Commit Graph

31 Commits

Author SHA1 Message Date
Matheus Izvekov 15f3cd6bfc
[clang] Implement ElaboratedType sugaring for types written bare
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.

The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.

An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.

---

Troubleshooting list to deal with any breakage seen with this patch:

1) The most likely effect one would see by this patch is a change in how
   a type is printed. The type printer will, by design and default,
   print types as written. There are customization options there, but
   not that many, and they mainly apply to how to print a type that we
   somehow failed to track how it was written. This patch fixes a
   problem where we failed to distinguish between a type
   that was written without any elaborated-type qualifiers,
   such as a 'struct'/'class' tags and name spacifiers such as 'std::',
   and one that has been stripped of any 'metadata' that identifies such,
   the so called canonical types.
   Example:
   ```
   namespace foo {
     struct A {};
     A a;
   };
   ```
   If one were to print the type of `foo::a`, prior to this patch, this
   would result in `foo::A`. This is how the type printer would have,
   by default, printed the canonical type of A as well.
   As soon as you add any name qualifiers to A, the type printer would
   suddenly start accurately printing the type as written. This patch
   will make it print it accurately even when written without
   qualifiers, so we will just print `A` for the initial example, as
   the user did not really write that `foo::` namespace qualifier.

2) This patch could expose a bug in some AST matcher. Matching types
   is harder to get right when there is sugar involved. For example,
   if you want to match a type against being a pointer to some type A,
   then you have to account for getting a type that is sugar for a
   pointer to A, or being a pointer to sugar to A, or both! Usually
   you would get the second part wrong, and this would work for a
   very simple test where you don't use any name qualifiers, but
   you would discover is broken when you do. The usual fix is to
   either use the matcher which strips sugar, which is annoying
   to use as for example if you match an N level pointer, you have
   to put N+1 such matchers in there, beginning to end and between
   all those levels. But in a lot of cases, if the property you want
   to match is present in the canonical type, it's easier and faster
   to just match on that... This goes with what is said in 1), if
   you want to match against the name of a type, and you want
   the name string to be something stable, perhaps matching on
   the name of the canonical type is the better choice.

3) This patch could expose a bug in how you get the source range of some
   TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
   which only looks at the given TypeLoc node. This patch introduces a new,
   and more common TypeLoc node which contains no source locations on itself.
   This is not an inovation here, and some other, more rare TypeLoc nodes could
   also have this property, but if you use getLocalSourceRange on them, it's not
   going to return any valid locations, because it doesn't have any. The right fix
   here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
   into the inner TypeLoc to get the source range if it doesn't find it on the
   top level one. You can use getLocalSourceRange if you are really into
   micro-optimizations and you have some outside knowledge that the TypeLocs you are
   dealing with will always include some source location.

4) Exposed a bug somewhere in the use of the normal clang type class API, where you
   have some type, you want to see if that type is some particular kind, you try a
   `dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
   ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
   Again, like 2), this would usually have been tested poorly with some simple tests with
   no qualifications, and would have been broken had there been any other kind of type sugar,
   be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
   The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
   into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
   For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.

5) It could be a bug in this patch perhaps.

Let me know if you need any help!

Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>

Differential Revision: https://reviews.llvm.org/D112374
2022-07-27 11:10:54 +02:00
Jonas Devlieghere 888673b6e3
Revert "[clang] Implement ElaboratedType sugaring for types written bare"
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was  re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
2022-07-14 21:17:48 -07:00
Matheus Izvekov 7c51f02eff
[clang] Implement ElaboratedType sugaring for types written bare
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.

The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.

An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.

