This implements WG14 N2927 and WG14 N2930, which together define the
feature for typeof and typeof_unqual, which get the type of their
argument as either fully qualified or fully unqualified. The argument
to either operator is either a type name or an expression. If given a
type name, the type information is pulled directly from the given name.
If given an expression, the type information is pulled from the
expression. Recursive use of these operators is allowed and has the
expected behavior (the innermost operator is resolved to a type, and
that's used to resolve the next layer of typeof specifier, until a
fully resolved type is determined.
Note, we already supported typeof in GNU mode as a non-conforming
extension and we are *not* exposing typeof_unqual as a non-conforming
extension in that mode, nor are we exposing typeof or typeof_unqual as
a nonconforming extension in other language modes. The GNU variant of
typeof supports a form where the parentheses are elided from the
operator when given an expression (e.g., typeof 0 i = 12;). When in C2x
mode, we do not support this extension.
Differential Revision: https://reviews.llvm.org/D134286
This patch implements P0634r3 that removes the need for 'typename' in certain contexts.
For example,
```
template <typename T>
using foo = T::type; // ok
```
This is also allowed in previous language versions as an extension, because I think it's pretty useful. :)
Reviewed By: #clang-language-wg, erichkeane
Differential Revision: https://reviews.llvm.org/D53847
Although using-enum's grammar is 'using elaborated-enum-specifier',
the lookup for the enum is ordinary lookup (and not the tagged-type
lookup that normally occurs wth an tagged-type specifier). Thus (a)
we can find typedefs and (b) do not find enum tags hidden by a non-tag
name (the struct stat thing).
This reimplements that part of using-enum handling, to address DR2621,
where clang's behaviour does not match std intent (and other
compilers).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D134283
Previously we only have an extension that warn void pointer deferencing
in C++, but for C we did nothing.
C2x 6.5.3.2p4 says The unary * operator denotes indirection. If it points
to an object, the result is an lvalue designating the object. However, there
is no way to form an lvalue designating an object of an incomplete type as
6.3.2.1p1 says "an lvalue is an expression (with an object type other than
void)", so the behavior is undefined.
Fixes https://github.com/llvm/llvm-project/issues/53631
Signed-off-by: Jun Zhang <jun@junz.org>
Differential Revision: https://reviews.llvm.org/D134461
The resource binding attribute is to set the virtual registers and logical register spaces resources in HLSL are bound to.
Format is ''register(ID, space)'' like register(t3, space1).
ID must be start with
t – for shader resource views (SRV),
s – for samplers,
u – for unordered access views (UAV),
b – for constant buffer views (CBV).
Register space is default to space0.
The full documentation is available here: https://docs.microsoft.com/en-us/windows/win32/direct3d12/resource-binding-in-hlsl
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D130033
This code was added in b65b1f322b, but it
was not noticed that the [[fallthrough]] behavior was very wrong. In C
mode, we would set the ParenExprType to CompoundLiteral and then
promptly overwrite that information by falling through.
After some investigation, I convinced myself that it is not possible to
hit this code path in C, only in C++. I've switched it to be an
assertion; I don't expect to hit it, but if we do hit it, that will at
least give us a code example we can use to reason about the intent of
the original code.
This is first part for support cbuffer/tbuffer.
The format for cbuffer/tbuffer is
BufferType [Name] [: register(b#)] { VariableDeclaration [: packoffset(c#.xyzw)]; ... };
More details at https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-constants
New keyword 'cbuffer' and 'tbuffer' are added.
New AST node HLSLBufferDecl is added.
Build AST for simple cbuffer/tbuffer without attribute support.
The special thing is variables declared inside cbuffer is exposed into global scope.
So isTransparentContext should return true for HLSLBuffer.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129883
module unit directly
Previously we lack a test which ensures that the module unit will
generate initializer if it is compiled directly (instead of from a pcm
file). Now we add the test back.
Closing https://github.com/llvm/llvm-project/issues/57778.
Previously it judge if we're compiling a module unit by
LangOpts::CurrentModule.empty(). But it is not true since we can specify
the module name by `-fmodule-name` option for arbitrary module unit.
