://alive2.llvm.org/ce/z/FK9e97
That allows us to handle the patterns in question.
Reviewed By: nikic, reames
Differential Revision: https://reviews.llvm.org/D116766
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to
create TruncTripCount if it is actually used.
Sink the TruncTripCount creating into ComputeEndCheck, so it is only
created when there's an actual check.
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to
compute |Step| * Trip count if the result of the multiplication is
actually used.
Sink the multiplication into ComputeEndCheck, so it is only created
when there's an actual check.
There is no need to sort inserted instructions by dominance, as the
deletion loop still requires RAUW with undef before deleting. Removing
instructions in reverse insertion order should still insure that the
number of uselist updates is kept to a minimum.
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to check
for overflows if the result of the multiplication is actually used.
Sink the Or for the overflow check into ComputeEndCheck, so it is only
created when there's an actual check.
Unsigned compares of the form <u 0 are always false. Do not create such
a redundant check in generateOverflowCheck.
The patch introduces a new lambda to create the check, so we can
exit early conveniently and skip creating some instructions feeding the
check.
I am planning to sink a few additional instructions as follow-ups, but I
would prefer to do this separately, to keep the changes and diff
smaller.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D116811
Currently generateOverflowCheck always creates code for Step being
negative and positive, followed by a select at the end depending on
Step's sign.
This patch updates the code to only create either the checks for step
being positive or negative, if the sign is known.
Follow-up to D116696.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D116747
reallocf() is the same as realloc() but frees the input pointer
on failure as well. We can infer the same attributes.
Also combine some cases that infer the same attributes and are
logically related.
I am suspecting a bug around updates of loop info for unreachable exits, but don't have a test case. Running this locally on make check didn't reveal anything, we'll see if the expensive checks bots find it.
This patch updates SCEVExpander::expandUnionPredicate to not create
redundant 'or false, x' instructions. While those are trivially
foldable, they can be easily avoided and hinder code that checks the
size/cost of the generated checks before further folds.
I am planning on look into a few other similar improvements to code
generated by SCEVExpander.
I remember a while ago @lebedev.ri working on doing some trivial folds
like that in IRBuilder itself, but there where concerns that such
changes may subtly break existing code.
Reviewed By: reames, lebedev.ri
Differential Revision: https://reviews.llvm.org/D116696
Track all GlobalObjects that reference a given comdat, which allows
determining whether a function in a comdat is dead without scanning
the whole module.
In particular, this makes filterDeadComdatFunctions() have complexity
O(#DeadFunctions) rather than O(#SymbolsInModule), which addresses
half of the compile-time issue exposed by D115545.
Differential Revision: https://reviews.llvm.org/D115864
This does not appear to cause any problems, and it
fixes#50910
Extra tests with a trunc user were added with:
3a239379
...but they don't match either way, so there's an
opportunity to improve the matching further.
The naming has come up as a source of confusion in several recent reviews. onlyWritesMemory is consist with onlyReadsMemory which we use for the corresponding readonly case as well.
This reverts commit ea75be3d9d and
1eb5b6e850.
That commit caused crashes with compilation e.g. like this
(not fixed by the follow-up commit):
$ cat sqrt.c
float a;
b() { sqrt(a); }
$ clang -target x86_64-linux-gnu -c -O2 sqrt.c
Attributes 'readnone and writeonly' are incompatible!
%sqrtf = tail call float @sqrtf(float %0) #1
in function b
fatal error: error in backend: Broken function found, compilation aborted!
isBitOrNoopPointerCastable() returns true if the types are the
same, but it's not actually possible to create a bitcast for all
such types. The assumption seems to be that the user will omit
creating the cast in that case, as it is unnecessary.
Fixes https://github.com/llvm/llvm-project/issues/52994.
All of these functions would be `readnone`, but can't be on platforms
where they can set `errno`. A `writeonly` function with no pointer
arguments can only write (but never read) global state.
Writeonly theoretically allows these calls to be CSE'd (a writeonly call
with the same arguments will always result in the same global stores) or
hoisted out of loops, but that's not implemented currently.
There are a few functions in this list that could be `readnone` instead
of `writeonly`, if someone is interested.
Differential Revision: https://reviews.llvm.org/D116426
Global ctor evaluation currently models memory as a map from Constant*
to Constant*. For this to be correct, it is required that there is
only a single Constant* referencing a given memory location. The
Evaluator tries to ensure this by imposing certain limitations that
could result in ambiguities (by limiting types, casts and GEP formats),
but ultimately still fails, as can be seen in PR51879. The approach
is fundamentally fragile and will get more so with opaque pointers.
My original thought was to instead store memory for each global as an
offset => value representation. However, we also need to make sure
that we can actually rematerialize the modified global initializer
into a Constant in the end, which may not be possible if we allow
arbitrary writes.
What this patch does instead is to represent globals as a MutableValue,
which is either a Constant* or a MutableAggregate*. The mutable
aggregate exists to allow efficient mutation of individual aggregate
elements, as mutating an element on a Constant would require interning
a new constant. When a write to the Constant* is made, it is converted
into a MutableAggregate* as needed.
I believe this should make the evaluator more robust, compatible
with opaque pointers, and a bit simpler as well.
Fixes https://github.com/llvm/llvm-project/issues/51221.
Differential Revision: https://reviews.llvm.org/D115530
This function returns an upper bound on the number of bits needed
to represent the signed value. Use "Max" to match similar functions
in KnownBits like countMaxActiveBits.
Rename APInt::getMinSignedBits->getSignificantBits. Keeping the old
name around to keep this patch size down. Will do a bulk rename as
follow up.
Rename KnownBits::countMaxSignedBits->countMaxSignificantBits.
Reviewed By: lebedev.ri, RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D116522
If we have an exit which is controlled by a loop invariant condition and which dominates the latch, we know only the copy in the first unrolled iteration can be taken. All other copies are dead.
The change itself is pretty straight forward, but let me add two points of context:
* I'd have expected other transform passes to catch this after unrolling, but I'm seeing multiple examples where we get to the end of O2/O3 without simplifying.
* I'd like to do a stronger change which did CSE during unroll and accounted for invariant expressions (as defined by SCEV instead of trivial ones from LoopInfo), but that doesn't fit cleanly into the current code structure.
Differential Revision: https://reviews.llvm.org/D116496
This list is confusing because it conflates functions attributes
(which are either extractable or not) and other attribute kinds,
which are simply irrelevant for this code.
This fixes a typo/bug when checking for pointer reuse when testing
DI location preservation in the Debugify original mode (when
checking -g generated Debug Info).
Differential Revision: https://reviews.llvm.org/D115621
With Control-Flow Integrity (CFI), the LowerTypeTests pass replaces
function references with CFI jump table references, which is a problem
for low-level code that needs the address of the actual function body.
For example, in the Linux kernel, the code that sets up interrupt
handlers needs to take the address of the interrupt handler function
instead of the CFI jump table, as the jump table may not even be mapped
into memory when an interrupt is triggered.
This change adds the no_cfi constant type, which wraps function
references in a value that LowerTypeTestsModule::replaceCfiUses does not
replace.
Link: https://github.com/ClangBuiltLinux/linux/issues/1353
Reviewed By: nickdesaulniers, pcc
Differential Revision: https://reviews.llvm.org/D108478