---

Troubleshooting list to deal with any breakage seen with this patch:

1) The most likely effect one would see by this patch is a change in how
   a type is printed. The type printer will, by design and default,
   print types as written. There are customization options there, but
   not that many, and they mainly apply to how to print a type that we
   somehow failed to track how it was written. This patch fixes a
   problem where we failed to distinguish between a type
   that was written without any elaborated-type qualifiers,
   such as a 'struct'/'class' tags and name spacifiers such as 'std::',
   and one that has been stripped of any 'metadata' that identifies such,
   the so called canonical types.
   Example:
   ```
   namespace foo {
     struct A {};
     A a;
   };
   ```
   If one were to print the type of `foo::a`, prior to this patch, this
   would result in `foo::A`. This is how the type printer would have,
   by default, printed the canonical type of A as well.
   As soon as you add any name qualifiers to A, the type printer would
   suddenly start accurately printing the type as written. This patch
   will make it print it accurately even when written without
   qualifiers, so we will just print `A` for the initial example, as
   the user did not really write that `foo::` namespace qualifier.

2) This patch could expose a bug in some AST matcher. Matching types
   is harder to get right when there is sugar involved. For example,
   if you want to match a type against being a pointer to some type A,
   then you have to account for getting a type that is sugar for a
   pointer to A, or being a pointer to sugar to A, or both! Usually
   you would get the second part wrong, and this would work for a
   very simple test where you don't use any name qualifiers, but
   you would discover is broken when you do. The usual fix is to
   either use the matcher which strips sugar, which is annoying
   to use as for example if you match an N level pointer, you have
   to put N+1 such matchers in there, beginning to end and between
   all those levels. But in a lot of cases, if the property you want
   to match is present in the canonical type, it's easier and faster
   to just match on that... This goes with what is said in 1), if
   you want to match against the name of a type, and you want
   the name string to be something stable, perhaps matching on
   the name of the canonical type is the better choice.

3) This patch could exposed a bug in how you get the source range of some
   TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
   which only looks at the given TypeLoc node. This patch introduces a new,
   and more common TypeLoc node which contains no source locations on itself.
   This is not an inovation here, and some other, more rare TypeLoc nodes could
   also have this property, but if you use getLocalSourceRange on them, it's not
   going to return any valid locations, because it doesn't have any. The right fix
   here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
   into the inner TypeLoc to get the source range if it doesn't find it on the
   top level one. You can use getLocalSourceRange if you are really into
   micro-optimizations and you have some outside knowledge that the TypeLocs you are
   dealing with will always include some source location.

4) Exposed a bug somewhere in the use of the normal clang type class API, where you
   have some type, you want to see if that type is some particular kind, you try a
   `dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
   ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
   Again, like 2), this would usually have been tested poorly with some simple tests with
   no qualifications, and would have been broken had there been any other kind of type sugar,
   be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
   The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
   into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
   For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.

5) It could be a bug in this patch perhaps.

Let me know if you need any help!

Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>

Differential Revision: https://reviews.llvm.org/D112374
2022-07-15 04:16:55 +02:00
Jonas Devlieghere 3968936b92
Revert "[clang] Implement ElaboratedType sugaring for types written bare"
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.

  import-std-module/array.TestArrayFromStdModule.py
  import-std-module/deque-basic.TestDequeFromStdModule.py
  import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
  import-std-module/forward_list.TestForwardListFromStdModule.py
  import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
  import-std-module/list.TestListFromStdModule.py
  import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
  import-std-module/queue.TestQueueFromStdModule.py
  import-std-module/stack.TestStackFromStdModule.py
  import-std-module/vector.TestVectorFromStdModule.py
  import-std-module/vector-bool.TestVectorBoolFromStdModule.py
  import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
  import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py

https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
2022-07-13 09:20:30 -07:00
Matheus Izvekov bdc6974f92
[clang] Implement ElaboratedType sugaring for types written bare
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.

The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.

An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.

Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>

Differential Revision: https://reviews.llvm.org/D112374
2022-07-13 02:10:09 +02:00
Chris Bieneman 6d8e5c9685 [NFC] Make file offsets a regex to handle CRLF
None of these tests are really intended to test the file offset as much
as to test the structure. Making the regex allows this test to work
even if the file is checked out with CRLF line endings.