Then this patch adjuest the judgement properly.
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead. Leave the few call sites that
use a locally defined `array_lengthof` that are meant to test previous bugs
with NTTPs in clang analyzer and SemaTemplate.
Differential Revision: https://reviews.llvm.org/D133520
In Parser::ParseUsingDeclaration(...) when we call ParseEnumSpecifier(...) it is
not calling SetTypeSpecError() on DS when it detects an error. That means that
DS is left set to TST_unspecified. When we then pass DS into
Sema::ActOnUsingEnumDeclaration(...) we hit an llvm_unreachable(...) since it
expects it to be one of three states TST_error, TST_enum or TST_typename.
This fixes https://github.com/llvm/llvm-project/issues/57347
Differential Revision: https://reviews.llvm.org/D132695
The patch diagnoses an identifier as a future keyword if it exists in a
future language mode, such as:
int restrict;
in C modes earlier than C99. We now give a warning to the user that
such an identifier is a future keyword. Handles keywords from C as well
as C++.
Differential Revision: https://reviews.llvm.org/D131683
In preparation for allowing the prefer_type list in the append_args clause,
use the OMPInteropInfo in the attribute for 'declare variant'.
This requires adding a new Argument kind to the attribute code. This change
adds a specific attribute to pass an array of OMPInteropInfo. It implements
new tablegen needed to handle the interop-type part of the structure. When
prefer_type is added, more work will be needed to dump, instantiate, and
serialize the PreferTypes field in OMPInteropInfo.
Differential Revision: https://reviews.llvm.org/D132270
Adds
* `__add_lvalue_reference`
* `__add_pointer`
* `__add_rvalue_reference`
* `__decay`
* `__make_signed`
* `__make_unsigned`
* `__remove_all_extents`
* `__remove_extent`
* `__remove_const`
* `__remove_volatile`
* `__remove_cv`
* `__remove_pointer`
* `__remove_reference`
* `__remove_cvref`
These are all compiler built-in equivalents of the unary type traits
found in [[meta.trans]][1]. The compiler already has all of the
information it needs to answer these transformations, so we can skip
needing to make partial specialisations in standard library
implementations (we already do this for a lot of the query traits). This
will hopefully improve compile times, as we won't need use as much
memory in such a base part of the standard library.
[1]: http://wg21.link/meta.trans
Co-authored-by: zoecarver
Reviewed By: aaron.ballman, rsmith
Differential Revision: https://reviews.llvm.org/D116203
The 'init' clause allows an interop-modifier of prefer_type(list) and
and interop-types 'target' and 'targetsync'.
The 'append_args' clause uses an append-op that also includes
interop-types ('target' and 'targetsync') and will allow
a prefer_type list in the next OpenMP version.
This change adds a helper struct OMPInteropInfo and uses it in the parsing
of both the 'init' and 'append_args' clauses.
One OMPInteropInfo object represents the info in a single 'init' clause.
Since 'append_args' allows a variable number of interop items it will
require an array of OMPInteropInfo objects once that is supported.
Differential Revision: https://reviews.llvm.org/D132171
Adds
* `__add_lvalue_reference`
* `__add_pointer`
* `__add_rvalue_reference`
* `__decay`
* `__make_signed`
* `__make_unsigned`
* `__remove_all_extents`
* `__remove_extent`
* `__remove_const`
* `__remove_volatile`
* `__remove_cv`
* `__remove_pointer`
* `__remove_reference`
* `__remove_cvref`
These are all compiler built-in equivalents of the unary type traits
found in [[meta.trans]][1]. The compiler already has all of the
information it needs to answer these transformations, so we can skip
needing to make partial specialisations in standard library
implementations (we already do this for a lot of the query traits). This
will hopefully improve compile times, as we won't need use as much
memory in such a base part of the standard library.
[1]: http://wg21.link/meta.trans
Co-authored-by: zoecarver
Reviewed By: aaron.ballman, rsmith
Differential Revision: https://reviews.llvm.org/D116203
Before this patch type traits are checked in Parser, so use type traits
directly did not cause assertion faults. However if type traits are initialized
from a template, we didn't perform arity checks before evaluating. This
patch moves arity checks from Parser to Sema, and performing arity
checks in Sema actions, so type traits get checked corretly.
