file in the .pcm files. This allows a smaller set of files to be sent to a
remote build worker when building with explicit modules (for instance, module
map files need not be sent along with the corresponding precompiled modules).
This doesn't actually make the embedded files visible to header search, so
it's not useful as a packaging format for public header files.
llvm-svn: 245028
files: include the .pcm file itself in the .d output, rather than including its
own input files. Other forms of module file continue to be transparent for .d
output.
Arguably, the input files for the .pcm file are still inputs to the
compilation, but that's unnecessary for make-like build systems (where the
mtime of the .pcm file is sufficient) and harmful for smarter build systems
that know about module files and want to track only the local dependencies.
llvm-svn: 244923
emit lexical contents for a declaration for another module. Track which module
those contents came from, and ensure that we only grab the lexical contents
from a single such instantiation.
llvm-svn: 244682
arguments because the reloaded form might have become non-canonical across the
serialization/deserialization step (this particularly happens when the
canonical form of the type involves an expression).
llvm-svn: 244409
determine the primary context, rather than sometimes registering the lookup
table on the wrong context.
This exposed a couple of bugs:
* the odr violation check didn't deal properly with mergeable declarations
if the declaration retained by name lookup wasn't in the canonical
definition of the class
* the (broken) RewriteDecl mechanism would emit two name lookup tables for
the same DeclContext into the same module file (one as part of the
rewritten declaration and one as a visible update for the old declaration)
These are both fixed too.
llvm-svn: 244192
useless return value. Switch to using it directly when completing the
redeclaration chain for an anonymous declaration, and reduce the set of
declarations that we load in the process to just those of the right kind.
llvm-svn: 244161
In llvm commit r243581, a reverse range adapter was added which allows
us to change code such as
for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
in to
for (const FieldDecl *I : llvm::reverse(Fields))
This commit changes a few of the places in clang which are eligible to use
this new adapter.
llvm-svn: 243663
chain and fix the cases where it fires.
* Handle the __va_list_tag as a predefined decl. Previously we failed to merge
sometimes it because it's not visible to name lookup. (In passing, remove
redundant __va_list_tag typedefs that we were creating for some ABIs. These
didn't affect the mangling or representation of the type.)
* For Decls derived from Redeclarable that are not in fact redeclarable
(implicit params, function params, ObjC type parameters), remove them from
the list of expected redeclarable decls.
llvm-svn: 243259
the identifier table. This is redundant, since the TU-scope lookups are also
serialized as part of the TU DeclContext, and wasteful in a number of ways. We
still emit the decls for PCH / preamble builds, since for those we want
identical results, not merely semantically equivalent ones.
llvm-svn: 242855
- introduces a new cc1 option -fmodule-format=[raw,obj]
with 'raw' being the default
- supports arbitrary module container formats that libclang is agnostic to
- adds the format to the module hash to avoid collisions
- splits the old PCHContainerOperations into PCHContainerWriter and
a PCHContainerReader.
Thanks to Richard Smith for reviewing this patch!
llvm-svn: 242499
before the first imported declaration.
We don't need to track all formerly-canonical declarations of an entity; it's sufficient to track those ones for which no other formerly-canonical declaration was imported into the same module. We call those ones "key declarations", and use them as our starting points for collecting redeclarations and performing namespace lookups.
llvm-svn: 241999
This patch adds ObjectFilePCHContainerOperations uses the LLVM backend
to put the contents of a PCH into a __clangast section inside a COFF, ELF,
or Mach-O object file container.
This is done to facilitate module debugging by makeing it possible to
store the debug info for the types defined by a module alongside the AST.
rdar://problem/20091852
llvm-svn: 241620
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
Objective-C type arguments can be provided in angle brackets following
an Objective-C interface type. Syntactically, this is the same
position as one would provide protocol qualifiers (e.g.,
id<NSCopying>), so parse both together and let Sema sort out the
ambiguous cases. This applies both when parsing types and when parsing
the superclass of an Objective-C class, which can now be a specialized
type (e.g., NSMutableArray<T> inherits from NSArray<T>).
Check Objective-C type arguments against the type parameters of the
corresponding class. Verify the length of the type argument list and
that each type argument satisfies the corresponding bound.