Reviewed By: aaron.ballman

Differential Revision: https://reviews.llvm.org/D119362
2022-02-10 20:39:20 -06:00
Haojian Wu ab3f100bec Reland (2) "[AST] Add RParen loc for decltype AutoTypeloc.""
The patch was reverted because it caused a crash during PCH build -- we
missed to update the RParenLoc in TreeTransform<Derived>::TransformAutoType.

This relands 55d96ac and 37ec65e with a test and fix.
2022-01-17 11:33:11 +01:00
Florian Hahn eadb4cfeef
Revert (2) "[AST] Add RParen loc for decltype AutoTypeloc."
This reverts commit 41fbdfa4d5.

The commit breaks stage 2 builds with debug info, e.g.
https://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/5088/console

Clang crashes with the following assertion when building
llvm-project/llvm/lib/Support/Timer.cpp

/usr/local/bin/sccache /Users/buildslave/jenkins/workspace/clang-stage2-Rthinlto/host-compiler/bin/clang++  -DGTEST_HAS_RTTI=0 -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Ilib/Support -I/Users/buildslave/jenkins/workspace/clang-stage2-Rthinlto/llvm-project/llvm/lib/Support -Iinclude -I/Users/buildslave/jenkins/workspace/clang-stage2-Rthinlto/llvm-project/llvm/include -fno-stack-protector -fno-common -Wno-profile-instr-unprofiled -fPIC -fvisibility-inlines-hidden -Werror=date-time -Werror=unguarded-availability-new -fmodules -fmodules-cache-path=/Users/buildslave/jenkins/workspace/clang-stage2-Rthinlto/clang-build/Build/module.cache -fcxx-modules -Xclang -fmodules-local-submodule-visibility -gmodules -Wall -Wextra -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wmissing-field-initializers -pedantic -Wno-long-long -Wc++98-compat-extra-semi -Wimplicit-fallthrough -Wcovered-switch-default -Wno-noexcept-type -Wnon-virtual-dtor -Wdelete-non-virtual-dtor -Wsuggest-override -Wstring-conversion -Wmisleading-indentation -fdiagnostics-color -flto=thin  -O2 -g -DNDEBUG -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk   -std=c++14  -fno-exceptions -fno-rtti -MD -MT lib/Support/CMakeFiles/LLVMSupport.dir/Timer.cpp.o -MF lib/Support/CMakeFiles/LLVMSupport.dir/Timer.cpp.o.d -o lib/Support/CMakeFiles/LLVMSupport.dir/Timer.cpp.o -c /Users/buildslave/jenkins/workspace/clang-stage2-Rthinlto/llvm-project/llvm/lib/Support/Timer.cpp
Assertion failed: (((getOffset()+Offset) & MacroIDBit) == 0 && "offset overflow"), function getLocWithOffset, file /Users/buildslave/jenkins/workspace/clang-stage1-RA/llvm-project/clang/include/clang/Basic/SourceLocation.h, line 135.
2022-01-12 10:09:37 +00:00
Haojian Wu 41fbdfa4d5 Reland "[AST] Add RParen loc for decltype AutoTypeloc."
Reland 55d96ac and 37ec65e with a clang-tidy fix.
2022-01-11 12:06:18 +01:00
Haojian Wu c2293bc17d Revert "[AST] Add RParen loc for decltype AutoTypeloc."
This breaks a clang-tidy check, needs to investigate and fix. Revert
them to bring the buildbot back.

This reverts commit 55d96ac3dc and
37ec65e1d7
2022-01-10 15:18:41 +01:00
Haojian Wu 55d96ac3dc [AST] Add RParen loc for decltype AutoTypeloc.
Differential Revision: https://reviews.llvm.org/D116919
2022-01-10 12:46:27 +01:00
Nikita Popov 8043beb890 [JSONNodeDumper] Do not print mangled names for local variables (PR49111)
Mangled names are not meaningful for variables with local storage,
and may not be well defined (getting the mangled name for VLA
crashes the mangler). As such, do not include them in the JSON
dump.