Crash input:
```
template<class... Ts> bool b = __is_constructible(Ts...);
bool x = b<>;
```
After this patch:
```
clang/test/SemaCXX/type-trait-eval-crash-issue-57008.cpp:5:32: error: type trait requires 1 or more arguments; have 0 arguments
template<class... Ts> bool b = __is_constructible(Ts...);
^~~~~~~~~~~~~~~~~~
clang/test/SemaCXX/type-trait-eval-crash-issue-57008.cpp:6:10: note: in instantiation of variable template specialization 'b<>' requested here
bool x = b<>;
^
1 error generated.
```
See https://godbolt.org/z/q39W78hsK.
Fixes https://github.com/llvm/llvm-project/issues/57008
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D131423
I went over the output of the following mess of a command:
(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z |
parallel --xargs -0 cat | aspell list --mode=none --ignore-case |
grep -E '^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n |
grep -vE '.{25}' | aspell pipe -W3 | grep : | cut -d' ' -f2 | less)
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Differential Revision: https://reviews.llvm.org/D130827
C99 6.7.4p2 clarifies that a function specifier can only be used in the
declaration of a function. _Noreturn is a function specifier, so it is
a constraint violation to write it on a structure or union field, but
we missed that case.
Fixes#56800
Leverage the method OpenCL uses that adds C intrinsics when the lookup
failed. There is no need to define C intrinsics in the header file any
more. It could help to avoid the large header file to speed up the
compilation of RVV source code. Besides that, only the C intrinsics used
by the users will be added into the declaration table.
This patch is based on https://reviews.llvm.org/D103228 and inspired by
OpenCL implementation.
### Experimental Results
#### TL;DR:
- Binary size of clang increase ~200k, which is +0.07% for debug build and +0.13% for release build.
- Single file compilation speed up ~33x for debug build and ~8.5x for release build
- Regression time reduce ~10% (`ninja check-all`, enable all targets)
#### Header size change
```
| size | LoC |
------------------------------
Before | 4,434,725 | 69,749 |
After | 6,140 | 162 |
```
#### Single File Compilation Time
Testcase:
```
#include <riscv_vector.h>
vint32m1_t test_vadd_vv_vfloat32m1_t(vint32m1_t op1, vint32m1_t op2, size_t vl) {
return vadd(op1, op2, vl);
}
```
##### Debug build:
Before:
```
real 0m19.352s
user 0m19.252s
sys 0m0.092s
```
After:
```
real 0m0.576s
user 0m0.552s
sys 0m0.024s
```
~33x speed up for debug build
##### Release build:
Before:
```
real 0m0.773s
user 0m0.741s
sys 0m0.032s
```
After:
```
real 0m0.092s
user 0m0.080s
sys 0m0.012s
```
~8.5x speed up for release build
#### Regression time
Note: the failed case is `tools/llvm-debuginfod-find/debuginfod.test` which is unrelated to this patch.
##### Debug build
Before:
```
Testing Time: 1358.38s
Skipped : 11
Unsupported : 446
Passed : 75767
Expectedly Failed: 190
Failed : 1
```
After
```
Testing Time: 1220.29s
Skipped : 11
Unsupported : 446
Passed : 75767
Expectedly Failed: 190
Failed : 1
```
##### Release build
Before:
```
Testing Time: 381.98s
Skipped : 12
Unsupported : 1407
Passed : 74765
Expectedly Failed: 176
Failed : 1
```
After:
```
Testing Time: 346.25s
Skipped : 12
Unsupported : 1407
Passed : 74765
Expectedly Failed: 176
Failed : 1
```
#### Binary size of clang
##### Debug build
Before
```
text data bss dec hex filename
335261851 12726004 552812 348540667 14c64efb bin/clang
```
After
```
text data bss dec hex filename
335442803 12798708 552940 348794451 14ca2e53 bin/clang
```
+253K, +0.07% code size
##### Release build
Before
```
text data bss dec hex filename
144123975 8374648 483140 152981763 91e5103 bin/clang
```
After
```
text data bss dec hex filename
144255762 8447296 483268 153186326 9217016 bin/clang
```
+204K, +0.13%
Authored-by: Kito Cheng <kito.cheng@sifive.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Reviewed By: khchen, aaron.ballman
Differential Revision: https://reviews.llvm.org/D111617
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
report an error when encountering 'while' token parsing declarator
```
clang/test/Parser/while-loop-outside-function.c:3:1: error: while loop outside of a function
while // expected-error {{while loop outside of a function}}
^
clang/test/Parser/while-loop-outside-function.c:7:1: error: while loop outside of a function
while // expected-error {{while loop outside of a function}}
^
```
Fixes: https://github.com/llvm/llvm-project/issues/34462
Differential Revision: https://reviews.llvm.org/D129573
The re-land fixes module map module dependencies seen on Greendragon, but
not in the clang test suite.
