Expressions inside 'schedule'|'dist_schedule' clause must be captured in
combined directives to avoid possible crash during codegen. Patch
improves handling of such constructs
llvm-svn: 260954
Summary:
This patch adds parsing + sema for the target parallel for directive along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16759
llvm-svn: 259654
Summary:
This patch adds parsing + sema for the target parallel directive and its clauses along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16553
Rebased to current trunk and updated test cases.
llvm-svn: 258832
Summary:
This patch adds parsing + sema for the defaultmap clause associated with the target directive (among others).
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16527
llvm-svn: 258817
Doing so required separating them so that the former doesn't inherit
from the latter anymore. Investigating that, it became clear that the
inheritance wasn't actually providing real value in any case.
So also:
- Remove a bunch of redundant functions (getExplicitTemplateArgs,
getOptionalExplicitTemplateArgs) on various Expr subclasses which
depended on the inheritance relationship.
- Switched external callers to use pre-existing accessors that return the
data they're actually interested in (getTemplateArgs,
getNumTemplateArgs, etc).
- Switched internal callers to use pre-existing getTemplateKWAndArgsInfo.
llvm-svn: 256359
OpenMP 4.5 adds directives 'taskloop' and 'taskloop simd'. These directives support clause 'num_tasks'. Patch adds parsing/semantic analysis for this clause.
llvm-svn: 255008
OpenMP 4.5 adds 'taksloop' and 'taskloop simd' directives, which have 'grainsize' clause. Patch adds parsing/sema analysis of this clause.
llvm-svn: 254903
OpenMP 4.5 adds 'taskloop' and 'taskloop simd' directives. These directives have new 'nogroup' clause. Patch adds basic parsing/sema support for this clause.
llvm-svn: 254899
OpenMP 4.5 defines new clause 'priority' for 'task', 'taskloop' and 'taskloop simd' directives. Added parsing and sema analysis for 'priority' clause in 'task' and 'taskloop' directives.
llvm-svn: 254398
MSVC supports 'property' attribute and allows to apply it to the declaration of an empty array in a class or structure definition.
For example:
```
__declspec(property(get=GetX, put=PutX)) int x[];
```
The above statement indicates that x[] can be used with one or more array indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and p->x[a][b] = i will be turned into p->PutX(a, b, i);
Differential Revision: http://reviews.llvm.org/D13336
llvm-svn: 254067
Parsing and sema analysis for 'simd' clause in 'ordered' directive.
Description
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered
regions in the order of the loop iterations.
Restrictions
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region
llvm-svn: 248696
OpenMP 4.1 extends format of '#pragma omp ordered'. It adds 3 additional clauses: 'threads', 'simd' and 'depend'.
If no clause is specified, the ordered construct behaves as if the threads clause had been specified. If the threads clause is specified, the threads in the team executing the loop region execute ordered regions sequentially in the order of the loop iterations.
The loop region to which an ordered region without any clause or with a threads clause binds must have an ordered clause without the parameter specified on the corresponding loop directive.
llvm-svn: 248569
This doesn't quite get alias template equivalence right yet, but handles the
egregious cases where we would silently give the wrong answers.
llvm-svn: 248431
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
Add parsing/sema analysis for 'simdlen' clause in simd directives. Also add check that if both 'safelen' and 'simdlen' clauses are specified, the value of 'simdlen' parameter is less than the value of 'safelen' parameter.
llvm-svn: 245692
OpenMP 4.1 allows to use variables with reference types in all private clauses (private, firstprivate, lastprivate, linear etc.). Patch allows to use such variables and fixes codegen for linear variables with reference types.
llvm-svn: 245268
OpenMP 4.1 introduces optional argument '(n)' for 'ordered' clause, where 'n' is a number of loops that immediately follow the directive.
'n' must be constant positive integer expressions and it must be less or equal than the number of the loops in the resulting loop nest.
Patch adds parsing and semantic analysis for this optional argument.
llvm-svn: 243635
Parsing and sema analysis (without support for array sections in arguments) for 'depend' clause (used in 'task' directive, OpenMP 4.0).
llvm-svn: 240409
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Added parsing, sema analysis and codegen for '#pragma omp taskgroup' directive (OpenMP 4.0).
The code for directive is generated the following way:
#pragma omp taskgroup
<body>
void __kmpc_taskgroup(<loc>, thread_id);
<body>
void __kmpc_end_taskgroup(<loc>, thread_id);
llvm-svn: 240011
Based on previous discussion on the mailing list, clang currently lacks support
for C99 partial re-initialization behavior:
Reference: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-April/029188.html
Reference: http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_253.htm
This patch attempts to fix this problem.
Given the following code snippet,
struct P1 { char x[6]; };
struct LP1 { struct P1 p1; };
struct LP1 l = { .p1 = { "foo" }, .p1.x[2] = 'x' };
// this example is adapted from the example for "struct fred x[]" in DR-253;
// currently clang produces in l: { "\0\0x" },
// whereas gcc 4.8 produces { "fox" };
// with this fix, clang will also produce: { "fox" };
Differential Review: http://reviews.llvm.org/D5789
llvm-svn: 239446
'schedule' clause for combined directives requires additional processing. Special helper variable is generated, that is captured in the outlined parallel region for 'parallel for' region. This captured variable is used to store chunk expression from the 'schedule' clause in this 'parallel for' region.
llvm-svn: 237100
Emits the following code for the clause at the beginning of the outlined function for implicit threads:
if (<not a master thread>) {
...
<thread local copy of var> = <master thread local copy of var>;
...
}
<sync point>;
Checking for a non-master thread is performed by comparing of the address of the thread local variable with the address of the master's variable. Master thread always uses original variables, so you always know the address of the variable in the master thread.
Differential Revision: http://reviews.llvm.org/D9026
llvm-svn: 235075
#pragma omp for lastprivate(<var>)
for (i = a; i < b; ++b)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<lastprivate_var> = alloca <type>
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<var> = <lastprivate_var> ; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
Differential Revision: http://reviews.llvm.org/D8658
llvm-svn: 235074
If there is at least one 'copyprivate' clause is associated with the single directive, the following code is generated:
```
i32 did_it = 0; \\ for 'copyprivate' clause
if(__kmpc_single(ident_t *, gtid)) {
SingleOpGen();
__kmpc_end_single(ident_t *, gtid);
did_it = 1; \\ for 'copyprivate' clause
}
<copyprivate_list>[0] = &var0;
...
<copyprivate_list>[n] = &varn;
call __kmpc_copyprivate(ident_t *, gtid, <copyprivate_list_size>,
<copyprivate_list>, <copy_func>, did_it);
...
void<copy_func>(void *LHSArg, void *RHSArg) {
Dst = (void * [n])(LHSArg);
Src = (void * [n])(RHSArg);
Dst[0] = Src[0];
... Dst[n] = Src[n];
}
```
All list items from all 'copyprivate' clauses are gathered into single <copyprivate list> (<copyprivate_list_size> is a size in bytes of this list) and <copy_func> is used to propagate values of private or threadprivate variables from the 'single' region to other implicit threads from outer 'parallel' region.
Differential Revision: http://reviews.llvm.org/D8410
llvm-svn: 232932