This allows running update_cc_test_checks on some OpenMP tests again.

Fixes https://github.com/llvm/llvm-project/issues/49111.

Differential Revision: https://reviews.llvm.org/D116169
2021-12-23 08:55:41 +01:00
Nikita Popov da007a33c9 [JSONNodeDumper] Regenerate test checks (NFC)
gen_ast_dump_json_test.py adds these lines of whitespace. Precommit
it to avoid spurious diffs in future changes.
2021-12-22 16:56:52 +01:00
David Blaikie aee4925507 Recommit: Compress formatting of array type names (int [4] -> int[4])
Based on post-commit review discussion on
2bd8493847 with Richard Smith.

Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).

This was originally committed in 277623f4d5

Reverted in f9ad1d1c77 due to breakages
outside of clang - lldb seems to have some strange/strong dependence on
"char [N]" versus "char[N]" when printing strings (not due to that name
appearing in DWARF, but probably due to using clang to stringify type
names) that'll need to be addressed, plus a few other odds and ends in
other subprojects (clang-tools-extra, compiler-rt, etc).
2021-10-21 11:34:43 -07:00
David Blaikie f9ad1d1c77 Revert "Compress formatting of array type names (int [4] -> int[4])"
Looks like lldb has some issues with this - somehow it causes lldb to
treat a "char[N]" type as an array of chars (prints them out
individually) but a "char [N]" is printed as a string. (even though the
DWARF doesn't have this string in it - it's something to do with the
string lldb generates for itself using clang)

This reverts commit 277623f4d5.
2021-10-14 14:49:25 -07:00
David Blaikie 277623f4d5 Compress formatting of array type names (int [4] -> int[4])
Based on post-commit review discussion on
2bd8493847 with Richard Smith.

Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
2021-10-14 14:23:32 -07:00
william woodruff 451d0596d7 [clang] Fix JSON AST output when a filter is used
Without this, the combination of `-ast-dump=json` and `-ast-dump-filter FILTER` produces invalid JSON: the first line is a string that says `Dumping $SOME_DECL_NAME: `.

Reviewed By: aaron.ballman

Differential Revision: https://reviews.llvm.org/D108441
2021-10-10 07:46:17 +05:30
Matheus Izvekov aef5d8fdc7 [clang] NFC: Rename rvalue to prvalue
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.

C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).

Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"

Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>

Reviewed By: rsmith

Differential Revision: https://reviews.llvm.org/D103720
2021-06-09 12:27:10 +02:00
David Tolnay 967ebad125 Fix null ptr crash dumping TemplateTemplateParmDecl
The following program winds up with
D->getDefaultArgStorage().getInheritedFrom() == nullptr
during dumping the TemplateTemplateParmDecl corresponding to the
template parameter of i.

  template <typename>
  struct R;
  template <template <typename> class = R>
  void i();

This patch fixes the null pointer dereference.
2021-04-24 12:28:10 -04:00
Richard Smith 5eca1d5e0d AST dump: recurse into type template arguments when dumping.
Also, do not dump the desugared type for a TemplateSpecializationType
twice.
2020-06-23 00:07:00 -07:00
Richard Smith 825e3bb580 PR46209: properly determine whether a copy assignment operator is
trivial.

We previously took a shortcut by assuming that if a subobject had a
trivial copy assignment operator (with a few side-conditions), we would
always invoke it, and could avoid going through overload resolution.
That turns out to not be correct in the presenve of ref-qualifiers (and
also won't be the case for copy-assignments with requires-clauses
either). Use the same logic for lazy declaration of copy-assignments
that we use for all other special member functions.

Previously committed as c57f8a3a20. This
now also includes an extension of LLDB's workaround for handling special
members without the help of Sema to cover copy assignments.
2020-06-05 16:05:32 -07:00
Jonas Devlieghere df53f09056 Revert "PR46209: properly determine whether a copy assignment operator is"
This reverts commit c57f8a3a20.
2020-06-04 23:45:36 -07:00
Richard Smith c57f8a3a20 PR46209: properly determine whether a copy assignment operator is
trivial.