---
Currently we only implement this for the Itanium ABI since the correct
mangling for the initializers in other ABIs is not yet known.
Intended result:
For a module interface [which includes partition interface and implementation
units] (instead of the generic CXX initializer) we emit a module init that:
- wraps the contained initializations in a control variable to ensure that
the inits only happen once, even if a module is imported many times by
imports of the main unit.
- calls module initializers for imported modules first. Note that the
order of module import is not significant, and therefore neither is the
order of imported module initializers.
- We then call initializers for the Global Module Fragment (if present)
- We then call initializers for the current module.
- We then call initializers for the Private Module Fragment (if present)
For a module implementation unit, or a non-module TU that imports at least one
module we emit a regular CXX init that:
- Calls the initializers for any imported modules first.
- Then proceeds as normal with remaining inits.
For all module unit kinds we include a global constructor entry, this allows
for the (in most cases unusual) possibility that a module object could be
included in a final binary without a specific call to its initializer.
Implementation:
- We provide the module pointer in the AST Context so that CodeGen can act
on it and its sub-modules.
- We need to account for module build lines like this:
` clang -cc1 -std=c++20 Foo.pcm -emit-obj -o Foo.o` or
` clang -cc1 -std=c++20 -xc++-module Foo.cpp -emit-obj -o Foo.o`
- in order to do this, we add to ParseAST to set the module pointer in
the ASTContext, once we establish that this is a module build and we
know the module pointer. To be able to do this, we make the query for
current module public in Sema.
- In CodeGen, we determine if the current build requires a CXX20-style module
init and, if so, we defer any module initializers during the "Eagerly
Emitted" phase.
- We then walk the module initializers at the end of the TU but before
emitting deferred inits (which adds any hidden and static ones, fixing
https://github.com/llvm/llvm-project/issues/51873 ).
- We then proceed to emit the deferred inits and continue to emit the CXX
init function.
Differential Revision: https://reviews.llvm.org/D126189
Looks like we again are going to have problems with libcxx tests that
are overly specific in their dependency on clang's diagnostics.
This reverts commit 6542cb55a3.
This patch is basically the rewording of the static assert statement's
output(error) on screen after failing. Failing a _Static_assert in C
should not report that static_assert failed. It’d probably be better to
reword the diagnostic to be more like GCC and say “static assertion”
failed in both C and C++.
consider a c file having code
_Static_assert(0, "oh no!");
In clang the output is like:
<source>:1:1: error: static_assert failed: oh no!
_Static_assert(0, "oh no!");
^ ~
1 error generated.
Compiler returned: 1
Thus here the "static_assert" is not much good, it will be better to
reword it to the "static assertion failed" to more generic. as the gcc
prints as:
<source>:1:1: error: static assertion failed: "oh no!"
1 | _Static_assert(0, "oh no!");
| ^~~~~~~~~~~~~~
Compiler returned: 1
The above can also be seen here. This patch is about rewording
the static_assert to static assertion.
Differential Revision: https://reviews.llvm.org/D129048
This reverts commit b7e77ff25f.