Specializations of parameterized Objective-C classes are represented
in the type system as distinct types. Both specialized types (e.g.,
NSArray<NSString *> *) and unspecialized types (NSArray *) are
represented, separately.
llvm-svn: 241542
Any extra features from -fmodule-feature are part of the module hash and
need to get validated on load. Also print them with -module-file-info.
llvm-svn: 240433
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This is a better approach to fixing the undefined behaviour I tried to
fix in r240228. This data doesn't necessarily have suitable alignment
for uint64_t, so use unaligned_uint64_t instead.
This fixes 225 test failures when clang is built with ubsan.
llvm-svn: 240247
We interpret Blob as an array of uint64_t here, but there's no reason
to think that it has suitable alignment. Instead, read the data in in
an alignment-safe way and store it in a std::vector.
This fixes 225 test failures when clang is built with ubsan.
llvm-svn: 240228
A PCHContainerOperations abstract interface provides operations for
creating and unwrapping containers for serialized ASTs (precompiled
headers and clang modules). The default implementation is
RawPCHContainerOperations, which uses a flat file for the output.
The main application for this interface will be an
ObjectFilePCHContainerOperations implementation that uses LLVM to
wrap the module in an ELF/Mach-O/COFF container to store debug info
alongside the AST.
rdar://problem/20091852
llvm-svn: 240225
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238601
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
rev 2 update:
`getNewExprFromInitListOrExpr` should return `dyn_cast_or_null`
instead of `dyn_cast`, since `E` might be null.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237608
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
This reverts commit 742dc9b6c9686ab52860b7da39c3a126d8a97fbc.
This is generating multiple segfaults in our internal builds.
Test case coming up shortly.
llvm-svn: 237391
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237368
clang::MacroDefinition now models the currently-defined value of a macro. The
previous MacroDefinition type, which represented a record of a macro definition
directive for a detailed preprocessing record, is now called MacroDefinitionRecord.
llvm-svn: 236400
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
Previously we'd defer this determination until writing the AST, which doesn't
allow us to use this information when building other submodules of the same
module. This change also allows us to use a uniform mechanism for writing
module macro records, independent of whether they are local or imported.
llvm-svn: 235614
This graph will be used to determine the current set of active macros. This is
foundation work for getting macro visibility correct across submodules of the
current module. No functionality change for now.
llvm-svn: 235461
This is substantially simpler, provides better space usage accounting in bcanalyzer,
and gives a more compact representation. No functionality change intended.
llvm-svn: 235420
More fallout from r228234; when looking up an identifier in a PCH that
imports the Cocoa module on Darwin, it was taking 2 to 5 seconds
because we were hammering the MapVector::erase() function, which is
O(n). For now, just clear() the contained SmallVector to get back to
0.25 - 0.5 seconds. This is probably not the long-term fix, because
without modules or without PCH the performance is more like 0.02
seconds.
llvm-svn: 234655
if the merged definition is visible, and perform lookups into all merged copies
of the definition (not just for special members) so that we can complete the
redecl chains for members of the class.
llvm-svn: 233420
Clang was inserting these into a dense map. While it never iterated the
dense map during normal compilation, it did when emitting a module. Fix
this by using a standard MapVector to preserve the order in which we
encounter the late parsed templates.
I suspect this still isn't ideal, as we don't seem to remove things from
this map even when we mark the templates as no longer late parsed. But
I don't know enough about this particular extension to craft a nice,
subtle test case covering this. I've managed to get the stress test to
at least do some late parsing and demonstrate the core problem here.
This patch fixes the test and provides deterministic behavior which is
a strict improvement over the prior state.
I've cleaned up some of the code here as well to be explicit about
inserting when that is what is actually going on.
llvm-svn: 233264
Previously we'd deserialize the list of mem-initializers for a constructor when
we deserialized the declaration of the constructor. That could trigger a
significant amount of unnecessary work (pulling in all base classes
recursively, for a start) and was causing problems for the modules buildbot due
to cyclic deserializations. We now deserialize these on demand.
This creates a certain amount of duplication with the handling of
CXXBaseSpecifiers; I'll look into reducing that next.
llvm-svn: 233052
* Strength reduce a std::function to a function pointer,
* Factor out checking the AST file magic number,
* Add a brief doc comment to readAStFileSignature
Thanks to Chandler for spotting these oddities.
llvm-svn: 233050
for a DeclContext, and fix propagation of exception specifications along
redeclaration chains.