We previously took a shortcut by assuming that if a subobject had a
trivial copy assignment operator (with a few side-conditions), we would
always invoke it, and could avoid going through overload resolution.
That turns out to not be correct in the presenve of ref-qualifiers (and
also won't be the case for copy-assignments with requires-clauses
either). Use the same logic for lazy declaration of copy-assignments
that we use for all other special member functions.
2020-06-04 19:19:01 -07:00
Alex Richardson 3c3048c18b Include the mangled name in -ast-dump=json
I am planning to use this feature to make update_cc_test_checks.py less fragile
by obtaining the mangled names directly from -ast-dump=json. Currently,
it uses c-index-test which ignores the -triple=, etc. arguments that are
in the RUN: line and therefore does not generate checks for some targets.

The AST dump tests were updated using the following command:
`python $LLVM_BINDIR/gen_ast_dump_json_test.py --update --source $LLVM_SRC/clang/test/AST/*-json.*`

Reviewers: aaron.ballman

Reviewed By: aaron.ballman

Subscribers: rsmith, MaskRay, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D69564
2019-11-15 12:52:56 +00:00
Aaron Ballman 27c7a9b157 Add more information to JSON AST dumping of source locations.
This adds information about the offset within the source file to the given source location as well as information about the include file a location is from. These pieces of information allow for more efficient post-processing of JSON AST dumps.

llvm-svn: 374921
2019-10-15 17:30:19 +00:00
Kadir Cetinkaya fd019ed54e [clang] Make handling of unnamed template params similar to function params
Summary:
Clang uses the location identifier should be inserted for declarator
decls when a decl is unnamed. But for type template and template template
paramaters it uses the location of "typename/class" keyword, which makes it hard
for tooling to insert/change parameter names.

This change tries to unify these two cases by making template parameter
parsing and sourcerange operations similar to function params/declarator decls.

Reviewers: ilya-biryukov

Subscribers: arphaman, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D68143

llvm-svn: 373340
2019-10-01 14:08:51 +00:00
Aaron Ballman 40e3760472 Generate parent context id from Decl* instead of DeclContext*.
Because of multiple inheritance, a DeclContext pointer does not produce
the same pointer representation as a Decl pointer that references the
same AST Node.

When dumping the parentDeclContextId field of a node, convert the pointer
to Decl* first, so the id can be used to find the AST node it references.

Patch by Bert Belder.

llvm-svn: 370970
2019-09-04 20:30:00 +00:00
Aaron Ballman a612e34c14 Augment location information when dumping the AST to JSON.
Rather than create JSON objects for source locations and ranges, we instead stream them out directly. This allows us to elide duplicate information (without JSON field reordering causing an issue) like file names and line numbers, similar to the text dump. This also adds token length information when dumping the source location.

llvm-svn: 364226
2019-06-24 20:07:11 +00:00
Aaron Ballman 60294f9d35 Add an automated note to files produced by gen_ast_dump_json_test.py.
This also details what filters, if any, were used to generate the test output. Updates all the current JSON testing files to include the automated note.

llvm-svn: 364055
2019-06-21 14:37:39 +00:00
Aaron Ballman c07cfce23a Print information about various type nodes when dumping the AST to JSON.
llvm-svn: 364043
2019-06-21 13:22:35 +00:00
Aaron Ballman 7556615a9d Change the way we output templates for JSON AST dumping and dump information about template arguments.
Previously, we attempted to write out template parameters and specializations to their own array, but due to the architecture of the ASTNodeTraverser, this meant that other nodes were not being written out. This now follows the same behavior as the regular AST dumper and puts all the (correct) information into the "inner" array. When we correct the AST node traverser itself, we can revisit splitting this information into separate arrays again.

llvm-svn: 363819
2019-06-19 15:24:06 +00:00