Reason: Broke sanitizer builds bots + libcxx. 'static assertion
expression is not an integral constant expression'. More details
available in the Phabricator review: https://reviews.llvm.org/D129048
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
This addresses [cpp.include]/7
(when encountering #include header-name)
If the header identified by the header-name denotes an importable header, it
is implementation-defined whether the #include preprocessing directive is
instead replaced by an import directive.
In this implementation, include translation is performed _only_ for headers
in the Global Module fragment, so:
```
module;
#include "will-be-translated.h" // IFF the header unit is available.
export module M;
#include "will-not-be-translated.h" // even if the header unit is available
```
The reasoning is that, in general, includes in the module purview would not
be validly translatable (they would have to immediately follow the module
decl and without any other intervening decls). Otherwise that would violate
the rules on contiguous import directives.
This would be quite complex to track in the preprocessor, and for relatively
little gain (the user can 'import "will-not-be-translated.h";' instead.)
TODO: This is one area where it becomes increasingly difficult to disambiguate
clang modules in C++ from C++ standard modules. That needs to be addressed in
both the driver and the FE.
Differential Revision: https://reviews.llvm.org/D128981
Currently we only implement this for the Itanium ABI since the correct
mangling for the initializers in other ABIs is not yet known.
Intended result:
For a module interface [which includes partition interface and implementation
units] (instead of the generic CXX initializer) we emit a module init that:
- wraps the contained initializations in a control variable to ensure that
the inits only happen once, even if a module is imported many times by
imports of the main unit.
- calls module initializers for imported modules first. Note that the
order of module import is not significant, and therefore neither is the
order of imported module initializers.
- We then call initializers for the Global Module Fragment (if present)
- We then call initializers for the current module.
- We then call initializers for the Private Module Fragment (if present)
For a module implementation unit, or a non-module TU that imports at least one
module we emit a regular CXX init that:
- Calls the initializers for any imported modules first.
- Then proceeds as normal with remaining inits.
For all module unit kinds we include a global constructor entry, this allows
for the (in most cases unusual) possibility that a module object could be
included in a final binary without a specific call to its initializer.
Implementation:
- We provide the module pointer in the AST Context so that CodeGen can act
on it and its sub-modules.
- We need to account for module build lines like this:
` clang -cc1 -std=c++20 Foo.pcm -emit-obj -o Foo.o` or
` clang -cc1 -std=c++20 -xc++-module Foo.cpp -emit-obj -o Foo.o`
- in order to do this, we add to ParseAST to set the module pointer in
the ASTContext, once we establish that this is a module build and we
know the module pointer. To be able to do this, we make the query for
current module public in Sema.
- In CodeGen, we determine if the current build requires a CXX20-style module
init and, if so, we defer any module initializers during the "Eagerly
Emitted" phase.
- We then walk the module initializers at the end of the TU but before
emitting deferred inits (which adds any hidden and static ones, fixing
https://github.com/llvm/llvm-project/issues/51873 ).
- We then proceed to emit the deferred inits and continue to emit the CXX
init function.
Differential Revision: https://reviews.llvm.org/D126189
This patch gives basic parsing and semantic support for
"parallel masked taskloop simd" construct introduced in
OpenMP 5.1 (section 2.16.10)
Differential Revision: https://reviews.llvm.org/D128946
This patch gives basic parsing and semantic support for
"parallel masked taskloop" construct introduced in
OpenMP 5.1 (section 2.16.9)
Differential Revision: https://reviews.llvm.org/D128834
This patch adds a new extension to the `omp begin / end declare variant`
support that causes it to apply to function declarations as well. This
is explicitly not done in the standard, but can be useful in some
situations so we should provide it as an extension. This will allow us
to uniquely bind and overload existing definitions with a simple
declaration using variants.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D124624
"Ascii" StringLiteral instances are actually narrow strings
that are UTF-8 encoded and do not have an encoding prefix.
(UTF8 StringLiteral are also UTF-8 encoded strings, but with
the u8 prefix.
To avoid possible confusion both with actuall ASCII strings,
and with future works extending the set of literal encodings
supported by clang, this rename StringLiteral::isAscii() to
isOrdinary(), matching C++ standard terminology.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D128762