This reverts r232905, r232907, and r232907, which reverted r232793, r232853,
and r232853.
One additional change is present here to resolve issues with LLDB: distinguish
between whether lexical decls missing from the lookup table are local or are
provided by the external AST source, and still look in the external source if
that's where they came from.
llvm-svn: 232928
give an exception specification to a declaration that didn't have an exception
specification in any of our imported modules, emit an update record ourselves.
Without this, code importing the current module would not see an exception
specification that we could see and might have relied on.
llvm-svn: 232870
When we need to build the lookup table for a DeclContext, we used to pull in
all lexical declarations for the context; instead, just build a lookup table
for the local lexical declarations. We previously didn't guarantee that the
imported declarations would be in the returned map, but in some cases we'd
happen to put them all in there regardless. Now we're even lazier about this.
This unnecessary work was papering over some other bugs:
- LookupVisibleDecls would use the DC for name lookups in the TU in C, and
this was not guaranteed to find all imported names (generally, the DC for
the TU in C is not a reliable place to perform lookups). We now use an
identifier-based lookup mechanism for this.
- We didn't actually load in the list of eagerly-deserialized declarations
when importing a module (so external definitions in a module wouldn't be
emitted by users of those modules unless they happened to be deserialized
by the user of the module).
llvm-svn: 232793
consumers of that module.
Previously, such a file would only be available if the module happened to
actually import something from that module.
llvm-svn: 232583
building its redecl chains, make sure we pull in the redeclarations of those
canonical declarations.
It's pretty difficult to reach a situation where we can find more canonical
declarations of an entity while building its redecl chains; I think the
provided testcase (4 modules and 7 declarations) cannot be reduced further.
llvm-svn: 232411
with a subset of the existing target CPU features or mismatched CPU
names.
While we can't check that the CPU name used to build the module will end
up being able to codegen correctly for the translation unit, we actually
check that the imported features are a subset of the existing features.
While here, rewrite the code to use std::set_difference and have it
diagnose all of the differences found.
Test case added which walks the set relationships and ensures we
diagnose all the right cases and accept the others.
No functional change for implicit modules here, just better diagnostics.
llvm-svn: 232248
headers even if they arrived when merging non-system modules.
The idea of this code is that we don't want to warn the user about
macros defined multiple times by their system headers with slightly
different definitions. We should have this behavior if either the
macro comes from a system module, or the definition within the module
comes from a system header. Previously, we would warn on ambiguous
macros being merged when they came from a users modules even though they
only showed up via system headers.
By surviving this we can handle common system header macro differences
like differing 'const' qualification of pointers due to some headers
predating 'const' being valid in C code, even when those systems headers
are pre-built into a system module.
Differential Revision: http://reviews.llvm.org/D8310
llvm-svn: 232149
of extern "C" declarations. This is simpler and vastly more efficient for
modules builds (we no longer need to load *all* extern "C" declarations to
determine if we have a redeclaration).
No functionality change intended.
llvm-svn: 231538
We used to save out and eagerly load a (potentially huge) table of merged
formerly-canonical declarations when we loaded each module. This was extremely
inefficient in the presence of large amounts of merging, and didn't actually
save any merging lookup work, because we still needed to perform name lookup to
check that our merged declaration lists were complete. This also resulted in a
loss of laziness -- even if we only needed an early declaration of an entity, we
would eagerly pull in all declarations that had been merged into it regardless.
We now store the relevant fragments of the table within the declarations
themselves. In detail:
* The first declaration of each entity within a module stores a list of first
declarations from imported modules that are merged into it.
* Loading that declaration pre-loads those other entities, so that they appear
earlier within the redeclaration chain.
* The name lookup tables list the most recent local lookup result, if there
is one, or all directly-imported lookup results if not.
llvm-svn: 231424
dynamic classes in the translation unit and check whether each one's key
function is defined when we got to the end of the TU (and when we got to the
end of each module). This is really terrible for modules performance, since it
causes unnecessary deserialization of every dynamic class in every compilation.
We now use a much simpler (and, in a modules build, vastly more efficient)
system: when we see an out-of-line definition of a virtual function, we check
whether that function was in fact its class's key function. (If so, we need to
emit the vtable.)
llvm-svn: 230830
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 3.
llvm-svn: 230305
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 2.
llvm-svn: 230089